Updated on 2025/06/14

写真a

 
JUN-ICHIRO HAYASHI
 
Organization
Institute for Materials Chemistry and Engineering Department of Advanced Device Materials Professor
Kyushu University Platform of Inter/Transdisciplinary Energy Research (Concurrent)
Research Center for Green Technology (Concurrent)
Interdisciplinary Graduate School of Engineering Sciences Department of Interdisciplinary Engineering Sciences(Concurrent)
Center of Advanced Instrumental Analysis (Concurrent)
Title
Professor
Contact information
メールアドレス
Tel
0925837796
Profile
(1) Research on conversion/utilization of carbonaceous resources and development of carbonaceous materials at Institute for Materials Chemistry and Engineering (2009-) (2) Education of chemical engineering and chemical reaction engineering at Interdisciplinary Graduate School of Engineering Sciences(2009-) (3) Research and education of Engineering Sciences of Carbon Resources Utilization at Research & Education Center of Carbon Resources(2009-2017) (4) Research carbonaceous resource conversion and carbon recycling technologies at Trans-disciplinary Research and Education Center of Green Technology (2018-) (5) Promotion of Global COE Program (Novel Carbon Resource Sciences) (2009-2012) (6) Promotion of Program for Leading Graduate Schools Advanced Graduate Course in Global Strategy for Green Asia ) (2012-) (7) Activities in academic societies (eg., Director of Energy Division of The Society of Chemical Engineers, Japan (2007-2009), Member of Advisory Board of Energy & Fuels (an American Chemical Society Journal), 2010-present), Chair of Committee for Post-Vision of Society of Chemical Engineers, Japan (2011-2012), A Director of The Society of Chemical Engineers, Japan (2015-2017), etc. (8) Activities as an expert of chemical engineering (eg., member of committees in organizations such as Ministry of Economy, Trade and Industry, Japan (METI), and New Energy and Industrial Technology Development Organization, Japan (NEDO), a project leader of an R&D project on advanced integrated coal gasification combined cycles) (9) Participation of R&D of industrial processes (eg., R&D projects on biomass or coal gasification for power generation or energy/material co-production)
Homepage
  • https://carbonres.cm.kyushu-u.ac.jp

    Introduction of the laboratory (Laboratory of Microprocess Control, Division of Advanced Device Materials, Institute of Materials Chemistry and Engineering)

Research Areas

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Chemical reaction and process system engineering

Degree

  • PhD., Engineering

Research History

  • Kyushu University Institute for Materials Chemistry and Engineering Professor Doctor of Engineering

    2009.3 - 2030.3

      More details

    Country:Japan

  • 九州大学 助手(工学研究科応用物質化学専攻,平成元年4月〜平成8年3月) 北海道大学 助教授(エネルギー先端工学研究センター,平成8年4月〜平成17年4月) 北海道大学 教授(エネルギー変換マテリアル研究センター,平成17年5月〜平成21年2月)   

Education

  • Kyushu University   Faculty of Engineering   Dept. of Applied Chemistry

    1984.4 - 1988.3

Research Interests・Research Keywords

  • Research theme: 1. Studies on pyrolysis, reforming and gasification of carbonaceous resources toward establishment of sustainable carbon cycle chemistry 1.1. Analysis/modeling of detailed chemical kinetics, simulation of conversion of carbonaceous resources and reactor design 1.2. Development of sequential thermochemical conversion of carbonaceous resources for coproduction 1.3. Thermochemical conversion of carbonaceous resources utilizing nano-sized and sun-nano-sized spaces 1.4. Low temperature gasification of solid fuel with maximized chemical energy recovery 1.5. Coproduction of power and secondary (upgraded) carbon resource from fossil fuels and biomass 1.6. Smart chemical production system based on biomass utilization and conversion 1.7. Development of method for producing high-quality carbonized solids and carbon materials from low-rank coal and biomass 1.8. Development of pyrolysis and catalytic pyrolysis methods for chemicals production

    Keyword: Carbon resource conversion, coproduction, carbon neutral/negative, hydrogen, chemical production, gasification, pyrolysis, carbonization, process design, reaction mechanism, reaction kinetics, fossil fuels,biomass

    Research period: 2009.3 - 2025.3

Awards

  • 日本エネルギー学会 学会賞(学術部門)

    2023.1   日本エネルギー学会   バイオマスおよび低品位炭の熱分解、ガス化および炭化に関する研究

  • 日本エネルギー学会・論文賞

    2016.8   日本エネルギー学会   Numerical Study on the Steam Reforming of Biomass Tar Using a Detailed Chemical Kinetic Model

  • Excellent Paper Award for Poster Presentation” in 3rd Asian Conference on Biomass Science

    2016.1   Japan Institute of Energy   Kinetics and mechanism of CO2 gasification of char from sugarcane bagasse

  • 日本エネルギー学会・論文賞

    2015.8   日本エネルギー学会   Chemical Structures and Primary Pyrolysis Characteristics of Lignins Obtained from Different Preparation Methods

  • 平成25年度化学工学会賞 研究賞(玉置明善記念賞)

    2014.3   化学工学会   炭素資源変換反応およびプロセスに関する研究

     More details

    林潤一郎氏は,低品位炭素資源を対象として,ガス化,改質,熱分解などの変換 反応について,表面反応やメカニズムの解明などの基礎的研究 から反応器やプロセスの設計,さらには概念実証に関する研究 まで,幅広い研究を展開し,革新的な低温迅速ガス化法,触媒フリーのオイル・ガス製造法,さらには非軟化溶融性炭素資源からの高強度炭化物の 製造プロセスの開発に成功した。

▼display all

Papers

  • Critical assessment of oxy-fuel integrated coal gasification combined cycles Invited Reviewed International journal

    Hiromi Ishii, Tomoya Hayashi, Hiroaki Tada, Katsuhiko Yokohama, Ryuhei Takashima, Jun-Ichiro Hayashi

    Applied Energy   233-234   156 - 169   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Critical assessment was performed for a type of oxy-fuel integrated coal gasification combined cycles (IGCC) that was comprised of proven components. A type of two-stage entrained-flow gasifier consisting of combustor and reductor sections was simulated by a one-dimensional model that has been proven through application to gasifiers of industrial scales. It was successfully reproduced on Aspen Plus® and integrated together with the other components into a commercial-scale IGCC system. The oxidizing agents were not only O2 and CO2 (carrier gas for conveying the coal) but also additional CO2 or CO2 /H2 O, that was required to suppress hydrocarbons formation and maintain the combustor temperature allowing molten ash to have sufficiently low viscosity. The net thermal efficiency was predicted as a function of steam/coal mass ratio (S/C) within a range of 0–0.4. Increasing S/C up to 0.2 increased the cold gas efficiency slightly but resulted in decrease in the net thermal efficiency of the system. This was mainly due to the extraction of steam from the high pressure steam turbine exhaust, causing loss of power output. Resulting in lower cold gas efficiency due to higher oxygen ratio, higher moisture content of the pulverized coal gave higher net thermal efficiency due to less steam consumption for coal drying. The net efficiency was optimized at approximately 39% on a higher-heating-value basis without steam feeding, which was higher by 6–7 points than that for conventional IGCC with oxygen-blown gasification combined with CO2 recovery.

    DOI: 10.1016/j.apenergy.2018.10.021

  • Catalytic Hydrothermal Reforming of Lignin in Aqueous Alkaline Medium Reviewed International journal

    Kudo Shinji, Yasuyo Hachiyama, Yuka Takashima, Junya Tahara, Idesh Saruul, Koyo Norinaga, Hayashi Jun-ichiro

    Energy & Fuels   28 ( 1 )   76 - 85   2014.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    This paper proposes catalytic hydrothermal reforming (CHTR) for producing substitute natural gas (SNG) directly from a lignin in aqueous alkaline media, which can fully dissolve the lignin but stabilize it, lowering the reactivity toward water. Among catalysts preliminarily tested, activated-carbon-supported ruthenium (Ru/AC) catalysts showed the highest activity in terms of reduction of the total organic carbon concentration (TOC) in the aqueous solution. CHTR of a lignin was performed employing a 5000 ppm TOC solution of 0.1 M Na2CO3 in a continuous reactor. The presence of Na2CO3 in the solution enabled delivery of the lignin, which is poorly soluble in water, to the reactor as well as suppression of char formation during CHTR. A Ru/AC showed its ability to maintain 98.6% conversion of the lignin at 350 °C even under the alkaline environment for a duration of at least 10 h, with colorless effluent liquid containing 70 ppm TOC of organic carbon. A low content of Ru in the Ru/AC resulted in an insufficient yield of gas because of the deposition of a portion of the lignin as coke over the catalyst, while 20 wt % Ru was enough for the full conversion into gas composed mainly of CH4, with cold gas efficiency (CGE) of 100.4% on a higher heating value (HHV) basis. The resulting aqueous solution of Na2CO3 was ready to be reused for CHTR after removal of carbonate ions derived from the lignin by aeration.

    DOI: 10.1021/ef401557w

  • Low temperature Gasification of Biomass and Lignite: Consideration of Key Thermochemical Phenomena, Rearrangement of Reactions, and Reactor Configuration Invited Reviewed International journal

    Hayashi Jun-ichiro, Kudo Shinji, Hyun-Seok Kim, Koyo Norinaga, Sou Hosokai, Koichi Matsuoka, Sou Hosokai

    Energy & Fuels   28 ( 1 )   4 - 21   2014.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    This paper discusses gasification of solid fuels, such as biomass and lignite, at temperatures well below 1000 °C, which potentially realizes a loss of chemical energy (LCE) smaller than 10% but encounters difficulty in fast and/or complete solid-to-gas conversion in conventional reactor systems. First, key thermochemical and catalytic phenomena are extracted from complex reactions involved in the gasification. These are interactions between intermediates (i.e., volatiles and char), catalysis of inherent and extraneous metallic species, and very fast steam gasification of nascent char. Second, some ways to control the key phenomena are proposed conceptually together with those to rearrange homogeneous/heterogeneous reactions in series/ parallel. Third, implementation of the proposed concepts is discussed assuming different types of gasifiers consisting of a single- fluidized bed, dual-fluidized bed, triple-bed circulating fluidized bed, and/or fixed (moving) bed. The triple-fluidized bed can attain gasification with a LCE as small as 10% by introducing enhancement and/or elimination of the key phenomena and another way to recuperate heat from gas turbine and/or fuel cells (i.e., power generators in gasification combined cycles) into chemical energy of fuel gas. A particular type of fixed-bed gasifier is proposed, which is separated from a pyrolyzer to realize not only control of the key phenomena but also temporal/spatial rearrangement of exothermic and endothermic reactions. This type of gasifier can make a LCE smaller than 4%. Even a conventional single-fluidized bed provides simple and effective gasification, when tar-free/reactive char is used as the fuel instead of parent the one and contributes to a novel integrated gasification fuel cell combined cycles with a theoretical electrical efficiency over 80%.

    DOI: 10.1021/ef401617k

  • Staged Conversion of Potassium-Loaded Biomass into Syngas by Continuous Pyrolysis and Low-Temperature Reforming/Gasification with CO2 and O2

    Sun H., Ashik U.P.M., Hu G., Kudo S., Asano S., Hayashi J.I.

    Energy and Fuels   39 ( 1 )   465 - 478   2025.1   ISSN:08870624

     More details

    Publisher:Energy and Fuels  

    CO<inf>2</inf>-O<inf>2</inf>-blown gasification of dry biomass can potentially produce syngas with maximized yield of CO, in other words, the rate of carbon recuperation. Among various types of gasification, staged conversion consisting of pyrolysis, volatile reforming, and char gasification is expected to give the highest cold gas efficiency (i.e., recuperation rate of biomass chemical energy) if endothermic pyrolysis is driven by the heat of syngas from the reforming/gasification. Catalytic char gasification, if operated at a temperature well below 800 °C, may enable the avoidance of ash-related troubles such as clinker formation/accumulation in the gasifier while achieving fast and complete char conversion to syngas. We simulated numerically the above staged conversion of woody biomass with potassium (K) and CO<inf>2</inf>-O<inf>2</inf> as the catalyst and gasifying agent, respectively, and then experimentally by applying screw-conveyor pyrolysis at 550 °C and downdraft gasification/reforming at 730 °C. It was revealed that the biomass with 1.0 mol-K/kg-dry loading was converted to gas completely by applying CO<inf>2</inf>/C and O<inf>2</inf>/C molar ratios of ≥0.42 and ≈0.30, respectively. The CO yield and apparent cold gas efficiency were both 94% on biomass carbon and LHV bases, respectively. The concentrations of residual heavy tar (molecular mass >200) and light tar (<200) were 0.1-0.7 and 0.7-8.5 mg/Nm<sup>3</sup>-dry, respectively, over the range of CO<inf>2</inf>/C ratios (0.42-0.72) investigated. The carbon conversion to gas and tar concentrations were sensitive to the K loading, gasification/reforming temperature, CO<inf>2</inf>/C ratio, and O<inf>2</inf>/C ratio.

    DOI: 10.1021/acs.energyfuels.4c04728

    Scopus

  • Promotion of Cross-Linking and Resulting Suppression of Tar Evolution in Potassium-Catalyzed Pyrolysis of Woody Biomass

    Sun H., Ashik U.P.M., Asano S., Kudo S., Takeyama Y., Hayashi J.I.

    Energy and Fuels   39 ( 1 )   479 - 490   2025.1   ISSN:08870624

     More details

    Publisher:Energy and Fuels  

    Acid-washed woody biomass (cedar) was impregnated with K<inf>2</inf>CO<inf>3</inf> and then pyrolyzed at 550 °C in a fixed bed reactor, in which extra-particle pyrolysis of volatile matter was well suppressed. The tar yield decreased from 0.42 to 0.034 kg/kg-daf with increasing K loading (m<inf>K,0</inf>) within the range of 0-5.0 mol K/kg-daf. The K-catalyzed condensation by dehydration, dehydrogenation, and dealkylation reactions formed H<inf>2</inf>O, H<inf>2</inf>, and gaseous hydrocarbons (GHCs), respectively, producing intermonomer-unit cross-links (MUCs) and thereby decreasing the yield of tar as monomers and oligomers. According to the conversion of K<inf>2</inf>CO<inf>3</inf> (34-57%), three catalytic cycles were estimated with the conversion/regeneration of K<inf>2</inf>CO<inf>3</inf>, KOH, and alkoxides/phenoxides, formation of inter-MUCs and that of the above-mentioned gases. The relationship between the amount of inter-MUCs formed during the pyrolysis (assumed to be 30% of that of H<inf>2</inf>O, H<inf>2</inf>, and GHCs on a molar basis) and reduction in the tar yield was considered by applying the Bethe lattice model, which is often employed for analyzing degradation and repolymerization of polymer, coal, and biomass. The model described the above relationship semiquantitatively. The efficiency of the K loading for the tar reduction, represented by the derivative of the tar yield (Y<inf>tar</inf>) with respect to m<inf>K,0</inf>, i.e., dY<inf>tar</inf>/dm<inf>K,0</inf>, was decreased by a factor of about 340 while m<inf>K,0</inf> increased from 0 to 5.0 mol K/kg daf. Such a large factor was explained by decreases in the two derivatives, dY<inf>tar</inf>/dY<inf>inter-MUC</inf> (Y<inf>inter-MUC</inf>; the amount of inter-MUCs) and dY<inf>inter-MUC</inf>/dm<inf>K,0</inf>, quantitatively. The decrease in the dY<inf>inter-MUC</inf>/dm<inf>K,0</inf> (factor ≈ 30) was mainly due to the depletion of functional groups that underwent condensation reactions while that in the dY<inf>tar</inf>/dY<inf>inter-MUC</inf> (factor ≈ 11.6) arose from the nature of network polymer such as approximation by the Bethe lattice.

    DOI: 10.1021/acs.energyfuels.4c05005

    Scopus

▼display all

Books

  • 「カーボンニュートラルへの化学工学」 ~CO2 分離回収、資源化からエネルギーシステム構築まで~(化学工学会編). 6章:総論

    則永行庸、林潤一郎 他(共著)(Role:Joint author)

    丸善出版  2023.1 

     More details

    Language:Japanese   Book type:Scholarly book

  • Design and Applications of Hydroxyapatite, Chapter 5: Kinetics and Mechanisms of Selected Reactions over Hydroxyapatite - Based Catalysts

    Ashik, UPM; Halim, Nurulhuda; Asano, Shusaku; Kudo, Shinji; Hayashji, Jun‐ichiro(Role:Joint author)

    Wiley  2022.6 

     More details

  • Kinetics and Mechanisms of Selected Reactions over Hydroxyapatite-Based Catalysts

    Ashik U.P.M., Halim N., Asano S., Kudo S., Hayashi J.I.

    Design and Applications of Hydroxyapatite-Based Catalysts  2022.1    ISBN:9783527830190, 9783527348497

     More details

    Hydroxyapatite (HA) has been extensively investigated and used in the field of biomaterials, while its application is more recently extended to the catalysis. Large number of catalytic processes are currently exploring the unique structural and chemical features of HA. The existence of diverse pair set of Ca2+ ions results in exclusive catalytic features and provides scope for metal replacement and enables characteristic tuning according to the targeted catalytic application. This chapter explains the kinetics and mechanisms of selected reactions on HA-based catalysts. Oxidative coupling of methane, partial oxidation of methane, acetone to methyl isobutyl ketone, and ethanol coupling reaction are the major reactions considered for this chapter.

    DOI: 10.1002/9783527830190.ch5

    Scopus

  • Longing and other stories

    谷崎 潤一郎 , Chambers Anthony H. (Anthony Hood), McCarthy Paul

    Columbia University Press  2022    ISBN:9780231202145

     More details

    Language:English  

    CiNii Books

  • Hydrolysis of Anhydrosugars over a Solid Acid Catalyst for Saccharification of Cellulose via Pyrolysis

    Kudo S., Huang X., Sakai S., Fujiki K., Asano S., Hayashi J.I.

    Key Engineering Materials  2022    ISSN:10139826

     More details

    Glucose is a key compound for future biomass-based energy and chemical industry. An availability of glucose from abundant lignocellulosic biomass is limited because of a slow reaction rate and costly feed materials in a conventional enzymatic hydrolysis of cellulose. The present work investigated the production of glucose with hydrolysis of anhydrosugars produced by cellulose pyrolysis that is a fast reaction with no requirement for other chemicals to feed. A commercially available solid acid was employed as the hydrolysis catalyst for enabling a direct use of glucose aqueous solution without posttreatment such as separation. The experiments using a model anhydrosugar, levoglucosan (LGA), as feedstock revealed a selective activity of the catalyst to produce glucose even at the high concentration of 2.7 M and the catalytic stability in 15 h run of the reaction using a continuous flow reactor. The catalyst worked for the reaction with a cellulose-derived bio-oil as the feedstock to selectively produce glucose mainly from LGA. However, the activity gradually decreased due to deposition of carbonaceous materials from compounds other than LGA over the catalyst, indicating a necessity for eliminating those compounds before the hydrolysis.

    DOI: 10.4028/p-3800i8

    Scopus

▼display all

Presentations

  • Biochar-Assisted Water Electrolysis Invited International conference

    Li Chen, Rei Nakamoto, Shinji Kudo, Shusaku Asano, Jun-ichiro Hayashi

    7th Sino-Australian Symp. Advanced Coal/Biomass Utilisation Technologies  2019.12 

     More details

    Event date: 2019.12

    Language:English   Presentation type:Oral presentation (general)  

    Venue:武漢市(中国)   Country:Japan  

    This study has experimentally proven an approach to integrate electric energy and chemical energy of biomass into chemical energy of hydrogen by biochar-assisted water electrolysis (BAWE). This type of electrolysis, in other words, electrochemical gasification, consists of hydrogen formation at the cathode and biochar oxidation at the anode, instead of O2 formation. Different from traditional gasification of biochar, BAWE is operated at a temperature below 100 °C and normal pressure. Linear sweep voltammetry showed that the electrolysis of acidified water, when suspended with biochar, occurred at an interelectrode potential as low as 0.5 V, which was much smaller than 1.23 V, the standard potential to split water into hydrogen and oxygen at 25 °C. The performance of biochar depended significantly upon the carbonization temperature for its preparation. It was found that 850 °C was the best carbonization temperature that provided an optimum combination of specific surface area and carbon-type distribution. It was revealed by continuous BAWE that the formation of O-containing functional groups on the biochar surface was predominant over CO2 formation at the anode, while H2 was formed obeying stoichiometry at the cathode. Accumulation of the O-containing groups on the biochar surface decreased its electrochemical reactivity, slowing the electrolysis. Thermal treatment at 850 °C removed the major portion of O-containing groups from the spent biochar, fully recuperating its electrochemical reactivity. CO2 gasification enhanced the biochar activity, and its effect went far beyond the heat treatment. On the basis of the above-mentioned characteristics of BAWE, its combination with CO2 gasification as the biochar recuperator as well as syngas producer is proposed.

  • Grand design of coal/biomass conversion into power and chemicals with carbon-neutral/negative nature Invited International conference

    Jun-ichiro Hayashi

    9th International Symposium on Coal Combustion  2019.7 

     More details

    Event date: 2019.7

    Language:English   Presentation type:Oral presentation (general)  

    Venue:青島市(中国)   Country:Japan  

  • CO2 gasification of sugarcane bagasse: Quantitative understanding of kinetics and catalytic roles of inherent metallic species Invited International conference

    #Zayda Faizah Zahara, @Shinji Kudo, @Ashik U.P.M., @Koyo Norinaga, @Jun-ichiro Hayashi

    6th Sino-Australian Symposium on Advanced Coal and Biomass Utilization Technologies  2017.12 

     More details

    Event date: 2018.12 - 2017.12

    Language:English   Presentation type:Oral presentation (general)  

    Country:Australia  

  • バイオマスからのコアケミカルズ・高付加価値化学品製造:モジュール型共通基盤技術とマスカスタマイゼーション Invited

    @林潤一郎

    NEDO-TSC Foresightセミナー  2017.11 

     More details

    Event date: 2017.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

  • 低品位炭・バイオマス高度利用システムと反応工学の役割 Invited

    林 潤一郎

    化学工学会第46秋季大会  2014.9 

     More details

    Event date: 2014.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:福岡   Country:Japan  

▼display all

MISC

  • バイオマスおよび低品位炭の熱分解、ガス化および炭化に関する研究 Reviewed

    林潤一郎

    日本エネルギー学会:えねるみくす   2023.3

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: 10.20550/jieenermix.102.3_274

  • バイオマスガス化:将来の炭素循環社会における役割および研究の進展 Reviewed

    林潤一郎

    日本エネルギー学会:えねるみくす   2023.3

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: 10.20550/jieenermix.102.2_229

  • 将来の石炭および炭素資源利用のあり方に関する考察 Reviewed

    林潤一郎

    化学工学   2021.6

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 農業系バイオマスからの化学品製造:アグリバイオ・スマート化学生産システム Reviewed

    林潤一郎

    バイオプラジャーナル   2021.4

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • Biomass boost: driving down the cost of glucose

    Jun-ichiro Hayashi

    2021.2

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    By using agricultural waste and co-producing other bio-based chemicals, JAPAN IS REDUCING THE COST OF GLUCOSE, one of the global bioeconomy’s greatest hopes.

▼display all

Industrial property rights

Patent   Number of applications: 19   Number of registrations: 13
Utility model   Number of applications: 0   Number of registrations: 0
Design   Number of applications: 0   Number of registrations: 0
Trademark   Number of applications: 0   Number of registrations: 0

Professional Memberships

  • The Iron and Steel Institute of Japan (ISIJ)

  • The Society of Chemical Engineers, Japan

  • The Japan Institute of Energy

Committee Memberships

  • 日本エネルギー学会   Executive   Domestic

    2023.4 - 2025.3   

  • 化学工学会   Executive   Domestic

    2021.4 - 2023.3   

  • 日本エネルギー学会   西部支部長   Domestic

    2015.4 - 2020.3   

  • 化学工学会   庶務理事   Domestic

    2015.4 - 2017.3   

  • 化学工学会   化学工学会ビジョン2023推進委員会 副委員長   Domestic

    2013.3 - 2016.3   

▼display all

Academic Activities

  • JST創発研究 龔パネル アドバイザー

    Role(s): Review, evaluation

    国立研究開発法人 科学技術振興機構(JST)  2024.8 - Present

     More details

    Type:Scientific advice/Review 

  • 日本学術振興会 特別研究員等審査会専門委員 委員

    Role(s): Review, evaluation

    日本学術振興会  2023.7 - 2024.3

     More details

    Type:Scientific advice/Review 

  • NEDO技術委員

    Role(s): Review, evaluation

    国立研究開発法人 新エネルギー・産業技術総合開発機構(NEDO)  2023.4 - 2024.3

     More details

    Type:Scientific advice/Review 

  • NEDO/クリーンエネルギー分野における革新的技術の国際共同研究開発事業/審査委員

    Role(s): Review, evaluation

    国立研究開発法人 新エネルギ-・産業技術総合開発機構(NEDO)  2023.4 - 2024.3

     More details

    Type:Scientific advice/Review 

  • NEDO/CO₂等を用いた燃料製造技術開発プロジェクト 推進委員

    Role(s): Review, evaluation

    国立研究開発法人 新エネルギー・産業技術総合開発機構(NEDO)  2023.4 - 2024.3

     More details

    Type:Scientific advice/Review 

▼display all

Other

  • 内閣府戦略的イノベーションプログラム(スマートバイオ産業・農業基盤技術)において、産学連携による19機関の代表として提案した「アグリバイオ・スマート化学生産システムの発開発」が採択され、試験研究が九州大学を代表機関とする研究コンソーシアム(アグリバイオ・化学システムコンソーシアム)に委託された。本試験研究は、次世代のバイオベース・地域ベース化学産業創出のボトルネックである「C6/C5糖の安価・安定供給」を解消し、従来の要素技術とシステム技術から脱却した全く新しいコンセプトのもと、「農業と化学を融合することによって地域のアグリバイオ資源から多様かつ付加価値の高い化学品を製造する新産業を実装すること」を最終目標とするもので、農業の生産性革命(農業GDP倍増)、炭素循環型化学産業の実現など、社会的な意義とインパクトが大きい。2021年度からは、ステージゲートを通過したコンソーシアムの統合が行われ、延べ40を超える機関を構成員とするバイオ資源循環コンソーシアムの代表ならびに社会実装責任者を務めている。

    2018.10

     More details

    (研究プロジェクトの概要)地域のアグリバイオ資源を構成する全ての有機・無機成分を高い歩留りで順序よく取り出して高機能化し、次世代化学産業の基幹物質である糖(ヘミセルロース・セルロース由来)を安価で安定供給するとともに、イソプレノイド、リグニン、シリカ等の成分から高機能製品を生産する「アグリバイオ・スマート化学生産システム」を開発する。すなわち、本システムは、水を溶剤として籾殻・稲わら・資源作物からイソプレノイド、香料、C5/C6単糖、オリゴ糖、リグニン、シリカ等を溶解成分として、一方、セルロースを固体として取り出し、これらを機能化する技術を開発する。さらに、セルロースを単糖、無水単糖、ナノセルロースおよびセルロースナノファイバに、糖を機能性油脂、糖エステルへと変換・高機能化する一連の技術を開発する。

  • 2015年から化学工学会メンバーとともに継続的に検討した地域バイオマスベースのスマート化学生産システムを具現化するため、本学と国内9機関(京都大学、徳島大学、東北大学、産総研、秋田県総合食品研究センター、日本バイオインダストリー協会、企業2社、他協力企業数社)と地域の農林業系バイオマスを起点とするマルチ化成品生産システムの基盤技術を提案した。この提案は2017年度にNEDOエネルギー・環境先導研究プロジェクトの一つとして採択され、同プロジェクトの代表者として研究実施、総括の役割を担った。

    2018.3

  • 「非可食性バイオマスを活用するスマート化学生産システム(SCPS)」を京都大学・前一広教授とともに提案し,同システムの関する研究調査を実施した(実施主体:化学工学会,代表:林潤一郎)。本調査研究によって,国内の林産系バイオマスおよび農業系バイオマスを原料とする地域分散型化学産業創出の可能性が示された。調査研究において,研究者,技術者,事業家,政策担当者等が地域におけるSCPSの実装やその全国規模の展開を検討する際に必要とする基本的な考え方を提示し,SCPSの経済・環境フィージビリティ検討,システムシミュレーション・デザイン等を支援するデータベースやツール(方法論)を構築した。

    2016.3

  • 研究代表者を努めた国際共同研究(科学技術戦略推進費研究:アジアアフリカ共同研究推進;革新的褐炭・バイオマス改質の科学基盤,2010.8〜2013.3)の事後評価において,A評価(総合)およびS評価(研究)を得た。

    2013.12

     More details

    バイオマス,褐炭などの低品位炭素資源の革新的な改質技術とこれらの組み合わせによる付加価値連鎖型転換シーケンスの構築を目指したインドネシアとの国際共同研究(革新的褐炭・バイオマス改質の科学基盤)を代表者として実施し(平成22〜24年度および平成25年度のフォローアップ研究),高付加価値ケミカルズ製造法,高強度還元材製造,高効率ガス化法などの開発に成功した。

Research Projects

  • 超高収率炭化に基づくバイオマスの新転換利用システム

    Grant number:25H00823  2025.4 - 2029.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    林 潤一郎

      More details

    Grant type:Scientific research funding

    CiNii Research

  • バイオマス原料の熱分解による化成品生成検討に関する共同研究

    2024.1 - 2025.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • 廃プラスチックの転換に関する研究

    2023.6 - 2023.9

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • 石炭ガス化に関する研究

    2023.6 - 2023.9

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • ガス化炉における塩素の挙動に関する研究

    2023.5 - 2024.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

▼display all

Educational Activities

  • 1. Lecture of the following subjects:
    (a) Advanced Chemical Reaction Engineering (Dept. Interdisciplinary Engineering Sciences)
    (b) Industrial Chemistry II (Inorganic Chemistry, Dept. Chem. Eng. faculty of Engineering)
    (c) Physical Chemistry (Advanced Graduate Program in Global Strategy for Green Asia)
    (d) Advanced Chemical Reaction Engineering (Advanced Graduate Program in Global Strategy for Green Asia)
    (e) Others
    2. Supervision of master/PhD-course students through research
    3. Supervision of research students (including those from other universities)
    4. Core member of a Kyushu University Global COE Program: Novel Carbon Resource Sciences
    5. Vice-Coordinator of a Kyushu University Leading Graduate School Program: Advanced Graduate Program in Global Strategy for Green Asia

Class subject

  • 安全学

    2024.4 - 2024.9   First semester

  • 先端反応工学i

    2024.4 - 2024.6   Spring quarter

  • 安全学

    2023.4 - 2023.9   First semester

  • 先端反応工学i

    2022.4 - 2022.9   First semester

  • 量子プロセス理工学演習(M1003)

    2020.10 - 2021.3   Second semester

▼display all

FD Participation

  • 2023.2   Role:Participation   Title:先導物質化学研究所令和4年度第一回FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.1   Role:Participation   Title:先導物質化学研究所令和3年度第一回FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.1   Role:Moderator   Title:先導物質化学研究所令和2年度第1回FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.1   Role:Moderator   Title:先導物質化学研究所令和元年度第2回FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.5   Role:Moderator   Title:先導物質化学研究所令和元年度第1回FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2015  Curtin University (Australia)  Classification:Affiliate faculty  Domestic/International Classification:Overseas 

  • 2012  日本原子力研究開発機構  Classification:Part-time faculty  Domestic/International Classification:Japan 

  • 2008  九州大学先導物質化学研究所(北海道大学在籍期間)  Classification:Affiliate faculty  Domestic/International Classification:Japan 

Teaching Student Awards

  • 化学工学会第90年会優秀学生賞

    Year and month of award:2025.3

    Classification of award-winning students:Postgraduate student   Name of award-winning student:化学工学会第90年会

      More details

    セルロース熱分解由来レボグルコセノンの気相反応特性

  • 日本エネルギー学会西部支部第8回学生・若手研究発表会 優秀ポスター発表賞

    Year and month of award:2024.11

    Classification of award-winning students:Postgraduate student   Name of award-winning student:高橋 瑞季

      More details

    シュウ酸鉄を用いるバイオマス由来グラファイトの低温合成

Outline of Social Contribution and International Cooperation activities

  • • Proposals of novel concept of carbonaceous resource conversion and processes/systems, national projects (including incubation ones)
    • Collaboration mainly with Asian/Oceanian universities/institutes toward development of novel processes for biomass/coal conversion

Social Activities

  • バイオインダストリー協会主催の政策情報セミナー(バイオマス)における講演

    バイオインダストリー協会  東京都  2023.11

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Seminar, workshop

  • NEDO サステイナブルプラスチックワークショップにおける講演(バイオマス由来プラスチック生産の実装と持続性のために 〜上流側からの見方〜)

    国立研究開発法人 新エネルギ-・産業技術総合開発機構(NEDO)  東京  2023.5

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Seminar, workshop

  • NEDO「エネルギー・環境分野における革新的技術の国際共同研究開発事業」の採択審査委員会・委員長を務めた。

    2023

     More details

    NEDO「エネルギー・環境分野における革新的技術の国際共同研究開発事業」の採択審査委員会・委員長を務めた。

  • NEDOが主催するサステイナブルプラスチックに関するワークショップに講師・コメンテータとして出席し、今後のサステイナブルプラスチックにかかる技術開発、政策のあり方などに関して議論した。

    2023

     More details

    NEDOが主催するサステイナブルプラスチックに関するワークショップに講師・コメンテータとして出席し、今後のサステイナブルプラスチックにかかる技術開発、政策のあり方などに関して議論した。

  • 「ここふるサイエンスカフェVol.4 どうなる?どうする?エネルギー・資源 ―バイオマスって何?―」で講師を務めた。

    九州大学、大野城市  大野城市心のふるさと館  2022.12

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

▼display all

Media Coverage

  • もみ殻から糖類、県南で化学品生産 九大など https://www.sakigake.jp/news/article/20191016AK0003/ 内閣府SIPプロジェクトの取組紹介 Newspaper, magazine

    秋田魁新報  2020.1

     More details

    もみ殻から糖類、県南で化学品生産 九大など
    https://www.sakigake.jp/news/article/20191016AK0003/
    内閣府SIPプロジェクトの取組紹介

  • エネ環境分野で“尖った技術”を 」 NEDOエネルギー環境先導プログラムにおいて報告者が代表を務める9機関の共同研究「地域バイオマスからの化成品マルチ生産システム」が採択された。 Newspaper, magazine

    化学工業日報  2017.5

     More details

    エネ環境分野で“尖った技術”を 」 NEDOエネルギー環境先導プログラムにおいて報告者が代表を務める9機関の共同研究「地域バイオマスからの化成品マルチ生産システム」が採択された。

  • 「解剖 先端拠点」において先導物質化学研究所の研究が紹介された。そのなかで,炭素資源ガス化に関する先端研究の成果が紹介された。 Newspaper, magazine

    日経産業新聞  2014.5

     More details

    「解剖 先端拠点」において先導物質化学研究所の研究が紹介された。そのなかで,炭素資源ガス化に関する先端研究の成果が紹介された。

  • 褐炭など未利用炭 製鉄コークスに活用. https://www.japanmetaldaily.com/metal/2013/steel_news_20131004_1.html Newspaper, magazine

    鉄鋼新聞  2013.10

     More details

    褐炭など未利用炭 製鉄コークスに活用. https://www.japanmetaldaily.com/metal/2013/steel_news_20131004_1.html

  • エネルギーベストミックスの重要性について解説 TV or radio program

    青森テレビ  2012.6

     More details

    エネルギーベストミックスの重要性について解説

Activities contributing to policy formation, academic promotion, etc.

  • 2023.5   国立研究開発法人新エネルギー・産業技術総合開発機構

    NEDOサステイナブルプラスチックに関するワークショップにおいて、サステイナブルプラスチック普及/拡大に向けた取り得る方策(技術開発、政策提言)について議論した。

  • 2023.4 - 2023.10   公益財団法人国際科学技術財団

    2024年日本国際賞審査委員会の委員を務めた

  • 2018.4 - 2019.3   公益社団法人化学工学会・産業界交流委員会

    化学工学会本部に設置した産業界交流委員会(法人会員企業32社の役員からなる委員会)は、今後の化学産業,産業人材育成,化学工学のあり方等について議論をしてきた。そのなかで,2017年度および2018年度には,将来に実現すべき炭素循環社会,そして2050年までのCO2排出80%削減に向けて必要となる新技術,有望と期待される技術やシステムを提案,提示すべく,参画企業の技術者が五つのワーキンググループを構成し,電池(蓄電),廃棄物・燃焼,バイオプロセッシング,C1化学およびIoT技術をキーワードとする検討を実施した。当教員は、産業界交流委員会の副委員長を務め、二酸化炭素排出80%削減のための資源転換利用システムのグランドデザイン(プラットホーム技術・システム)を自ら示し、会員企業に具体的な技術開発課題の抽出、提案システムのCO2削減ポテンシャルの検討に指導的役割を果たした。

  • 2015.9 - 2018.3   NEDO

    国家プロジェクト(NEDO非可食性植物由来化学品製造プロセス技術開発)に並行して、2015〜2016年度に、NEDO受託調査研究(非可食性バイオマスを活用するスマート化学生産システムに関する調査、委託先:公益社団法人化学工学会)を代表者として実施し、地域バイオマスを原料とする次世代の農工融合型化学産業創出の可能性を技術・社会面から調査し、その成果を踏まえ、次世代化学産業の最重要プラットホームと期待されるC6糖および機能性セルロースを安価安定供給するためにあるべきバイオマス成分分離・改質・変換技術とシステムならびに地域バイオマスを起点とするサプライ・バリューチェーンの考え方を示した。これに続いて、2017年度にはNEDOエネルギー環境先導研究プロジェクト(非可食性バイオマスから高機能化学品・材料を製造するバリューチェーン構築のための生産システムの開発)を代表として率い、シーケンシャル水処理をはじめとして上述のコンセプトを実現するための基盤技術およびこれを地域実装するためのツールを開発した。

Acceptance of Foreign Researchers, etc.

  • Murdoch University

    Acceptance period: 2018.8   (Period):1 month or more

    Nationality:Australia

    Business entity:Japan Society for the Promotion of Science

  • National University of Mongolia

    Acceptance period: 2017.10   (Period):2weeks to less than 1 month

    Nationality:Mongolia

    Business entity:Foreign governments, foreign research institutes, international organizations

  • Gajah Mada University

    Acceptance period: 2015.2 - 2015.3   (Period):1 month or more

    Nationality:Indonesia

    Business entity:Other

  • Chang Gung University

    Acceptance period: 2013.5 - 2013.7   (Period):1 month or more

    Nationality:Taiwan, Province of China

    Business entity:Foreign governments, foreign research institutes, international organizations

  • モンゴル科学院

    Acceptance period: 2011.9 - 2012.4   (Period):1 month or more

    Nationality:Mongolia

    Business entity:Japan Society for the Promotion of Science

Travel Abroad

  • 2019.12

    Staying countory name 1:China   Staying institution name 1:武漢市

  • 2019.7

    Staying countory name 1:China   Staying institution name 1:青島市

  • 2018.8

    Staying countory name 1:China   Staying institution name 1:Ulanqab, Inner Mongolia

  • 2018.5

    Staying countory name 1:Taiwan, Province of China   Staying institution name 1:台湾交通大学

  • 2018.3

    Staying countory name 1:Taiwan, Province of China   Staying institution name 1:台湾交通大学

▼display all