Updated on 2025/04/17

写真a

 
SAEKI OSAMU
 
Organization
Institute of Mathematics for Industry Division of Fundamental mathematics Professor
School of Sciences Department of Mathematics(Concurrent)
Graduate School of Mathematics Department of Mathematics(Concurrent)
Joint Graduate School of Mathematics for Innovation (Concurrent)
School of Engineering (Concurrent)
School of Engineering (Concurrent)
Title
Professor
Profile
My main research interest is the global singularity theory of differentiable mappings. It has been known that differentiable functions on a manifold can be well used to study its global geometric structures. In the 1950's Thom began to try to generalize such a theory to that of differentiable mappings between manifolds. However, because of the difficulty in controling local singularities, the theory has not been well developed until recently. So I am studying differentiable mappings between manifolds with only mild singularities or those between low dimensional manifolds. This kind of global study of singularities is fairly new and my recent results have shown that the singularities of differentiable mappings play an essential role in the study of geometric structures of manifolds. In this way, it has been recognized that such a study is important in Topology. Other than the above mentioned research, I am also interested in the following vast area of Topology and related fields: primary obstruction to topological embeddings, separation properties of codimension 1 maps, topology of complex isolated hypersurface singularities, fibered knots, 4-dimensional manifolds, codimension 1 embeddings, differential geometric invariants of space curves, unknotting numbers of knots, etc. I am also interested in the asymptotic behavior of generalized Fibonacci sequences. Furthermore, I am interested in the application of Topology to other areas in Science and Industry, such as DNA knots, visual data analysis for multivariate functions, analysis of materials from microscopic levels, etc.
Homepage
External link

Research Areas

  • Natural Science / Geometry

Research History

  • Kyushu University Institute of Mathematics for Industry, Division of Fundamental Mathematics  Professor 

    2011.3 - Present

      More details

    Country:Japan

  • Kyushu University Faculty of Mathematics Professor 

    2002.4 - 2011.3

      More details

    Country:Japan

    researchmap

  • Hiroshima University 大学院理学研究科 Associate Professor (as old post name) 

    2000.4 - 2002.3

      More details

    Country:Japan

  • Hiroshima University 理学部 Associate Professor (as old post name) 

    1995.4 - 2000.3

      More details

    Country:Japan

  • Hiroshima University 理学部 Lecturer 

    1993.3 - 1995.3

      More details

    Country:Japan

▼display all

Research Interests・Research Keywords

  • Research theme: Mathematical Descriptions of Figures from the Viewpoints of Topology and Differential Geometry

    Keyword: Topology, Differential Geometry, Material Science

    Research period: 2013.4 - 2014.3

  • Research theme: Application of Pure Mathematics to Material Science

    Keyword: Microstructure of Materials, Geometric Features, Mathematical Modeling

    Research period: 2011.4 - Present

  • Research theme: Low Dimensional Topology, Morse Theory and Computer Graphics

    Keyword: low dimensional topology, computer graphics, Morse theory, singularities of differentiable maps

    Research period: 2011.4 - Present

  • Research theme: Topology-based visual data analysis for multivariate functions

    Keyword: multivariate function, data analysis, visualization, differential topology

    Research period: 2010.10 - Present

  • Research theme: Research on DNA knots

    Keyword: DNA recombination, knot theory, tangle, site-specific recombination enzyme, topoisomerase, cyclic surgery theorem

    Research period: 2007.6 - Present

  • Research theme: Mathematics for Industry

    Keyword: Mathematics for Industry

    Research period: 2007 - Present

  • Research theme: Research on regular homotopy classes of immersions and embeddings of 3-manifolds into 5-space

    Keyword: immersion, embedding, regular homotopy, spin structure, 3-manifold

    Research period: 2000.4 - Present

  • Research theme: Research on contact between curves and 1-parameter orbits in homogeneous spaces

    Keyword: homogeneous space, 1-parameter subgroup, contact, orbit, Lie algebra

    Research period: 1997.4 - 2013.3

  • Research theme: Research on generalized Fibonacci sequences

    Keyword: Fibonacci sequence, recurrence, asymptotic behavior, Binet formula, holomorphic function

    Research period: 1994.4 - Present

  • Research theme: Research on separation property of codimension 1 maps, Betti number of generic map images, and primary obstruction to topological embeddings.

    Keyword: codimension 1 map, separation property, generic map, Betti number, primary obstruction to topological embeddings

    Research period: 1991 - Present

  • Research theme: Research on the topology of stable maps

    Keyword: stable map, elimination of singularities, manifold, characteristic class, differentiable structure

    Research period: 1991 - Present

  • Research theme: Global Theory of Singularities

    Keyword: singularities of differentiable map, global topology, differentiable structure

    Research period: 1990 - Present

  • Research theme: Research on high dimensional knots

    Keyword: knot, codimension 1 embedding, product of spheres, fibered knot, Milnor fibration

    Research period: 1985 - Present

  • Research theme: Low dimensional topology

    Keyword: 3-dimensional manifold, 4-dimensional manifold, knot

    Research period: 1985 - Present

  • Research theme: Theory of manifolds

    Keyword: manifold, Morse theory, differentiable structure

    Research period: 1985 - Present

Awards

  • FY2024 The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology, Awards for Science and Technology

    2024.4   文部科学省   業績:可微分写像の大域的特異点論の研究

     More details

    Country:Japan

  • Geometry Prize FY2015

    2015.9   Mathematical Society of Japan   Stable maps and Topology of Manifolds

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

    授賞題目:安定写像と多様体のトポロジーの研究
    授賞理由:佐伯修氏は長年にわたり幅広い分野で活躍されているが,その活動の中核にある安定写像を用いた3あるいは4次元可微分多様体のトポロジーの研究は,大変ユニークで優れたものである.多様体のトポロジーの情報をMorse関数の特異点の指数から引き出すMorse理論は,前世紀半ばに始まり今日までその有用性に陰りはない.一方佐伯氏は,ターゲットの次元を上げることで設定を多様化し,一貫して,特定の型の特異点のみをもつ安定写像の存在・非存在が定義域の多様体のトポロジーや微分構造をどのように反映するか,というよりワイルドな問いに取り組んでいる.その過程で,独自の道具を開発し,コボルディズム理論,特異点論および低次元トポロジーの技法などを駆使している.佐伯氏の一連の仕事は1980年代中盤以降の微分トポロジーの大きな流れとはやや違え,微分トポロジー揺籃期のThom やMilnor の問題意識に立ち返るものであるが,安定写像が主体の研究の中では,ターゲットの次元がソースの次元よりも低い安定写像の微分トポロジーの研究は真に佐伯氏が世界を牽引している.具体的成果の幾つかを挙げる.4次元多様体から3次元多様体への安定写像については,カスプ特異点の解消の障害類の同定,佐久間氏と共同で4 次元位相多様体上の微分構造の違いが読み取れること,また,山本氏と共同で多様体の符号数は特定な型の特異ファイバーの符号付個数と一致,などを示している.4次元多様体から2次元多様体への安定写像については,たとえば定値折り曲げ(definite fold)はいつでも解消できることを示し,3次元多様体から2次元多様体への安定写像に対しては,たとえば各ファイバーの連結成分を1点に潰した空間からの誘導写像であるStein分解を定義し安定写像の分類を行っている.さらにここ数年,佐伯氏のこれまでの研究は低次元トポロジーの研究に基本的な影響を与え始めていることは特筆に価する.Donaldsonらが導入した4次元多様体の特異レフシェッツ束(broken Lefschetz fibration)やTuraev が導入した3次元多様体の影(shadow)は,安定写像を介して理解することが自然に可能であり,佐伯氏が開発した特異点解消やStein 分解といった技法が,今日のその研究に活用されている.また,Gromovも佐伯氏の仕事を一つの根拠に安定写像の位相的複雑度に関してアイデアを提唱している.

  • Takebe Katahiro Prize FY1996

    1996.11   Mathematical Society of Japan   微分可能写像の大域的特異点理論

     More details

    Country:Japan

Papers

  • Global singularity theory of generic differentiable maps Invited Reviewed International journal

    Osamu Saeki

    Handbook of Geometry and Topology of Singularities   VII ( - )   273 - 326   2025.3   ISBN:978-3-031-68710-5

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Part of collection (book)   Publisher:Springer Cham  

    This chapter describes how differentiable maps of manifolds into Euclidean spaces with singularities are related to the topological or differentiable structures of manifolds. Singularities of differentiable maps are formulated locally in principle: however, maps with certain singularities as a whole or the singularities in total carry global information. The study of differentiable maps with singularities from such kind of a viewpoint is called the global singularity theory of differentiable maps. In this chapter, we first focus on differentiable maps with only definite fold singularities, called special generic maps, and see how such maps affect the differentiable structures of the source manifolds. Then, we introduce the notion of cobordisms for maps with prescribed singularities, which will be used to extract certain invariants of singular maps and the source manifolds. We will see that singular fibers play important roles in studying such cobordisms. Finally, we give a brief exposition of a result due to Gromov, which relates the simplicial volume of a manifold with the number of certain singular fibers.

    DOI: https://doi.org/10.1007/978-3-031-68711-2

  • Simplifying indefinite fibrations on 4-manifolds Reviewed International journal

    R.I. Baykur, O. Saeki

    Trans. Amer. Math. Soc.   376   3011 - 3062   2023.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The main goal of this article is to connect some recent perspectives in the study of 4–manifolds from the vantage point of singularity theory. We present explicit algorithms for simplifying the topology of various maps on 4–manifolds, which include broken Lefschetz fibrations and indefinite Morse 2–functions. The algorithms consist of sequences of moves, which modify indefinite fibrations in smooth 1–parameter families. These algorithms allow us to give purely topological and constructive proofs of the existence of simplified broken Lefschetz fibrations and Morse 2–functions on general 4–manifolds, and a theorem of Auroux–Donaldson–Katzarkov on the existence of certain broken Lefschetz pencils on near-symplectic 4–manifolds. We moreover establish a correspondence between broken Lefschetz fibrations and Gay–Kirby trisections of 4–manifolds, and show the existence and stable uniqueness of simplified trisections on all 4–manifolds. Building on this correspondence, we also provide several new constructions of trisections, including infinite
    families of genus–3 trisections with homotopy inequivalent total spaces, and exotic same genera trisections of 4–manifolds in the homeomorphism classes of complex rational surfaces.

    DOI: https://doi.org/10.1090/tran/8325

  • Reeb spaces of smooth functions on manifolds Reviewed International journal

    Osamu Saeki

    International Mathematics Research Notices   2022   8740 - 8768   2022.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The Reeb space of a continuous function is the space of connected components of the level sets. In this paper we first prove that the Reeb space of a smooth function on a closed manifold with finitely many critical values has the structure of a finite graph without loops. We also show that an arbitrary finite graph without loops can be realized as the Reeb space of a certain smooth function on a closed manifold with finitely many critical values, where the corresponding level sets can also be preassigned. Finally, we show that a continuous map of a smooth closed connected manifold to a finite connected graph without loops that induces an epimorphism between the fundamental groups is identified with the natural quotient map to the Reeb space of a certain smooth function with finitely many critical values, up to homotopy.

    DOI: https://doi.org/10.1093/imrn/rnaa301

  • Simplified broken Lefschetz fibrations and trisections of 4-manifolds Invited Reviewed International journal

    R.I. Baykur, O. Saeki

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   115 ( 43 )   10894 - 10900   2018.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    特異点論の観点から、特異シンプレクティック構造に付随した特異Lefschetz構造の存在や、単純化されたtrisectionの存在を、具体的かつ構成的に証明することに成功し
    た。

    DOI: 10.1073/pnas.1717175115

  • Special generic maps on open 4-manifolds Reviewed International journal

    Osamu Saeki

    Journal of Singularities   1   2010.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Special generic maps on open 4-manifolds

▼display all

Books

  • Topology of Singular Fibers of Differentiable Maps

    Osamu Saeki(Role:Sole author)

    Springer Verlag  2004.1 

     More details

    Responsible for pages:Lecture Notes in Math., Vol. 1854, Springer-Verlag, 2004.   Language:English   Book type:Scholarly book

  • 複素超曲面の特異点

    佐伯修,佐久間一浩(Role:Joint translator)

    シュプリンガー東京  2003.1 

     More details

    Language:Japanese   Book type:Scholarly book

    Singular Points of Complex Hypersurfaces, J. W. Milnor, Translated into Japanese by O. Saeki and K. Sakuma, Springer Verlag Tokyo, 2003.

  • 特性類講義

    佐伯修,佐久間一浩(Role:Joint translator)

    シュプリンガー東京  2001.1 

     More details

    Language:Japanese   Book type:Scholarly book

    Characteristic Classes, J. W. Milnor and J. D. Stasheff, Translated into Japanese by O. Saeki and K. Sakuma, Springer Verlag Tokyo, 2001.

  • 幾何学と特異点

    泉屋周一,佐野貴志,佐伯修,佐久間一浩(Role:Joint author)

    共立出版  2001.1 

     More details

    Language:Japanese   Book type:Scholarly book

    Geometry and Singularities (in Japanese), S. Izumiya, T. Sano, O. Saeki and K. Sakuma, Kyoritsu Publ., 2001.

  • 2023度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会「WORKSHOP on Mathematics for Industry 2023--Basis of Mathematics in nanomedicine structures and life sensing」

    Osamu Saeki, Wojciech Domitrz, Stanislaw Janeczko, Marcin Zubilewicz, Michal Zwierzynski(Role:Edit)

    九州大学マス・フォア・インダストリ研究所  2024.3 

     More details

    Responsible for pages:MIレクチャーノート,Vol.95   Language:English   Book type:Scholarly book

▼display all

Presentations

  • Special generic maps I, II, Singular fibers of generic maps I, II, Simplifying generic maps I, II,(連続6講演) Invited International conference

    Osamu Saeki

    Singularity theory and geometric topology  2022.10 

     More details

    Event date: 2022.10

    Language:English   Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

  • ジェネリックな可微分写像の大域的特異点論 Invited

    佐伯修

    2022年度秋季総合分科会  2022.9 

     More details

    Event date: 2022.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:北海道大学   Country:Japan  

    One of the most popular methods to study the topological structure of a given differentiable manifold is to use Morse functions. Such functions can be regarded as generic differentiable maps into the real line. Then, what happens if we consider generic maps into general dimensional Euclidean spaces or manifolds? This might have been a motivation of Whitney or Thom around the middle of the 20th century for studying singularities of differentiable maps between manifolds. In this talk, following such an idea, the speaker surveyed some studies of structures of manifolds by using generic differentiable maps, and some global studies of generic differentiable
    maps with singularities themselves, including recent developments.

  • Simplified broken Lefschetz fibrations and trisections of 4-manifolds Invited

    佐伯修

    研究集会 Intelligence of Low-dimensional Topology  2018.5 

     More details

    Event date: 2018.5 - 2018.6

    Language:English   Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

  • 安定写像と多様体のトポロジー Invited

    佐伯 修

    日本数学会2015年度秋季総合分科会  2015.9 

     More details

    Event date: 2015.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京都産業大学   Country:Japan  

  • Topology of singular fibers for visualization Invited International conference

    佐伯 修

    Topology-Based Methods in Visualization 2015  2015.5 

     More details

    Event date: 2015.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Kurhaus Trifels, Annweiler   Country:Germany  

    Topology of singular fibers for visualization

    Other Link: http://imi.kyushu-u.ac.jp/~saeki/pdf/saeki220.pdf

▼display all

MISC

Professional Memberships

  • Society for Industrial and Applied Mathematics

    2023.1 - 2023.12

  • The Japan Society for Industrial and Applied Mathematics

  • Australian Mathematical Society

  • Asia Pacific Consortium of Mathematics for Industry

  • The Mathematical Society of Japan

      More details

Committee Memberships

  • 文部科学省   基礎研究振興部会 部会長   Domestic

    2025.2 - 2027.2   

      More details

    Committee type:Government

  • 文部科学省   科学技術・学術審議会 委員   Domestic

    2023.2 - 2027.2   

      More details

    Committee type:Government

  • 文部科学省   基礎研究振興部会 委員   Domestic

    2023.2 - 2025.2   

      More details

    Committee type:Government

  • 日本数学会   Councilor   Domestic

    2018.3 - 2020.3   

  • 日本数学会   学術委員会運営委員   Domestic

    2012.7 - 2018.6   

▼display all

Academic Activities

  • Algebraic Geometry, Topology, Combinatorics and Related Topics 2025 International contribution

    Role(s): Planning/Implementing academic research

    ( Tokushima University ) 2025.3

     More details

    Type:Academic society, research group, etc. 

  • 研究集会 「多様体のトポロジーの進展」

    Role(s): Planning, management, etc.

    ( 東京大学大学院数理科学研究科 ) 2024.11

     More details

    Type:Academic society, research group, etc. 

  • Japanese Australian Workshop on Real and Complex Singularities 2024 International contribution

    Role(s): Planning, management, etc.

    ( 埼玉大学 ) 2024.11

     More details

    Type:Academic society, research group, etc. 

  • 機械学習と数理モデルの融合と理論の深化Ⅱ

    Role(s): Planning, management, etc.

    ( 九重共同研究所・山の家 ) 2024.10

     More details

    Type:Academic society, research group, etc. 

  • 社会科学における幾何と代数

    Role(s): Planning, management, etc.

    ( 九州大学マス・フォア・インダストリ研究所 ) 2024.9

     More details

    Type:Academic society, research group, etc. 

▼display all

Research Projects

  • 特異点論と幾何的トポロジーが織りなす数学イノベーション

    Grant number:23H05437  2023 - 2027

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (S)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • データのねじれをモノドロミーで可視化する

    Grant number:22K18267  2022 - 2027

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Pioneering)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 3次元双曲多様体上の量子トポロジー

    Grant number:21H04428  2021 - 2025

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 「数学アドバンストイノベーションプラットフォーム(AIMaP)」

    2019 - 2021

    文部科学省科学技術試験研究委託事業

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 幾何的トポロジーと写像の特異点論の革新的研究

    Grant number:17H06128  2017 - 2021

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (S)

    佐伯 修, 大本 亨, 鎌田 聖一, 石川 昌治, 遠藤 久顕, 岩瀬 則夫, 小林 真人

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    可微分写像の大域的で具体的な簡略化手法を、幾何的トポロジーを用いて確立し、4次元多様体が常に良い構造を持つことを発見した。また、境界付き多様体上の写像の同境を初めて定式化するなど、新研究領域を創出した意義は大きい。さらに、非特異ファイバーと特異点集合が絡まないことがあることを突き止め、それを沈めこみ理論に応用した結果は、特異点論の汎用性を顕著に表している。また情報幾何学で重要な双対平坦構造について、特異モデルにも適用可能となるように理論を刷新するなど、諸科学分野への応用を目的とする次世代カタストロフィー理論の構築を進めた。

    CiNii Research

▼display all

Educational Activities

  • The numbers of recent master course students that I supervised were 3 (2024), 1 (2023), 4 (2022), 2 (2021), 1 (2019), 1 (2018), 2 (2015), 1 (2014), 4 (2013), 2 (2012), 1 (2011), 2 (2010), 1 (2009), 4 (2008), 2 (2007), 4 (2006), 2 (2005), 1 (2004), 4 (2001), 2 (2000), 2 (1998), 1 (1996) and 1 (1993).

    For undergraduate students, I have been teaching general topology and algebraic topology. The numbers of students that I supervised were 2 (2024), 1 (2023), 2 (2022), 1(2021), 1 (2020), 5 (2019), 1 (2017), 1 (2016), 1 (2014), 1 (2012), 4 (2011), 4 (2010), 3 (2009), 2 (2008), 4 (2007), 3 (2006), 4 (2005), 3 (2004), 2 (2003), 2 (2001), 3 (2000), 6 (1999), 3 (1998), 3 (1996), 1 (1995), 3 (1993), 3 (1992), 2 (1991) and 4 (1988).

    Other than the above mentioned activities, I have given 14 mini-courses in other universities. Furthermore, I have supervised 3 Brazilian students for their PhD.

Class subject

  • フーリエ・ラプラス変換と偏微分方程式

    2024.10 - 2025.3   Second semester

  • 機能数理学概論I

    2024.10 - 2025.3   Second semester

  • 幾何学II

    2024.10 - 2025.3   Second semester

  • 数学創発モデリング

    2023.4 - 2024.3   Full year

  • 位相幾何学基礎・演習

    2023.4 - 2023.9   First semester

▼display all

FD Participation

  • 2025.2   Role:Speech   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.4   Role:Planning   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.7   Role:Planning   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.3   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2018.4   Role:Participation   Title:数理学府教員会議ファカルティデベロップメント

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2012  東京工業大学  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:後期

  • 2011  大阪大学  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:前期

  • 2010  釜山大学校  Classification:Intensive course  Domestic/International Classification:Overseas 

    Semester, Day Time or Duration:2010年8月30日~9月2日

  • 2006  埼玉大学  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:後期

  • 2006  東京工業大学  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:後期

▼display all

Teaching Student Awards

  • 第2回 植物気候フィードバック 若手の会 優秀口頭発表賞

    Year and month of award:2024.12

    Classification of award-winning students:Postgraduate student   Name of award-winning student:岩倉康樹

      More details

  • PCF2024 Best Poster Award

    Year and month of award:2024.10

    Classification of award-winning students:Postgraduate student   Name of award-winning student:岩倉康樹

      More details

Other educational activity and Special note

  • 2023  Special Affairs  文部科学省令和2年度採択卓越大学院プログラム「マス・フォア・イノベーション卓越大学院プログラム」の中間評価において、プログラム・コーディネーターとして中心的役割を果たし、最高評価の『S』を取得した。

     詳細を見る

    文部科学省令和2年度採択卓越大学院プログラム「マス・フォア・イノベーション卓越大学院プログラム」の中間評価において、プログラム・コーディネーターとして中心的役割を果たし、最高評価の『S』を取得した。

  • 2022  Special Affairs  文部科学省の研究科等連係課程実施基本組織として、九州大学ダ・ヴィンチプログラムの枠組みの中で、マス・フォア・イノベーション連係学府が令和4年4月に設置されたが、その設置に本質的貢献をした。また、数理学系の副学府長に就任した。

     詳細を見る

    文部科学省の研究科等連係課程実施基本組織として、九州大学ダ・ヴィンチプログラムの枠組みの中で、マス・フォア・イノベーション連係学府が令和4年4月に設置されたが、その設置に本質的貢献をした。また、数理学系の副学府長に就任した。

  • 2021  Special Affairs  The MEXT WISE program, Graduate Program of Mathematics for Innovation, has been approved and I am running the program as coordinator.

     詳細を見る

    The MEXT WISE program, Graduate Program of Mathematics for Innovation, has been approved and I am running the program as coordinator.

  • 2021  Special Affairs  Kyushu University Leading PhD Program in Mathematics for Key Technologies, Program Coordinator

     詳細を見る

    Kyushu University Leading PhD Program in Mathematics for Key Technologies, Program Coordinator

  • 2020  Special Affairs  Kyushu University Leading PhD Program in Mathematics for Key Technologies, Program Coordinator

     詳細を見る

    Kyushu University Leading PhD Program in Mathematics for Key Technologies, Program Coordinator

▼display all

Outline of Social Contribution and International Cooperation activities

  • I have written the following educational essays (in Japanese).

    1. Let us enjoy books on Mathematics
    2. Let us look at 4-dimensional spaces by using maps
    3. Differential topology and singularities
    4. Various ways to topology
    5. When I encountered with Mathematics --- fascinated by the mystery
    6. Mathematics is interesting
    7. Book Review "Introduction to Topology (in Japanese)" by T. Tanaka and H. Murakami.
    8. Differential topology and singularities
    9. Mathematics, Industry, and Mathematics
    10. Mathematics helps in an unexpected way -- Singularity Theory and Data Visualization
    11. Foreword, Sugaku Tsushin, Vol.27, No.4, February 2023.

Social Activities

  • デジタル・ニッポンの実現に向けた データ格付け数理基盤に関するシンポジウム クロージング「数学への期待とそれに応える人材育成への取組 」

    Role(s):Appearance

    九州大学 マス・フォア・インダストリ研究所  九州大学(オンライン)  2020.12

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Seminar, workshop

  • 山門高校「レベルアップ講座」山門高校2年生対象

    Role(s):Lecturer

    福岡県立山門高校  九州大学  2015.8

     More details

    Audience:High school students

    Type:Lecture

  • 平成22年度山口県高等学校数学教育研究(長南)大会 「数学の汎用性 ― トポロジーの話題から ―」

    Role(s):Lecturer, Advisor

    山口県高等学校数学教育研究部会  山口県立宇部中央高等学校  2010.10

     More details

    Audience:High school students, Teachers

    Type:Lecture

    トポロジーという数学の題材を例にとり,数学と実社会とのつながりについて,山口県の高校教員(数学)に対して説明した.特に,高校で数学を実際に教えている現場の教員に対して,数学がどのように社会に役立てられているか,大学の数学科を卒業した学生がどのように社会に求められているのか,詳しく説明した.現場の教育に役立てていただくことが目的であった.

  • 平成16年度九州大学公開講座「現代数学入門」 等高線のトポロジー

    Role(s):Lecturer

    九州大学大学院数理学研究院、福岡県教育委員会  九州大学国際ホール  2004.8

     More details

    Audience:High school students, College students, Graduate students, Teachers, General

    Type:Lecture

Media Coverage

  • 「教育は いま」テーマ「社会問題の解決に新視点」デジタル化進む現代の基礎 増す重要性 数学が変える世の中、開く人生 九州大に今春、新学府 Newspaper, magazine

    西日本新聞  2022.5

     More details

    「教育は いま」テーマ「社会問題の解決に新視点」デジタル化進む現代の基礎 増す重要性 数学が変える世の中、開く人生 九州大に今春、新学府

  • NHK特報フロンティア TV or radio program

    NHK  2012.2

     More details

    NHK特報フロンティア

Activities contributing to policy formation, academic promotion, etc.

  • 2025.2 - 2027.2   文部科学省

    基礎研究振興部会部会長

  • 2023.2 - 2027.2   文部科学省

    科学技術・学術審議会委員

  • 2023.2 - 2025.2   文部科学省

    基礎研究振興部会委員

  • 2022.5 - 2023.8   京都大学数理解析研究所

    京都大学数理解析研究所運営委員

  • 2021.9 - 2023.8   京都大学数理解析研究所

    京都大学数理解析研究所専門委員

▼display all

Acceptance of Foreign Researchers, etc.

  • Alfred Renyi Institute of Mathematics

    Acceptance period: 2025.1   (Period):Less than 2 weeks

    Nationality:Hungary

    Business entity:Japan Society for the Promotion of Science

  • Universidade Federal de Sao Carlos

    Acceptance period: 2024.9 - 2025.2   (Period):1 month or more

    Nationality:Brazil

    Business entity:Foreign governments, foreign research institutes, international organizations

  • University of Sao Paulo, Brazil

    Acceptance period: 2024.1   (Period):Less than 2 weeks

    Nationality:Brazil

    Business entity:Japan Society for the Promotion of Science

  • CNRS and Aix-Marseille University

    Acceptance period: 2023.10   (Period):Less than 2 weeks

    Nationality:France

    Business entity:Japan Society for the Promotion of Science

  • Alfred Renyi Institute of Mathematics

    Acceptance period: 2023.5 - 2023.6   (Period):Less than 2 weeks

    Nationality:Hungary

    Business entity:Japan Society for the Promotion of Science

▼display all

Travel Abroad

  • 2025.3 - 2025.6

    Staying countory name 1:United States   Staying institution name 1:Kansas State University

  • 2024.9

    Staying countory name 1:Poland   Staying institution name 1:Faculty of Mathematics and Information Science of Warsaw University of Technology

  • 2024.7

    Staying countory name 1:Spain   Staying institution name 1:University of Valencia

  • 2024.4 - 2024.9

    Staying countory name 1:France   Staying institution name 1:Institut de recherche mathématique avancée, University of Strasbourg

  • 2024.3

    Staying countory name 1:France   Staying institution name 1:Institut de recherche mathématique avancée, University of Strasbourg

▼display all