Updated on 2025/06/09

写真a

 
CHEN OLIVIA
 
Organization
Faculty of Information Science and Electrical Engineering Department of Advanced Information Technology Associate Professor
Joint Graduate School of Mathematics for Innovation (Concurrent)
School of Engineering Department of Electrical Engineering and Computer Science(Concurrent)
Graduate School of Information Science and Electrical Engineering Department of Information Science and Technology(Concurrent)
Title
Associate Professor
Contact information
メールアドレス
External link

Research Areas

  • Informatics / Computer system

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Electron device and electronic equipment

Degree

  • Ph.D.

Research History

  • University of California, Riverside Department of Electrical and Computer Engineering Visiting Associate Professor 

    2024.5 - Present

      More details

    Country:United States

    researchmap

  • Kyushu University Faculty of Information Science and Electrical Engineering  

    2024.4 - Present

      More details

  • Yokohama National University Institute of Advanced Sciences Visiting Associate Professor 

    2021.4 - Present

      More details

  • Tokyo City University Department of Computer Sciences Associate Professor 

    2021.4 - 2024.3

      More details

Research Interests・Research Keywords

  • Research theme: Beyond CMOS

    Keyword: Beyond CMOS

    Research period: 2024

  • Research theme: EDA

    Keyword: EDA

    Research period: 2024

  • Research theme: Superconducting electronics

    Keyword: Superconducting electronics

    Research period: 2024

  • Research theme: VLSI

    Keyword: VLSI

    Research period: 2024

Awards

  • 2023 Van Duzer Prize Award

    2024.9   IEEE Council on Superconductivity  

     More details

  • 優秀研究賞

    2023.9   東京都市大学  

  • 優秀研究賞

    2023.9   東京都市大学  

     More details

  • 外部資金獲得研究者表彰

    2020.6   横浜国立大学  

  • 米低温学会2019年度若手プロフェッショナル

    2019.3   米低温学会   2019 Young Professional by Cryogenic Society of America

▼display all

Papers

  • SuperSIM: A comprehensive benchmarking framework for neural networks using superconductor josephson devices

    Guangxian Zhu, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima, Wenhui Luo, Naoki Takeuchi, Nobuyuki Yoshikawa, Olivia Chen

    Superconductor Science and Technology   37 ( 9 )   2024.9   ISSN:0953-2048 eISSN:1361-6668

     More details

    Publishing type:Research paper (scientific journal)   Publisher:IOP Publishing  

    Abstract

    This paper introduces SuperSIM, a benchmarking framework tailored for neural networks using superconducting Josephson devices, specifically focusing on Adiabatic Quantum Flux Parametron (AQFP) based Processing-in-Memory (PIM) architectures. Our framework offers in-depth architecture-level simulations and performance assessments to enhance AQFP PIM chip development. It supports single and multi-bit PIM designs, various AQFP memory cell types, and diverse clocking methods. Additionally, it integrates circuit-level models for precise energy, delay, and area measurements, ensuring accurate performance evaluation. The framework includes application, device, and architectural layers for versatile configurations and cycle-accurate energy, latency, and area simulations. Experiments validate our framework, with case studies on algorithm and architecture-level features, examining data precision, crossbar size, operating frequency and clocking scheme impacts on computational accuracy, energy use, overall latency and hardware cost.

    DOI: 10.1088/1361-6668/ad6d9e

    Web of Science

    Scopus

    researchmap

    Other Link: https://iopscience.iop.org/article/10.1088/1361-6668/ad6d9e/pdf

  • Dual-mode neuron design with deterministic and non-deterministic operations using adiabatic superconductor devices

    Tomoharu Yamauchi, Naoki Takeuchi, Nobuyuki Yoshikawa, Hao San, Olivia Chen

    Superconductor Science and Technology   37 ( 9 )   095027 - 095027   2024.8   ISSN:0953-2048 eISSN:1361-6668

     More details

    Publishing type:Research paper (scientific journal)   Publisher:IOP Publishing  

    Abstract

    In this research, we unveil an innovative strategy in neuromorphic computing by developing a neuron model tailored for the energy-efficient Adiabatic Quantum-Flux-Parametron (AQFP) logic. This model is particularly aimed at enhancing neural network accelerators. Our design of the AQFP-based neuron operates effectively in both deterministic and non-deterministic modes. In deterministic mode, the design relies on superconducting inductive coupling to activate neurons by comparing the sum of AQFP signal currents against a tunable threshold. For non-deterministic operation, we demonstrate how altering specific circuit parameters can correlate these aggregated currents with the non-deterministic operational range of an AQFP current comparator. We verified its versatility and functionality by fabricating varied circuits and conducting extensive tests, confirming its practical application potential. Our work not only showcases the practical implementation of AQFP in neuromorphic computing but also sets a foundation for future advancements in energy-efficient AI hardware.

    DOI: 10.1088/1361-6668/ad55ce

    researchmap

    Other Link: https://iopscience.iop.org/article/10.1088/1361-6668/ad55ce/pdf

  • The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3

    Amerl M., Filmer E.K., Jackson P., Kong A.X.Y., Potti H., Ruggeri T.A., Ting E.X.L., White M.J., Davis P.M., Gingrich D.M., Lindon J.H., Nishu N., Pinfold J.L., Soluk R., Cakir O., Duran Yildiz H., Kuday S., Turk Cakir I., Sultansoy S., Adam Bourdarios C., Ballansat J., Bellachia F., Berger N., Bouedo T., Cap S., Chevillot N., Costanza F., David P., Delebecque P., Delmastro M., Di Ciaccio L., Dumont Dayot N., Elles S., Fragnaud J.C., Gantel L.M., Goy C., Guillemin T., Hryn'ova T., Jézéquel S., Koletsou I., Lafrasse S., Levêque J., Lewis D.J., Little J.D., Lorenzo Martinez N., Massol N., Perrot G., Poddar G., Rossi E., Sanchez Pineda A., Sauvan E., Selem L., Todorov T., Wingerter-Seez I., Bernardi G., Bomben M., Bouquet R., Di Gregorio G., Li A., Marchiori G., Shen Q., Zhang Y., Chekanov S., Darmora S., Hopkins W.H., Hoya J., Kourlitis E., LeCompte T., Love J., Luz R.J., Metcalfe J., Mete A.S., Paramonov A., Proudfoot J., Trovato M., Van Gemmeren P., Wang R., Zhang J., Armijo C.E., Berlendis S., Cheu E., Cui Z., Ghosh A., Gigliotti K., Johns K.A., Lampl W., Lindley R.E., Loch P., Rutherfoord J.P., Sardain J., Scott G.J., Solis M.A., Tompkins D., Varnes E.W., Walker R.W., Zhou H., Zhou Y., Abdallah J., Bakshi Gupta D., Burghgrave B.

    Journal of Instrumentation   19 ( 5 )   2024.5

     More details

    Publisher:Journal of Instrumentation  

    The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of ℒ = 2 × 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of ℒ = 2 × 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.

    DOI: 10.1088/1748-0221/19/05/P05063

    Scopus

  • Buffer and Splitter Insertion for Adiabatic Quantum-Flux-Parametron Circuits

    Fu R., Wang M., Kan Y., Chen O., Yoshikawa N., Yu B., Ho T.Y.

    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems   2024   ISSN:02780070

     More details

    Publisher:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  

    The extremely low-bit energy characteristic of the adiabatic quantum-flux-parametron (AQFP) circuit makes it a promising candidate for highly energy-efficient computing systems. However, by contrast with conventional circuit design, general logic synthesis tools can not make sure that the circuit functionality of generated AQFP circuits is correct. AQFP circuits require buffer and splitter insertion for dataflow synchronization at all clock phases of the circuit and multi-fan-out driving. Notably, buffers and splitters inserted take up much area and delay in AQFP circuits, also causing a significant increase in energy dissipation. To address this problem, this paper analyzes in detail why buffer and splitter insertion is necessary for AQFP circuits and proposes a global optimization framework for this purpose. This framework consists of three parts: (i) logic level assignment, (ii) splitter tree generation, and (iii) buffer insertion. An integer linear programming algorithm is proposed for the logic level assignment to estimate the globally optimal number of inserted buffers and splitters. Subsequently, a dynamic programming-based multi-way search tree generation algorithm is proposed to construct an optimal splitter tree for each net of the input circuit. Moreover, three optimization strategies are proposed to further enhance the effectiveness and efficiency of our framework. Experimental results on ISCAS'85 and EPFL benchmarks demonstrate the effectiveness and efficiency of our proposed framework compared with the state-of-the-art, particularly with significant advantages on large circuits.

    DOI: 10.1109/TCAD.2024.3461573

    Scopus

  • Design and Implementation of Energy-Efficient Binary Neural Networks Using Adiabatic Quantum-Flux-Parametron Logic

    Tomoharu Yamauchi, Hao San, Nobuyuki Yoshikawa, Olivia Chen

    IEEE Transactions on Applied Superconductivity   33 ( 5 )   1 - 5   2023.8   ISSN:1051-8223 eISSN:1558-2515

     More details

    Language:Others   Publishing type:Research paper (scientific journal)   Publisher:Institute of Electrical and Electronics Engineers (IEEE)  

    DOI: 10.1109/tasc.2023.3243180

    researchmap

▼display all

Books

Presentations

  • Non-Linear Function Generator Using Stochastic Superconductive Circuits

    Olivia Chen, Wenhui Luo, Naoki Takeuchi, Yanzhi Wang, Nobuyuki Yoshikawa

    Applied Superconductivity Conference 2022  2022.10 

     More details

    Event date: 2022.10

    Language:Others  

    Country:Other  

  • Design and Implementation of High-Performance Binary Neural Network Using Adiabatic Quantum- Flux-Parametron Logic

    T. Yamauchi, H. San, N. Yoshikawa, O. Chen

    Applied Superconductivity Conference (ASC 2022)  2022.10 

     More details

    Event date: 2022.10

    Language:Others  

    Country:Other  

    Design and Implementation of High-Performance Binary Neural Network Using Adiabatic Quantum- Flux-Parametron Logic

  • Non-Linear Function Generator Using Stochastic Superconductive Circuits

    Olivia Chen, Wenhui Luo, Naoki Takeuchi, Yanzhi Wang, Nobuyuki Yoshikawa

    Applied Superconductivity Conference 2022  2022.10 

     More details

    Event date: 2022.10

    Presentation type:Oral presentation (general)  

    researchmap

  • Design and Implementation of High-Performance Binary Neural Network Using Adiabatic Quantum- Flux-Parametron Logic

    T. Yamauchi, H. San, N. Yoshikawa, O. Chen

    Applied Superconductivity Conference (ASC 2022)  2022.10 

     More details

    Event date: 2022.10

    researchmap

  • A Study on In-Memory Binary Neural Networks Using Adiabatic Quantum-Flux-Parametron Logic

    T. Yamauchi, H. San, N. Yoshikawa, O. Chen

    SSV2022&QCCC2022  2022.9 

     More details

    Event date: 2022.9

    Language:Others  

    Country:Other  

    A Study on In-Memory Binary Neural Networks Using Adiabatic Quantum-Flux-Parametron Logic

▼display all

Professional Memberships

▼display all

Committee Memberships

  • 2024 Design, Automation and Test in Europe Conference (DATE) TPC Member  

    2023.8 - Present   

      More details

  • 2024 Applied Superconductivity Conference (ASC24) Program Committee Member  

    2023.8 - Present   

      More details

  • IEICE 超伝導エレクトロニクス(SCE)研究専門委員会 委員  

    2022.6 - Present   

      More details

  • IEEE GCCE Session Co-chair  

    2022.4   

      More details

  • 2022 Great Lakes Symposium on VLSI Technical Program Committee Member  

    2022.2 - 2022.3   

      More details

    Committee type:Academic society

    researchmap

▼display all

Research Projects

  • High-Performance Machine Learning Computing Using Non-deterministic Superconducting Circuits

    Grant number:23K28055  2023.4 - 2028.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    陳 オリビア

      More details

    Grant type:Scientific research funding

    本研究は、エネルギー効率の高い超伝導技術を利用して、従来の計算方法とは異なる、高性能な機械学習計算基盤の開発を目指し、低消費電力のハードウェア技術、ビットレベルで並列化が可能なアナログ計算機構、そしてゼロ電力で情報を保持できる不揮発性超伝導多値メモリを活用したインメモリ型計算アーキテクチャを統合することで、非常に効率的な機械学習向けハードウェアを実現する。さらに、システムのスケーラビリティ分析、多値論理の応用範囲と将来性の探究、従来デジタル方式に原理的に相性が悪いCMOSアナログ計算機構を新デバイス・新材料でのリビジットなど、数多くの未解明課題を明らかにする。

    CiNii Research

  • 高性能非ノイマン型超伝導SoCの開発

    Grant number:JPMJFR226W  2023 - 2029

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 非決定性超伝導回路を用いた高性能機械学習計算基盤の創出

    Grant number:23H03365  2023 - 2027

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • Construction of stochastic superconductor neural networks towards ultra-low-power machine learning

    Grant number:22H00220  2022 - 2026

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    竹内 尚輝, 吉川 信行, 陳 オリビア

      More details

    Grant type:Scientific research funding

    人工知能が中核をなすSociety 5.0の実現には、従来コンピュータに比べて革新的にエネルギー効率の優れた機械学習用ハードウェアの開発が緊要である。そこで本研究は、低エネルギー超伝導集積回路技術をベースに、超伝導ニューロン回路、不揮発性超伝導メモリ、In-memory計算アーキテクチャ、確率的演算手法を融合させて、超低電力ニューラルネットワーク回路の基盤技術の創出を目指す。

    CiNii Research

  • アルゴリズム・ソフトウェア・ハードウェアの融合による超低電力ニューラルネット ワークの構築

    2019 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

▼display all