Updated on 2024/12/27

写真a

 
SAITO HIKARU
 
Organization
Institute for Materials Chemistry and Engineering Department of Integrated Materials Associate Professor
Interdisciplinary Graduate School of Engineering Sciences Department of Interdisciplinary Engineering Sciences(Concurrent)
Title
Associate Professor
Contact information
メールアドレス
Tel
0925837621

Degree

  • PhD (Science)

Research History

  • 2014.04 - 2015.03 東京工業大学量子ナノエレクロニクス研究センター・研究員   

Research Interests・Research Keywords

  • Research theme: Rapid electron tomography assisted by machine learning

    Keyword: electron tomography, machine learning

    Research period: 2020.7

  • Research theme: 3D observation of ferromagnetic material by magnetic-field-free STEM

    Keyword: Tomography, Lorentz-STEM, Iron and steel, magnetic material

    Research period: 2015.10

  • Research theme: Interactions between metals and oxides characterized by electron energy-loss spectroscopy

    Keyword: catalysis, perovskite, EELS, electron microscopy

    Research period: 2015.4

  • Research theme: Plasmonic crystals characterized by scanning transmission electron microscopy-cathodoluminescence

    Keyword: surface plasmon polariton, topological edge mode, valleytronics, plasmonic crystal, waveguide, luminescence enhancement, electron microscopy

    Research period: 2014.4

  • Research theme: Optical property of nanostructural material characterized by angle-resolved electron energy-loss spectroscopy

    Keyword: EELS, electron microscopy, photonics, plasmonics

    Research period: 2011.4

Awards

  • 日本顕微鏡学会奨励賞

    2022.5   日本顕微鏡学会   電子線顕微分光によるプラズモニクス材料の研究

  • 日本物理学会若手奨励賞

    2021.3   日本物理学会   電子線分光によるプラズモニック結晶の研究

  • 日本顕微鏡学会論文賞

    2017.6   日本顕微鏡学会  

  • 風戸研究奨励賞

    2015.2   風戸研究奨励会  

Papers

  • Diffusion-Dominated Luminescence Dynamics of CsPbBr3 Studied Using Cathodoluminescence and Microphotoluminescence Spectroscopy Reviewed International journal

    Sho Nekita, Sotatsu Yanagimoto, Takumi Sannomiya, Keiichirou Akiba, Masato Takiguchi, Hisashi Sumikura, Itsuki Takagi, Kazutaka G Nakamura, SenPo Yip, You Meng, Johnny C Ho, Tetsuya Okuyama, Mitsuhiro Murayama, Hikaru Saito

    Nano Letters   24 ( 13 )   3971 - 3977   2024.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Five-second STEM dislocation tomography for 300 nm thick specimen assisted by deep-learning-based noise filtering Reviewed International journal

    Yifang Zhao, Suguru Koike, Rikuto Nakama, Shiro Ihara, Masatoshi Mitsuhara, Mitsuhiro Murayama, Satoshi Hata, Hikaru Saito

    Scientific reports   11 ( 1 )   1 - 12   2021.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Other Link: https://www.nature.com/articles/s41598-021-99914-5

  • Valley-polarized plasmonic edge mode visualized in the near-infrared spectral range Reviewed International journal

    Hikaru Saito, Daichi Yoshimoto, Yuto Moritake, Taeko Matsukata, Naoki Yamamoto, Takumi Sannomiya

    Nano Letters   21 ( 15 )   6556 - 6562   2021.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Other Link: https://pubs.acs.org/doi/full/10.1021/acs.nanolett.1c01841

  • Emergence of point defect states in a plasmonic crystal Reviewed

    Hikaru Saito, Hugo Lourenço-Martins, Noémie Bonnet, Xiaoyan Li, Tracy C. Lovejoy, Niklas Dellby, Odile Stéphan, Mathieu Kociak, Luiz Henrique Galvão Tizei

    Physical Review B   100 ( 24 )   2019.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Plasmonic crystals are well known to have band structure including a band gap, enabling the control of surface plasmon propagation and confinement. The band dispersion relation of bulk crystals has been generally measured by momentum-resolved spectroscopy using far field optical techniques while the defects introduced in the crystals have separately been investigated by near field imaging techniques so far. Particularly, defect related energy levels introduced in the plasmonic band gap have not been observed experimentally. In order to investigate such a localized mode, we performed electron energy-loss spectroscopy (EELS) on a point defect introduced in a plasmonic crystal made up of flat cylinders protruding out of a metal film and arranged on a triangular lattice. The energy level of the defect mode was observed to lie within the full band-gap energy range. This was confirmed by a momentum-resolved EELS measurement of the band gap performed on the same plasmonic crystal. Furthermore, we experimentally and theoretically investigated the emergence of the defect states by starting with a corral of flat cylinders protrusions and adding sequentially additional shells of those in order to eventually form a plasmonic band-gap crystal encompassing a single point defect. It is demonstrated that a defectlike state already forms with a crystal made up of only two shells.

    DOI: 10.1103/PhysRevB.100.245402

  • Hybridization of Gap Modes and Lattice Modes in a Plasmonic Resonator Array with a Metal-Insulator-Metal Structure Reviewed

    Hikaru Saito, Daichi Yoshimoto, Hugo Lourenco-Martins, Naoki Yamamoto, Takumi Sannomiya

    ACS Photonics   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Plasmonic resonator arrays have attracted a great interest as a platform to enhance light-matter interaction and have been examined for their applicability to various types of optical devices, such as sensors, light emitter, and photocatalyst, to name a few. In a plasmonic resonator array, localized and propagating plasmon modes can hybridize, which is known to result in an anticrossing of the plasmon bands in the dispersion curves. However, it was so far unclear how the modal symmetry affects such a hybridization, especially when it occurs at a specific reciprocal lattice point with a high degree of symmetry, for example, the Î" point. In this work, we used momentum-resolved cathodoluminescence-scanning transmission electron microscopy to comprehensively characterize the modal hybridization at the Î" point. Our study reveals theoretically and experimentally the existence of mode symmetry selection rules that specify hybrid pairs of the lattice mode and localized mode.

    DOI: 10.1021/acsphotonics.9b00977

▼display all

Professional Memberships

  • The Japanese Society of Microscopy

  • The Japan Society of Applied Physics

  • The Physical Sociaty of Japan

Committee Memberships

  • 日本顕微鏡学会分析電子顕微鏡分科会   Organizer   Domestic

    2024.4 - Present   

  • 日本物理学会   Steering committee member   Domestic

    2021.4 - 2023.3   

  • 日本物理学会   領域10運営委員   Domestic

    2021.4 - 2023.3   

Research Projects

  • Developing a data-driven, real-time electron microscopy method toward interpreting plastic deformation and fracture mechanisms of structural materials in sub-microscopic level.

    Grant number:23H00238  2023.4 - 2027.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    村山 光宏, 斉藤 光, 井原 史朗

      More details

    Grant type:Scientific research funding

    材料の変形・破断のナノダイナミクスをリアルタイム、マルチスケールで直視可能な電子顕微鏡技術の開発と適用により、力学特性の特異性をもたらすことが予測される「多様な粒界・境界」を有する複相微細組織に生じる均一及び不均一な変形挙動を統一的に理解するため、変形・破壊における種々のモードについて変形子で記述されるスケールの素過程の類似性と相違性を実験的に明らかにできるかを、金属・高分子等の構造材料を用いて検証する。

    CiNii Research

  • 励起イベント選択型カソードルミネセンス顕微鏡の開発

    Grant number:23K17350  2023 - 2025

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Pioneering)

    斉藤 光, 滝口 雅人

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    高速かつ省エネルギーなデバイス開発はナノフォトニクス分野における重要課題であり、ナノメートルの空間分解能を有するカソードルミネセンス(CL)はナノ材料やデバイス機能の解析の強力な手法となり得る。従来のCLは類似のフォトルミネセンス(PL)のような励起エネルギー選択性がなく、様々な励起状態を区別することなく緩和過程を計測するため、種々の現象を切り分けて解析することができない。本研究では新型CL顕微鏡を開発し、時間分解PLと定量比較可能な計測をナノメートルオーダーの空間分解能で実現するとともに、未解明であった半導体におけるCLの機構を解明する。

    CiNii Research

  • 高速電子で拓く次世代ナノ光制御領域のマネジメント

    Grant number:22H05031  2022.5 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Transformative Research Areas (B)

    三宮 工, 斉藤 光, 弓削 達郎, 秋葉 圭一郎

      More details

    Grant type:Scientific research funding

    本領域は、物理・原理を基礎とするグループ、装置を専門とするグループ、応用をメインで実施するグループと専門の異なる研究者から形成される。その中で、原理班の知見を装置班の開発に繋げ、開発した装置を応用班の研究に展開する連携が必要となる。各計画班の代表から編成される総括班は、計画班内のメンバーを含めてタイトなコミュニケーションをとり、最新の進捗を共有しながら短・長期的な目標設定をし、他分野を含めた研究を展開するかじ取りを行う。

    CiNii Research

  • トポロジカルプラズモン導波路によるスピン選択アクティブ光制御

    Grant number:23K23196  2022.4 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    斉藤 光, 秋葉 圭一郎, 小袋 由貴

      More details

    Grant type:Scientific research funding

    スピン情報を保護した量子情報通信の基盤技術として、トポロジーの概念に立脚したスピン整流性のある無散乱プラズモン導波を利用したアクティブ光制御を創出する。本研究で実現するプラズモン導波路は金属ナノ構造の周期配列から成り、個々の金属ナノ構造に励起される局在プラズモン共鳴の光アンテナ効果によって、導波路近傍に配置された物質の光吸収と発光効率が上昇する。このナノ構造中に半導体材料を組み込み、近赤外領域で光駆動する高速デバイスを作製する。作製したデバイスを走査透過電子顕微鏡-カソードルミネセンスとパルスレーザーによる時間分解分光で多角的に解析し、動作原理を明らかにしつつスピン選択相互作用を実証する。

    CiNii Research

  • トポロジカルプラズモン導波路によるスピン選択アクティブ光制御

    Grant number:22H01928  2022 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

▼display all

Class subject

  • ナノ構造光学 d

    2024.12 - 2025.2   Winter quarter

  • 材料情報学特論Ⅱ i

    2024.6 - 2024.8   Summer quarter

  • 材料情報学特論Ⅱ i

    2023.6 - 2023.8   Summer quarter

  • 総合理工学修士演習

    2023.4 - 2024.3   Full year

  • 総合理工学修士演習

    2023.4 - 2024.3   Full year

▼display all