2024/07/28 更新

お知らせ

 

写真a

チヨウ ウテイ
ZHAO YUTING
ZHAO YUTING
所属
システム情報科学研究院 情報知能工学部門 助教
工学部 電気情報工学科(併任)
システム情報科学府 情報理工学専攻(併任)
職名
助教
連絡先
メールアドレス
電話番号
0928023668
外部リンク

学位

  • 博士(情報科学)

研究テーマ・研究キーワード

  • 研究テーマ: 機械学習、人工知能

    研究キーワード: 自然言語処理

    研究期間: 2023年4月 - 2024年4月

受賞

  • The 10th AAMT NAGAO AWARD Student Award

    2023年6月  

論文

  • Multimodal Neural Machine Translation based on Image‑Text Semantic Correspondence

    Yuting Zhao

    Journal of the Japanese Society for Artificial Intelligence   ( 39 )   55 - 55   2024年1月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)  

  • Multimodal Neural Machine Translation based on Image‑Text Semantic Correspondence 招待

    Yuting Zhao

    Asia‑Pacific Association for Machine Translation Journal   ( 79 )   10 - 15   2023年12月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)  

  • Multimodal Robustness for Neural Machine Translation 査読

    Yuting Zhao, Ioan Calapodescu

    Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022   8505 - 8516   2022年12月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

    In this paper, we look at the case of a Generic text-to-text NMT model that has to deal with data coming from various modalities, like speech, images, or noisy text extracted from the web. We propose a two-step method, based on composable adapters, to deal with this problem of Multimodal Robustness. In the first step, we separately learn domain adapters and modality specific adapters, to deal with noisy input coming from various sources: ASR, OCR, or noisy text (UGC). In a second step, we combine these components at runtime via dynamic routing or, when the source of noise is unknown, via two new transfer learning mechanisms (Fast Fusion and Multi Fusion). We show that our method provides a flexible, state-of-the-art, architecture able to deal with noisy multimodal inputs.

  • Region-attentive multimodal neural machine translation 査読

    Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu

    Neurocomputing   476   1 - 13   2022年3月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(学術雑誌)  

    We propose a multimodal neural machine translation (MNMT) method with semantic image regions called region-attentive multimodal neural machine translation (RA-NMT). Existing studies on MNMT have mainly focused on employing global visual features or equally sized grid local visual features extracted by convolutional neural networks (CNNs) to improve translation performance. However, they neglect the effect of semantic information captured inside the visual features. This study utilizes semantic image regions extracted by object detection for MNMT and integrates visual and textual features using two modality-dependent attention mechanisms. The proposed method was implemented and verified on two neural architectures of neural machine translation (NMT): recurrent neural network (RNN) and self-attention network (SAN). Experimental results on different language pairs of Multi30k dataset show that our proposed method improves over baselines and outperforms most of the state-of-the-art MNMT methods. Further analysis demonstrates that the proposed method can achieve better translation performance because of its better visual feature use.

    DOI: 10.1016/j.neucom.2021.12.076

  • Word-Region Alignment-Guided Multimodal Neural Machine Translation 査読

    Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu

    IEEE/ACM Transactions on Audio Speech and Language Processing   30   244 - 259   2022年1月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(学術雑誌)  

    We propose word-region alignment-guided multimodal neural machine translation (MNMT), a novel model for MNMT that links the semantic correlation between textual and visual modalities using word-region alignment (WRA). Existing studies on MNMT have mainly focused on the effect of integrating visual and textual modalities. However, they do not leverage the semantic relevance between the two modalities. We advance the semantic correlation between textual and visual modalities in MNMT by incorporating WRA as a bridge. This proposal has been implemented on two mainstream architectures of neural machine translation (NMT): the recurrent neural network (RNN) and the transformer. Experiments on two public benchmarks, English-German and English-French translation tasks using the Multi30k dataset and English-Japanese translation tasks using the Flickr30kEnt-JP dataset prove that our model has a significant improvement with respect to the competitive baselines across different evaluation metrics and outperforms most of the existing MNMT models. For example, 1.0 BLEU scores are improved for the English-German task and 1.1 BLEU scores are improved for the English-French task on the Multi30k test2016 set; and 0.7 BLEU scores are improved for the English-Japanese task on the Flickr30kEnt-JP test set. Further analysis demonstrates that our model can achieve better translation performance by integrating WRA, leading to better visual information use.

    DOI: 10.1109/TASLP.2021.3138719

  • TMEKU System for the WAT2021 Multimodal Translation Task

    Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu

    WAT 2021 - 8th Workshop on Asian Translation, Proceedings of the Workshop   174 - 180   2021年8月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

    We introduce our TMEKU1 system submitted to the English→Japanese Multimodal Translation Task for WAT 2021. We participated in the Flickr30kEnt-JP task and Ambiguous MSCOCO Multimodal task under the constrained condition using only the officially provided datasets. Our proposed system employs soft alignment of word-region for multimodal neural machine translation (MNMT). The experimental results evaluated on the BLEU metric provided by the WAT 2021 evaluation site show that the TMEKU system has achieved the best performance among all the participated systems. Further analysis of the case study demonstrates that leveraging word-region alignment between the textual and visual modalities is the key to performance enhancement in our TMEKU system, which leads to better visual information use.

  • Neural machine translation with semantically relevant image regions

    Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu

    Proceedings of the Twenty-seventh Annual Meeting of the Association for Natural Language Processing   2021年4月

     詳細を見る

    記述言語:その他  

  • Double Attention-based Multimodal Neural Machine Translation with Semantic Image Regions 査読

    Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara, Chenhui Chu

    Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, EAMT 2020   105 - 114   2020年11月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

    Existing studies on multimodal neural machine translation (MNMT) have mainly focused on the effect of combining visual and textual modalities to improve translations. However, it has been suggested that the visual modality is only marginally beneficial. Conventional visual attention mechanisms have been used to select the visual features from equallysized grids generated by convolutional neural networks (CNNs), and may have had modest effects on aligning the visual concepts associated with textual objects, because the grid visual features do not capture semantic information. In contrast, we propose the application of semantic image regions for MNMT by integrating visual and textual features using two individual attention mechanisms (double attention). We conducted experiments on the Multi30k dataset and achieved an improvement of 0.5 and 0.9 BLEU points for English!German and English!French translation tasks, compared with the MNMT with grid visual features. We also demonstrated concrete improvements on translation performance benefited from semantic image regions.

  • Application of Unsupervised NMT Technique to Japanese--Chinese Machine Translation

    Yuting Zhao, Longtu Zhang, Mamoru Komachi

    Proceedings of the Annual Conference of JSAI 33rd   2019年6月

     詳細を見る

    記述言語:その他  

  • TMU Japanese-Chinese unsupervised NMT system for WAT 2018 translation task

    Longtu Zhang, Yuting Zhao, Mamoru Komachi

    Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation: 5th Workshop on Asian Translation   981 - 987   2018年12月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

    This paper describes the unsupervised neural machine translation system of Tokyo Metropolitan University for the WAT 2018 translation task, focusing on Chinese-Japanese translation. Neural machine translation (NMT) has recently achieved impressive performance on some language pairs, although the lack of large parallel corpora poses a major practical problem for its training. In this work, only monolingual data are used to train the NMT system through an unsupervised approach. This system creates synthetic parallel data through back-translation and leverages language models trained on both source and target domains. To enhance the shared information in the bilingual word embeddings further, a decomposed ideograph and stroke dataset for ASPEC Chinese-Japanese Language pairs was also created. BLEU scores of 32.99 for ZHJA and 26.39 for JA-ZH translation were recorded, respectively (both using stroke data).

▼全件表示

講演・口頭発表等

  • A Short Introduction to Multimodal Machine Translation 招待 国際会議

    Yuting Zhao

    Dalian University of Technology  2023年9月 

     詳細を見る

    開催年月日: 2023年9月

    記述言語:その他   会議種別:口頭発表(一般)  

    国名:その他  

  • Multimodal MNMT based on Image-Text Semantic Correspondence 招待

    Yuting Zhao

    2023年度第3回AAMT/Japio特許翻訳研究会  2023年7月 

     詳細を見る

    開催年月日: 2023年7月

    記述言語:その他   会議種別:口頭発表(一般)  

    国名:その他  

  • Multimodal Neural Machine Translation based on Image-Text Semantic Correspondence 招待

    Yuting Zhao

    第18回AAMT長尾賞/第10回AAMT長尾賞学生奨励賞 受賞記念講演  2023年6月 

     詳細を見る

    開催年月日: 2023年6月

    記述言語:その他   会議種別:口頭発表(招待・特別)  

    国名:その他  

    その他リンク: https://aamt.info/event/generalmeeting2023-seminar

  • Multimodal Robustness for Neural Machine Translation

    Yuting Zhao

    The 2022 Conference on Empirical Methods in Natural Language Processing  2022年12月 

     詳細を見る

    開催年月日: 2022年12月

    記述言語:英語  

    国名:その他  

    Multimodal Robustness for Neural Machine Translation

  • TMEKU System for the WAT2021 Multimodal Translation Task System

    Yuting Zhao

    The 8th Workshop on Asian Translation  2021年8月 

     詳細を見る

    開催年月日: 2021年8月

    記述言語:英語  

    国名:その他  

    TMEKU System for the WAT2021 Multimodal Translation Task System

  • Neural Machine Translation with Semantically Relevant Image Regions

    Yuting Zhao

    The 27th Annual Meeting of the Language Processing Society of Japan  2021年3月 

     詳細を見る

    開催年月日: 2021年3月

    記述言語:英語  

    国名:その他  

    Neural Machine Translation with Semantically Relevant Image Regions

  • Double Attention-based Multimodal Neural Machine Translation with Semantic Image Regions

    Yuting Zhao

    The 22nd Annual Conference of the European Association for Machine Translation  2020年11月 

     詳細を見る

    開催年月日: 2020年11月

    記述言語:英語  

    国名:その他  

    Double Attention-based Multimodal Neural Machine Translation with Semantic Image Regions

  • Application of Unsupervised NMT Technique to Japanese‑Chinese Machine Translation

    Yuting Zhao

    The 33rd Annual Conference of the Japanese Society for Artificial Intelligence  2019年6月 

     詳細を見る

    開催年月日: 2019年6月

    記述言語:英語  

    国名:その他  

    Application of Unsupervised NMT Technique to Japanese‑Chinese Machine Translation

▼全件表示

教育活動概要

  • 助教

担当授業科目

  • 基礎ソフトウェア実験

    2023年10月 - 2024年3月   後期

他大学・他機関等の客員・兼任・非常勤講師等

  • 2024年  東京都立大学  区分:客員教員  国内外の区分:国内 

その他教育活動及び特記事項

  • 2024年  クラス担任  学部

学内運営に関わる各種委員・役職等

  • その他 助教