Updated on 2024/10/08

Information

 

写真a

 
FUJISAWA KATSUKI
 
Organization
Institute of Mathematics for Industry Division for Intelligent Societal Implementation of Mathmatical Computation Professor
Graduate School of Mathematics Department of Mathematics(Concurrent)
Joint Graduate School of Mathematics for Innovation (Concurrent)
Title
Professor
Contact information
メールアドレス
Tel
0928024402
Profile
The objective of our ongoing research project is to develop an advanced computing and optimization infrastructure for extremely large-scale graphs on post peta-scale supercomputers. Recent emergence of extremely large-scale graphs in various application fields, such as transportation, social network, cyber-security, and bioinformatics, etc., requires fast and scalable analysis. We propose a new framework of software stacks for extremely large-scale graph analysis systems, such as parallel graph analysis and optimization libraries on multiple CPUs and GPUs, hierarchal graph stores using non-volatile memory (NVM) devices, and graph processing and visualization systems. We explain our challenge to Graph 500 and Green Graph 500 benchmarks that are designed to measure the performance of a computer system for applications that require irregular memory and network access patterns. The 1st Graph500 list was released in November 2010. The Graph500 benchmark measures the performance of any supercomputer performing a BFS (Breadth-First Search) in terms of traversed edges per second (TEPS). In 2014 and 2020, by utilizing Fugaku and K supercomputer, our project team was a winner of the eighth, 10th to 18th, 20th, and 23rd Graph500 and the 3rd to 6th Green Graph500 benchmarks, respectively. We also present our parallel implementation for large-scale mathematical optimization problems. In the last decade, mathematical optimization programming (MOP) problems have been intensively studied in both their theoretical and practical aspect in a wide range of fields, such as combinatorial optimization, structural optimization, control theory, economics, quantum chemistry, sensor network location, data mining, and machine learning. The semidefinite programming (SDP) problem is a predominant problem in mathematical optimization. We demonstrate that our implementation is a high-performance general solver for SDPs in various application fields through numerical experiments at the TSUBAME 2.5 supercomputer in the Tokyo Institute of Technology, and we solved the largest SDP problem, thereby creating a new world record. For these achievements, he received the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology (Research Category) in 2017.
Homepage

Research Areas

  • Social Infrastructure (Civil Engineering, Architecture, Disaster Prevention) / Social systems engineering

  • Informatics / Theory of informatics

  • Informatics / Information network

  • Social Infrastructure (Civil Engineering, Architecture, Disaster Prevention) / Safety engineering

Degree

  • Ph.D. Sc.

Research History

  • Tokyo Institute of Technology School of Computing, Department of Mathematical and Computing Science Professor 

    2023.12 - Present

      More details

  • Tokyo Institute of Technology Institute of Innovative Research Professor 

    2023.12 - Present

      More details

  • 国立研究開発法人 産業技術総合研究所 デジタルアーキテクチャー研究センター クロスアポイントメントフェロー 

    2021.4 - 2022.10

      More details

    Country:Japan

    researchmap

  • Tokyo Institute of Technology Global Scientific Information and Computing Center 特定教授 

    2017.4 - 2022.3

      More details

  • The Institute of Statistical Mathematics 統計的機械学習研究センター Visiting Professor 

    2016.4 - 2022.3

      More details

  • Kyushu University マス・フォア・インダストリ研究所 Professor 

    2014.4 - Present

      More details

  • 1998年4月~2002年9月 :    京都大学大学院 工学研究科建築学専攻 助手 2002年10月~2007年3月 :    東京電機大学理工学部数理科学科 助教授 2007年4月~2012年3月:  中央大学理工学部経営システム工学科 准教授 2012年4月~2014年3月:  中央大学理工学部経営システム工学科 教授 2018年4月〜 2019年3月: 産業技術総合研究所 特定フェロー 2018年6月〜 2019年3月: 産総研・東工大 実社会ビッグデータ活用 オープンイノベーションラボラトリ ラボ長 2019年4月〜 2021年3月:    産業技術総合研究所 人工知能研究センター クロスアポイントメントフェロー 2019年4月〜 2022年3月:    産総研・東工大 実社会ビッグデータ活用 オープンイノベーションラボラトリ 副ラボ長 2021年4月〜 2022年11月: 産業技術総合研究所 デジタルアーキテクチャ研究センター クロスアポイントメントフェロー 2023年12月〜 : 東京工業大学科学技術創成研究院 教授   

▼display all

Research Interests・Research Keywords

  • Research theme: グラフ解析

    Keyword: グラフ解析

    Research period: 2024

  • Research theme: 高性能計算

    Keyword: 高性能計算

    Research period: 2024

  • Research theme: 数理最適化

    Keyword: 数理最適化

    Research period: 2024

  • Research theme: ソフトウェア

    Keyword: ソフトウェア

    Research period: 2024

  • Research theme: Massive Parallelization for Finding Shortest LatticeVectors Based on Ubiquity Generator Framework

    Keyword: Lattice based cryptography, Shortest vectorproblem, Parallel computation, DeepBKZ, ENUM, UbiquityGenerator Framework

    Research period: 2019.4

  • Research theme: Industrial Application Development in Cyber Physical

    Keyword: CPS, AI, BigData, HPC, Optimization

    Research period: 2019.4

  • Research theme: Graph Analysis and High Performance Computing Techniques for Realizing Urban OS

    Keyword: Urban OS

    Research period: 2015.9

  • Research theme: Development of High Performance Graph Search and Optimization Library for Graph Analysis

    Keyword: Graph Analysis

    Research period: 2015.9

  • Research theme: A Challenge to Graph 500 and Green Graph 500 benchmarks

    Keyword: High Performance Computing

    Research period: 2015.9

  • Research theme: Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers

    Keyword: Mathematical Optimization, Graph Analysis, High Performance Computing

    Research period: 2011.10

  • Research theme: High Performance Computing for Mathematical Optimization Problems

    Keyword: Optimization Problem

    Research period: 1995.4

Awards

  • The 28st Graph 500 Benchmark, ISC24, Hamburg, Germany, 2024.

    2024.5   Graph500 Committee  

    Fujisawa e

     More details

  • 第48回実施賞

    2024.3   日本オペレーションズ・リサーチ学会  

  • 日本オペレーションズ・リサーチ学会 第48回実施賞

    2024.3   日本オペレーションズ・リサーチ学会  

    藤澤 克樹

     More details

  • 第27回 Graph500 ベンチマーク 世界1位 (SC23, デンバー, アメリカ)

    2023.11  

  • 第27回 Graph500 ベンチマーク 世界1位 (SC23, ダラス, アメリカ)

    2023.11  

  • 2023年 令和5年度 九州大学 共同研究等活動表彰

    2023.11   九州大学  

  • 2023年 令和5年度 九州大学 共同研究等活動表彰

    2023.11   九州大学  

    藤澤 克樹

     More details

  • The 27st Graph 500 Benchmark, SC23, Denver, USA, 2023.

    2023.11   Graph500 Committee  

    Katsuki Fujisawa et al.

     More details

  • 第26回 Graph500 ベンチマーク 世界1位 (ISC23, ハンブルグ, ドイツ)

    2023.6  

  • The 26st Graph 500 Benchmark, ISC23, Hamburg, Germany, 2023.

    2023.6   Graph500 Committee  

    Katsuki Fujisawa et al.

     More details

  • 第25回 Graph500 ベンチマーク 世界1位 (SC22, デンバー, アメリカ)

    2022.11  

  • 2022年 令和4年度 九州大学 共同研究等活動表彰

    2022.11   九州大学  

  • 第25回 Graph500 ベンチマーク 世界1位 (SC22, ダラス, アメリカ)

    2022.11   Graph500 Comittee   A joint research group consisting of Professor Katsuki Fujisawa of Kyushu University's Institute of Mass-for-Industry Research, RIKEN, Fixtures, Inc. and Fujitsu Limited has successfully improved the performance of the supercomputer "Fugaku" in the international "Graph500" performance ranking for large-scale graph analysis using the full specifications of the supercomputer "Fugaku". The research group, consisting of Fixed Stars, Inc. and Fujitsu Limited, succeeded in improving the performance of the supercomputer "Fugaku" in the "Graph500," an international performance ranking of supercomputers for large-scale graph analysis, and ranked No. 1 in the world for six consecutive terms following June 2022. This ranking was announced by the Graph500 Committee on November 15 (November 16, Japan time) in conjunction with SC22, an international conference on high-performance computing (HPC). The performance of large-scale graph analysis is an important indicator in the analysis of big data, which requires large-scale and complex data processing, and we are promoting application development (smart factories, MaaS (delivery optimization), etc.) with private companies using technology that has achieved the world's highest performance.

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、理化学研究所(理研)、株式会社フィックスターズ、富士通株式会社による共同研究グループは、 スーパーコンピュータ「富岳」のフルスペックを用いた測定結果で、大規模グラフ解析に関するスーパーコンピュータの国際的な性能ランキングである 「Graph500」における性能向上に成功し、世界第1位を2022年6月に続いて6期連続で獲得しました。

  • 2022年 令和4年度 九州大学 共同研究等活動表彰

    2022.11   九州大学  

    藤澤 克樹

     More details

  • The 25st Graph 500 Benchmark, SC22, Dallas, USA, 2022.

    2022.11   Graph500 Committee  

    Katsuki Fujisawa et al.

     More details

  • 第24回 Graph500 ベンチマーク 世界1位 (ISC22, ハンブルグ, ドイツ)

    2022.6   Graph500 Comittee   A joint research group consisting of Professor Katsuki Fujisawa of Kyushu University's Institute of Mass-for-Industry Research, RIKEN, Fixtures, Inc. and Fujitsu Limited has successfully improved the performance of the supercomputer "Fugaku" in the international "Graph500" performance ranking for large-scale graph analysis using the full specifications of the supercomputer "Fugaku". The research group, consisting of FITSTARS and FUJITSU LIMITED, succeeded in improving the performance of the supercomputer "Fugaku" in the "Graph500," an international performance ranking of supercomputers for large-scale graph analysis, and ranked No. 1 in the world for five consecutive terms following November 2021. The ranking was announced by the Graph500 Committee on May 30 (Japan Standard Time) in conjunction with ISC21, an international conference on high-performance computing (HPC). The performance of large-scale graph analysis is an important indicator in the analysis of big data, which requires large-scale and complex data processing, and we are promoting application development (smart factories, MaaS (delivery optimization), etc.) with private companies using technology that has achieved the world's highest performance.

  • The 24st Graph 500 Benchmark, ISC22, Hamburg, Germany, 2022.

    2022.6   Graph500 Committee  

    Katsuki Fujisawa et al.

     More details

  • 2021年 令和3年度 九州大学 共同研究等活動表彰

    2021.12   九州大学  

  • 第23回 Graph500 ベンチマーク 世界1位 (SC21, セントルイス, アメリカ)

    2021.11   第23回 Graph500 ベンチマーク 世界1位 (SC21, セントルイス, アメリカ)

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、理化学研究所(理研)、株式会社フィックスターズ、富士通株式会社による共同研究グループは、 スーパーコンピュータ「富岳」のフルスペックを用いた測定結果で、大規模グラフ解析に関するスーパーコンピュータの国際的な性能ランキングである 「Graph500」における性能向上に成功し、世界第1位を2021年6月に続いて4期連続で獲得しました。
    このランキングは、HPC(ハイパフォーマンス・コンピューティング:高性能計算技術)に関する国際会議「SC21」の開催に合わせて、Graph500 Committee から11月15日(日本時間11月16日)に発表されました。
    大規模グラフ解析の性能は、大規模かつ複雑なデータ処理が求められるビッグデータの解析において重要な指標となるものであり、世界最高性能を達成した技 術を用いて、民間企業とのアプリケーション開発(スマート工場, MaaS (配送最適化)等)を推進しております。

  • 第22回 Graph500 ベンチマーク 世界1位 (ISC21, フランク フルト, ドイツ)

    2021.6  

  • 理事長賞 (特別貢献)

    2021.4   産業技術総合研究所   誰もが利用できる オープンイノベーションプラットフォーム ABCI の運用

  • 第21回 Graph500 ベンチマーク 世界1位 (SC20, アトランタ, アメリカ)

    2020.11  

  • 第20回 Graph500 ベンチマーク 世界1位 (ISC20, フランク フルト, ドイツ)

    2020.6  

  • 令和元年度九州大学共同研究等活動表彰

    2019.12   九州大学   共同研究等活動表彰

  • 令和元年度九州大学共同研究等活動表彰

    2019.12   九州大学  

  • 第18回 Graph500 ベンチマーク 世界1位

    2019.6   Graph500 comitte   九州大学マス・フォア・インダストリ研究所の藤澤克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2019年6月18日(現地時間)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2018年11月に続き9期連続(通算10期)で第1位を獲得しました。

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、東京工業大学、理化学研究所、スペインの
    バルセロナ・ スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによ
    る国際共同研究グループは、2019年6月18日(国際会議 ISC2019, ドイツ, フランクフルト)に公開された
    最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキング
    であるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2018年11月に続き
    9期連続(通算10期)で第1位を獲得した。

  • 第18回 Graph500 ベンチマーク 世界1位 (ISC19, フランク フルト, ドイツ)

    2019.6  

  • 第17 回 Graph500 ベンチマーク 世界1位

    2018.11   九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・ スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2017年11月16日(国際会議 SC18, アメリカ, ダラス)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2018年6月に続き8期連続(通算9期)で第1位を獲得しました。

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・ スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2018年11月13日(国際会議 SC18, アメリカ, ダラス)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2018年6月に続き8期連続(通算9期)で第1位を獲得しました。

  • 第17回 Graph500 ベンチマーク 世界1位(SC18, ダラス, アメリカ)

    2018.11  

  • 第16 回 Graph500 ベンチマーク 世界1位

    2018.6   九州大学マス・フォア・インダストリ研究所の藤澤克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2018年6月27日(現地時間)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2017年11月に続き7期連続(通算8期)で第1位を獲得しました。

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・ スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2018年6月27日(国際会議 ISC18, ドイツ, フランクフルト)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2017年11月に続き7期連続(通算8期)で第1位を獲得しました。

  • 第16回 Graph500 ベンチマーク 世界1位 (ISC18, フランク フルト, ドイツ)

    2018.6  

  • 第15 回 Graph500 ベンチマーク 世界1位

    2017.11   九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・ スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2017年11月16日(国際会議 SC17, アメリカ, デンバー)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるG raph500において、スーパーコンピュータ「京(けい)」による解析結果で、2017年6月に続き6期連続(通算7期)で第1位を獲得しました。

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・ スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2017年11月16日(国際会議 SC17, アメリカ, デンバー)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2017年6月に続き6期連続(通算7期)で第1位を獲得しました。

  • 第15回 Graph500 ベンチマーク 世界1位 (SC17, デンバー, アメリカ)

    2017.11  

  • 第14 回 Graph500 ベンチマーク 世界1位

    2017.6   九州大学マス・フォア・インダストリ研究所の藤澤克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2017年6月21日(現地時間)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2016年11月に続き5期連続(通算6期)で第1位を獲得しました。

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤克樹教授、東京工業大学、理化学研究所、スペインのバルセロナ・スーパーコンピューティング・センター、富士通株式会社、株式会社フィックスターズによる国際共同研究グループは、2017年6月21日(現地時間)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」による解析結果で、2016年11月に続き5期連続(通算6期)で第1位を獲得しました。

  • 第14回 Graph500 ベンチマーク 世界1位 (ISC17, フランク フルト, ドイツ)

    2017.6  

  • 文部科学大臣表彰 科学技術賞 (研究部門)

    2017.4   グラフ解析及び最適化ソフトウェアの開発と応用に関する研究

  • 平成29年度科学技術分野の文部科学大臣表彰科学技術賞(研究部門)

    2017.4   文部科学省   「グラフ解析及び最適化ソフトウェアの開発と応用に関する研究」

     More details

    実社会で要求されるグラフ解析などの大規模最適化問題を解決するためには、短時間に膨大な計算量とデータ量を処理するための新技術が必要となる。特に発生後に早急な解決 が望まれる現実問題においては、計算量やデータ量などの規模が大きく従来の手法では処 理が困難である。
    本研究では、最先端理論(Algorithm Theory)+ 大規模実データ(BigData)+ 最新 計算技術(Computation)の有機的な組合せによって、スーパーコンピュータ上での並列 数の爆発的増大や記憶装置の多階層化、さらに計算量とデータ移動量の正確な推定による 性能最適化及び省電力計算の実現などの課題に取り組んだ。
    本研究により、今後予想され得る実データの大規模化及び複雑化に対処可能となり、さ らに世界最高レベルの性能を持つグラフ探索及び最適化ソフトウェアの開発に成功した. (Graph500 ベンチマーク4期連続(通算5期)世界第 1 位など )。
    本成果は、大規模データに対するリアルタイム処理などを活用して、オープンデータやセンサーデータを活用した都市機能の最適化などの実社会への応用などに寄与することが期待される。

  • 第13 回 Graph500 ベンチマーク 世界1位

    2016.11   九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、東京工業大学、バルセロナスーパーコンピュータセンター、富士通株式会社、理化学研究所らの共同研究チームは、大規模なグラフを処理するソフトウェアを独自に開発し、京など様々なスーパーコンピュータ上でビッグデータ処理性能を計測するGraph500ベンチマークテストを実施した結果、4期連続で世界第1位となったことが、アメリカのソルトレイクシティで開催されたスーパーコンピュータの国際会議「SC16」で2016年11月15日(日本時間11月16日)に発表されました。

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤 克樹教授、東京工業大学、バルセロナスーパーコンピュータセンター、富士通株式会社、理化学研究所らの共同研究チームは、大規模なグラフを処理するソフトウェアを独自に開発し、京など様々なスーパーコンピュータ上でビッグデータ処理性能を計測するGraph500ベンチマークテストを実施した結果、4期連続で世界第1位となったことが、アメリカのソルトレイクシティで開催されたスーパーコンピュータの国際会議「SC16」で2016年11月15日(日本時間11月16日)に発表されました。

  • 第13回 Graph500 ベンチマーク 世界1位 (SC16, ソルトレイ クシティ, アメリカ)

    2016.11  

  • 第12 回 Graph500 ベンチマーク 世界1位

    2016.7   九州大学マス・フォア・インダストリ研究所の藤澤 克樹 教授、東京工業大学、バルセロナスーパーコンピュータセンター、富士通株式会社、理化学研究所らの共同研究チームは、大規模なグラフを処理するソフトウェアを独自に開発し、京など様々なスーパーコンピュータ上でビッグデータ処理性能を計測するGraph500ベンチマークテストを実施した結果、3期連続で世界第1位となったことが、ドイツのフランクフルトで開催されたスーパーコンピュータの国際会議「ISC16」で2016年6月20日(日本時間6月21日)に発表されました。

     More details

    九州大学マス・フォア・インダストリ研究所の藤澤 克樹 教授、東京工業大学、バルセロナスーパーコンピュータセンター、富士通株式会社、理化学研究所らの共同研究チームは、大規模なグラフを処理するソフトウェアを独自に開発し、京など様々なスーパーコンピュータ上でビッグデータ処理性能を計測するGraph500ベンチマークテストを実施した結果、3期連続で世界第1位となったことが、ドイツのフランクフルトで開催されたスーパーコンピュータの国際会議「ISC16」で2016年6月20日(日本時間6月21日)に発表されました。

  • 第12回 Graph500 ベンチマーク 世界1位 (ISC16, フランク フルト, ドイツ)

    2016.6  

  • 日本オペレーションズ・リサーチ学会 フェロー

    2016.3  

  • 第11回 Graph500 ベンチマーク 世界1位

    2015.11   九州大学マス・フォア・インダストリ研究所の藤澤 克樹 教授、東京工業大学、ユニバーシティ・カレッジ・ダブリン、富士通株式会社、理化学研究所らの共同研究チームは、大規模なグラフを処理するソフトウェアを独自に開発し、京など様々なスーパーコンピュータ上でビッグデータ処理性能を計測するGraph500ベンチマークテストを実施した結果、2期連続で世界第1位となったことが、アメリカのオースティンで開催されたスーパーコンピュータの国際会議「SC15」で2015年11月17日(日本時間11月18日)に発表されました。

  • 第11回 Graph500 ベンチマーク 世界1位 (SC15, オースティ ン, アメリカ)

    2015.11  

  • 第10 回 Graph500 ベンチマーク 世界1位

    2015.6   九州大学マス・フォア・インダストリ研究所の藤澤 克樹 教授、東京工業大学、ユニバーシティ・カレッジ・ダブリン、富士通株式会社、理化学研究所らの共同研究チームは、大規模なグラフを処理するソフトウェアを独自に開発し、京など様々なスーパーコンピュータ上でビッグデータ処理性能を計測するGraph500ベンチマークテストを実施した結果、世界第1位となったことが、ドイツのフランクフルトで開催されたスーパーコンピュータの国際会議「ISC’15 (International Supercomputing Conference) 」で2015年7月13日(日本時間7月14日)に発表されました。

  • 第10回 Graph500 ベンチマーク 世界1位 (ISC15, フランク フルト, ドイツ)

    2015.6  

  • 第9回 Graph500 ベンチマーク 世界2位 (SC14, ニューオリン ズ, アメリカ)

    2014.11  

  • 第8回 Graph500 ベンチマーク 世界1位 & 第3回 Green Graph500 ベンチマーク世界1位

    2014.6   Graph500 Benchmark Committee   The Eighth Graph 500 list and the Third Green Graph 500 list were announced at the 2014 International Supercomputing Conference (ISC'14) in Leipzig, Germany. We won the first positions in the world ranking of both the Graph500 Benchmark and the Green Graph500 Benchmark. These results show that our algorithm and implementation is suitable for big data computation in several computing environments, such as distributed-memory supercomputers, shared-memory supercomputers, Intel/AMD servers, and Android devices. http://www.graphcrest.jp/eng/news2014-06.html

     More details

    Graph500と Green Graph500は並行探索,最短路探索をはじめとする最適化,極大独立集合などのグラフ解析,などの複数のグラフ処理カーネルからなるベンチマークにより計算機の性能を評価しランキングを行う.グラフ解析はサイバーセキュリティ,創薬,データマイニング,ネットワーク解析などの分野において必要とされる重要な計算カーネルとして位置づけられている. 我々の研究チームは ISC14にて発表された第8回 Graph500 及び 第3回 Green Graph500 において世界1位の性能を達成した

  • 第8回 Graph500 ベンチマーク 世界1位 (ISC14, ライプツィ ヒ, ドイツ)

    2014.6  

  • 日本オペレーションズ・リサーチ学会 研究賞

    2013.9  

  • NVIDIA GTC Japan 2013 最優秀ポスター発表賞

    2013.7  

  • 第5回 Graph500 ベンチマーク 世界 4 位入賞 (SC12, ソルトレ イクシティ, アメリカ)

    2012.11  

  • 第4回 Graph500 ベンチマーク 世界 3 位入賞 (ISC12, ハンブ ルグ, ドイツ)

    2012.6  

  • 第3回 Graph500 ベンチマーク 世界 3 位入賞 (SC11, シアトル, アメリカ)

    2011.11  

  • 日本オペレーションズ・リサーチ学会 文献賞奨励賞

    2006.3  

  • 第2回船井情報科学振興賞

    2003.3   財団法人船井情報科学財団  

  • 学生論文賞

    1993.9   日本オペレーションズリサーチ学会  

  • 第18回 Graph500 ベンチマーク 世界1位 (ISC19, フランクフルト, ドイツ)

  • 第18回 Graph500 ベンチマーク 世界1位 (ISC19, フランクフルト, ドイツ)

    藤澤 克樹

     More details

▼display all

Papers

  • Comprehensive and practical optimal delivery planning system for replacing liquefied petroleum gas cylinders

    Yoshida, A; Sato, H; Uchiumi, S; Tateiwa, N; Kataoka, D; Tanaka, A; Hata, N; Yatsushiro, Y; Ide, A; Ishikura, H; Egi, S; Fuji, M; Kai, HRK; Fujisawa, K

    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS   2024.9   ISSN:0916-7005 eISSN:1868-937X

     More details

    Publisher:Japan Journal of Industrial and Applied Mathematics  

    In the daily operation of liquefied petroleum gas service, gas providers visit customers and replace cylinders if the gas is about to run out. The plans should both prevent gas shortages and realize the minimum working time. Existing research has two limitations: the absence of a comprehensive system and the difficulty of solving large-scale problems. In the former limitation, existing research tackled the partial problems of making plans for cylinder replacement, such as planning delivery routes given gas consumption forecast or determining the customers for visiting without obtaining the route. It does not consistently achieve gas shortage prevention and short working hours even when combining individual optimal methods. In the latter limitation, most existing studies have difficulty solving the problem within a reasonable time if there are many customers. This is because they simultaneously determined the customers for visiting and route planning by preparing binary variables representing customer-to-customer travel. In this study, we construct a comprehensive and practical system from gas consumption forecast to determine delivery routes for cylinder replacement with large-scale customers. To address these challenges, our method takes two steps: determining which customers to visit within several days and a single-day route. Moreover, we mitigate gas shortages among customers with poor forecast performance by considering the uncertainty of the gas consumption forecast. A field test involving over 1000 customers in Japan confirmed that the system is operationally viable and capable of preventing gas shortages and realizing short working time.

    DOI: 10.1007/s13160-024-00664-4

    Web of Science

    Scopus

  • Genetic Risk Stratification of Primary Open-Angle Glaucoma in Japanese Individuals.

    Akiyama M, Tamiya G, Fujiwara K, Shiga Y, Yokoyama Y, Hashimoto K, Sato M, Sato K, Narita A, Hashimoto S, Ueda E, Furuta Y, Hata J, Miyake M, Ikeda HO, Suda K, Numa S, Mori Y, Morino K, Murakami Y, Shimokawa S, Nakamura S, Yawata N, Fujisawa K, Yamana S, Mori K, Ikeda Y, Miyata K, Mori K, Ogino K, Koyanagi Y, Kamatani Y, Biobank Japan Project, Ninomiya T, Sonoda KH, Nakazawa T, Japan Glaucoma Society Omics Group, Genomic Research Committee of the Japanese Ophthalmological Society

    Ophthalmology   2024.7   ISSN:0161-6420

     More details

    Language:English  

    DOI: 10.1016/j.ophtha.2024.05.026

    PubMed

  • Optimization of film-type optical fiber wiring design using mixed-integer programming problem Reviewed

    Hiroki Ishikura, Takashi Wakamatsu, Nozomi Hata, Katsuki Fujisawa

    Japan Journal of Industrial and Applied Mathematics   41 ( 2 )   961 - 985   2023.12   ISSN:0916-7005 eISSN:1868-937X

     More details

    Language:Others   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    Optical fibers are among the most widely used tools in information communication today, and they have had an active development trajectory. Film interconnection is among the methods applied to optical fibers. However, due to its characteristics, the interconnection design must be done well so that each fiber satisfies several design requirements. In this study, we developed a mathematical model for automatic wiring design using film optical fiber interconnections. To design optical fiber routing from the top to the bottom of the film, we propose an exact solution method using a mixed-integer programming problem and a heuristic method based on the exact solution method. In this paper, we compare the results of our methods with rule-based methods and confirm that our methods are superior. For the experiments, we created sample data based on a previous joint research project with Sumitomo Electric Industries, Ltd. and used it. Additionally, we investigated conditions for wiring design, and this paper discusses conditions for obtaining more efficient wiring methods.

    DOI: 10.1007/s13160-023-00632-4

    Web of Science

    Scopus

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s13160-023-00632-4/fulltext.html

  • Superpixel Attack - Enhancing Black-Box Adversarial Attack with Image-Driven Division Areas. Reviewed

    Issa Oe, Keiichiro Yamamura, Hiroki Ishikura, Ryo Hamahira, Katsuki Fujisawa

    AI (1)   14471   141 - 152   2023.12   ISSN:2945-9133 ISBN:978-981-99-8387-2 eISSN:1611-3349

     More details

    Language:Others   Publishing type:Research paper (other academic)   Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    Deep learning models are used in safety-critical tasks such as automated driving and face recognition. However, small perturbations in the model input can significantly change the predictions. Adversarial attacks are used to identify small perturbations that can lead to misclassifications. More powerful black-box adversarial attacks are required to develop more effective defenses. A promising approach to black-box adversarial attacks is to repeat the process of extracting a specific image area and changing the perturbations added to it. Existing attacks adopt simple rectangles as the areas where perturbations are changed in a single iteration. We propose applying superpixels instead, which achieve a good balance between color variance and compactness. We also propose a new search method, versatile search, and a novel attack method, Superpixel Attack, which applies superpixels and performs versatile search. Superpixel Attack improves attack success rates by an average of 2.10% compared with existing attacks. Most models used in this study are robust against adversarial attacks, and this improvement is significant for black-box adversarial attacks. The code is available at https://github.com/oe1307/SuperpixelAttack.git.

    DOI: 10.1007/978-981-99-8388-9_12

    Web of Science

    Scopus

    researchmap

    Other Link: https://dblp.uni-trier.de/db/conf/ausai/ausai2023-1.html#OeYIHF23

  • Scheduling system for automated storage and retrieval system with multiple machines using a time-expanded network Reviewed

    Hiroki Ishikura, Nariaki Tateiwa, Shingo Egi, Issa Oe, Nozomi Hata, Toru Mitsutake, Keiichiro Yamamura, Miyu Fujii, Katsuki Fujisawa

    Japan Journal of Industrial and Applied Mathematics   41 ( 1 )   447 - 474   2023.10   ISSN:0916-7005 eISSN:1868-937X

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Japan Journal of Industrial and Applied Mathematics  

    We aim to improve the efficiency of a new type of automated storage and retrieval systems (AS/RSs) called multi-control automated storage and retrieval systems (MC-AS/RSs). MC-AS/RSs have multiple storage/retrieval (S/R) machines that operate independently according to storage and retrieval requests. Consequently, MC-AS/RSs can transport loads farther without using human labor, thereby requiring fewer human resources than conventional AS/RSs. However, the structure and control method of AS/RSs are complex because multiple S/R machines must be controlled simultaneously. Therefore, when operating an MC-AS/RS, many factors must be considered, such as the sequence and transport timing. We propose an optimization method using a time-expanded network (TEN) to solve these problems and transport in less time. First, our method models an AS/RS with a TEN to calculate the optimal sequence and conveyance timing while considering the movements of multiple S/R machines. Second, we formulate the operational efficiency of the MC-AS/RS as a problem of minimizing the sum of execution times of requests on the TEN. Finally, we generate the request order necessary for practical use based on the results. The mechanisms implemented to achieve include a generator, optimizer, and scheduler. Our experiments confirm that this method reduces the total execution time of requests compared with other rule-based methods. This method enables us to propose an efficient operation method for AS/RSs with a complex structure of multiple carriers.

    DOI: 10.1007/s13160-023-00619-1

    Web of Science

    Scopus

    researchmap

  • Development and analysis of massive parallelization of a lattice basis reduction algorithm Reviewed

    Nariaki Tateiwa, Yuji Shinano, Masaya Yasuda, Shizuo Kaji, Keiichiro Yamamura, Katsuki Fujisawa

    Japan Journal of Industrial and Applied Mathematics   41 ( 1 )   13 - 56   2023.4   ISSN:0916-7005 eISSN:1868-937X

     More details

    Language:Others   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    The security of lattice-based cryptography relies on the hardness of solving lattice problems. Lattice basis reduction is a strong tool for solving lattice problems, and the block Korkine–Zolotarev (BKZ) reduction algorithm is the de facto standard in cryptanalysis. We propose a parallel algorithm of BKZ-type reduction based on randomization. Randomized copies of an input lattice basis are independently reduced in parallel, while several basis vectors are shared asynchronously among all processes. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes might work on the same problem, which diminishes the benefit of parallelization. To monitor the balance between randomness and sharing, we propose a new metric to quantify the variety of lattice bases, and we empirically find an optimal parameter of sharing for high-dimensional lattices. We also demonstrate the effectiveness of our parallel algorithm and metric through experiments from multiple perspectives.

    DOI: 10.1007/s13160-023-00580-z

    Web of Science

    Scopus

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s13160-023-00580-z/fulltext.html

  • Genome-Wide Association Study of Age-Related Macular Degeneration Reveals 2 New Loci Implying Shared Genetic Components with Central Serous Chorioretinopathy

    Akiyama, M; Miyake, M; Momozawa, Y; Arakawa, S; Maruyama-Inoue, M; Endo, M; Iwasaki, Y; Ishigaki, K; Matoba, N; Okada, Y; Yasuda, M; Oshima, Y; Yoshida, S; Nakao, SY; Morino, K; Mori, Y; Kido, A; Kato, A; Yasukawa, T; Obata, R; Nagai, Y; Takahashi, K; Fujisawa, K; Miki, A; Nakamura, M; Honda, S; Ushida, H; Yasuma, T; Nishiguchi, KM; Mori, R; Tanaka, K; Wakatsuki, Y; Yamashiro, K; Kadonosono, K; Terao, C; Ishibashi, T; Tsujikawa, A; Sonoda, KH; Kubo, M; Kamatani, Y

    OPHTHALMOLOGY   130 ( 4 )   361 - 372   2023.4   ISSN:0161-6420 eISSN:1549-4713

     More details

  • Development and Evaluation of Embedding Methods for Graphs with Multi Attributes. Reviewed

    Miyu Fujii, David Taingngin, Keiichiro Yamamura, Nozomi Hata, Hiroki Kai, Ryuji Noda, Hiroki Ishikura, Tatsuru Higurashi, Katsuki Fujisawa

    Big Data   3659 - 3667   2022.11   ISBN:9781665480451

     More details

    Language:Others   Publishing type:Research paper (other academic)   Publisher:IEEE  

    Graph embedding is the process of obtaining a vector representation of graph nodes. The representation obtained by graph embedding is highly versatile. It can be used for various tasks, such as recommendation and clustering tasks. However, there are only a few methods that incorporate attributes indicating node characteristics, such as user gender, age, or product category, into graph embedding. Therefore, we hypothesize that nodes with the same attribute are often connected to the same node. Consequently, we propose two methods for graph embedding, parallel and serial, that use metric learning to reflect attribute data in node features. The proposed method can be applied to any graph embedding and metric learning method, and thus can also be applied to many new methods yet to be developed. Numerical experimental results show that the proposed method using node attributes is superior to the existing methods in both AUROC and accuracy.

    DOI: 10.1109/BigData55660.2022.10020868

    Scopus

    researchmap

    Other Link: https://dblp.uni-trier.de/db/conf/bigdataconf/bigdataconf2022.html#FujiiTYHKNIHF22

  • Solving the search-LWE problem over projected lattices Reviewed

    Satoshi Nakamura, Nariaki Tateiwa, Masaya Yasuda, Katsuki Fujisawa

    Discrete Applied Mathematics   318   69 - 81   2022.9   ISSN:0166-218X eISSN:1872-6771

     More details

    Language:Others   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    The learning with errors (LWE) problem is one of the hard problems assuring the security of modern lattice-based cryptography. Kannan's embedding can reduce Search-LWE, the search version of LWE, to a specific case of the shortest vector problem (SVP). Lattice basis reduction is a powerful instrument for solving lattice problems including SVP. We propose a new way for efficiently solving Search-LWE. While a whole basis is reduced in a standard way, ours reduces only a projected basis. To realize our strategy, we also provide an algorithm for reducing projected bases, based on DeepBKZ that is an enhancement of the block Korkine–Zolotarev (BKZ) algorithm. Moreover, we show implementation results for solving some instances within the Darmstadt LWE challenge.

    DOI: 10.1016/j.dam.2022.04.018

    Web of Science

    Scopus

    researchmap

  • Diversified Adversarial Attacks based on Conjugate Gradient Method.

    Keiichiro Yamamura, Haruki Sato, Nariaki Tateiwa, Nozomi Hata, Toru Mitsutake, Issa Oe, Hiroki Ishikura, Katsuki Fujisawa

    CoRR   abs/2206.09628   2022.7

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.48550/arXiv.2206.09628

  • Diversified Adversarial Attacks based on Conjugate Gradient Method Reviewed

    Keiichiro Yamamura, Haruki Sato, Nariaki Tateiwa, Nozomi Hata, Katsuki Fujisawa, Issa Oe, Hiroki Ishikura, Toru Mitsutake

    Thirty-ninth International Conference on Machine Learning (ICML 2022), 19-21 Jul, 2022.   abs/2206.09628   24872 - 24894   2022.7

     More details

    Language:Others   Publishing type:Research paper (other academic)  

    Diversified Adversarial Attacks based on Conjugate Gradient Method.
    Deep learning models are vulnerable to adversarial examples, and adversarial
    attacks used to generate such examples have attracted considerable research
    interest. Although existing methods based on the steepest descent have achieved
    high attack success rates, ill-conditioned problems occasionally reduce their
    performance. To address this limitation, we utilize the conjugate gradient (CG)
    method, which is effective for this type of problem, and propose a novel attack
    algorithm inspired by the CG method, named the Auto Conjugate Gradient (ACG)
    attack. The results of large-scale evaluation experiments conducted on the
    latest robust models show that, for most models, ACG was able to find more
    adversarial examples with fewer iterations than the existing SOTA algorithm
    Auto-PGD (APGD). We investigated the difference in search performance between
    ACG and APGD in terms of diversification and intensification, and define a
    measure called Diversity Index (DI) to quantify the degree of diversity. From
    the analysis of the diversity using this index, we show that the more diverse
    search of the proposed method remarkably improves its attack success rate.

    DOI: 10.48550/arXiv.2206.09628

  • CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems

    Tateiwa Nariaki, Shinano Yuji, Yamamura Keiichiro, Yoshida Akihiro, Kaji Shizuo, Yasuda Masaya, Fujisawa Katsuki

    2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)   2022.1   ISSN:10947256 eISSN:26400316

     More details

    Language:English   Publisher:Institute of Electrical and Electronics Engineers :IEEE  

    Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for postquantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. CMAP-LAP facilitates the implementation of large-scale parallel strategies for lattice problems since all the functions are designed to be customizable and abstract. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.

    CiNii Research

  • Serous Retinal Detachment without Leakage on Fluorescein/Indocyanine Angiography in MEK Inhibitor-Associated Retinopathy

    Murata, C; Murakami, Y; Fukui, T; Shimokawa, S; Sonoda, KH; Fujisawa, K

    CASE REPORTS IN OPHTHALMOLOGY   13 ( 2 )   542 - 549   2022   ISSN:1663-2699

     More details

  • Diversified Adversarial Attacks based on Conjugate Gradient Method

    Yamamura K., Sato H., Tateiwa N., Hata N., Mitsutake T., Oe I., Ishikura H., Fujisawa K.

    Proceedings of Machine Learning Research   162   24872 - 24894   2022

     More details

    Publisher:Proceedings of Machine Learning Research  

    Deep learning models are vulnerable to adversarial examples, and adversarial attacks used to generate such examples have attracted considerable research interest. Although existing methods based on the steepest descent have achieved high attack success rates, ill-conditioned problems occasionally reduce their performance. To address this limitation, we utilize the conjugate gradient (CG) method, which is effective for this type of problem, and propose a novel attack algorithm inspired by the CG method, named the Auto Conjugate Gradient (ACG) attack. The results of large-scale evaluation experiments conducted on the latest robust models show that, for most models, ACG was able to find more adversarial examples with fewer iterations than the existing SOTA algorithm Auto-PGD (APGD). We investigated the difference in search performance between ACG and APGD in terms of diversification and intensification, and define a measure called Diversity Index (DI) to quantify the degree of diversity. From the analysis of the diversity using this index, we show that the more diverse search of the proposed method remarkably improves its attack success rate.

    Scopus

  • CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems Reviewed

    Nariaki Tateiwa, Yuji Shinano, Keiichiro Yamamura, Akihiro Yoshida, Shizuo Kaji, Masaya Yasuda, Katsuki Fujisawa

    2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)   42 - 52   2021.12

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us 10 develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. CMAP-LAP facilitates the implementation of large-scale parallel strategies for lattice problems since all the functions are designed to he customizable and abstract. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.

    DOI: 10.1109/hipc53243.2021.00018

    Repository Public URL: http://hdl.handle.net/2324/4771873

  • Internet-Wide Scanner Fingerprint Identifier Based on TCP/IP Header Reviewed

    Akira Tanaka, Chansu Han, Takeshi Takahashi, Katsuki Fujisawa

    The 4th IEEE International Symposium on Future Cyber Security Technologies (FCST 2021), In conjunction with The 8th International Conference on Internet of Things: Systems, Management and Security (IoTSMS 2021),Gandia, Spain. December 6-9, 2021.   1 - 6   2021.12

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Internet-Wide Scanner Fingerprint Identifier Based on TCP/IP Header
    Identifying individual scan activities is a crucial and challenging activity for mitigating emerging cyber threats or gaining insights into security scans. Sophisticated adversaries distribute their scans over multiple hosts and operate with stealth; therefore, low-rate scans hide beneath other benign traffic. Although previous studies attempted to discover such stealth scans by observing the distribution of ports and hosts, well-organized scans are difficult to find. However, a scanner can embed a fingerprint into the packet fields to distinguish between the scan and other traffic. In this study, we propose a new algorithm to identify the flexible fingerprint in consideration of the genetic algorithm idea. To the best of our knowledge, this is the first such attempt. We successfully identified previously unknown fingerprints rather than existing ones through numerical experiments on darknet traffic. We analyzed the packets and discovered distinctive scan activities. Further, we collated the results with both cyber threat intelligence and investigation/largescale scanner lists to ascertain the reliability of our model.

    DOI: 10.1109/FMEC54266.2021.9732414

  • Long-Term Optimal Delivery Planning for Replacing the Liquefied Petroleum Gas Cylinder.

    Akihiro Yoshida, Haruki Sato, Shiori Uchiumi, Nariaki Tateiwa, Daisuke Kataoka, Akira Tanaka, Nozomi Hata, Yosuke Yatsushiro, Ayano Ide, Hiroki Ishikura, Shingo Egi, Miyu Fujii, Hiroki Kai, Katsuki Fujisawa

    CoRR   abs/2112.12530   2021.11

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    In the daily operation of liquefied petroleum gas service, gas providers
    visit customers and replace cylinders if the gas is about to run out. For a
    long time, frequent visits to customers were required because they could not
    determine the amount of remaining gas without a staff visit and observation. To
    solve this problem, smart meters are started to be employed to acquire gas
    consumption more frequently without visiting customers. In this study, we
    construct a system to optimize plans for cylinder replacement, and evaluate it
    with a large-scale field test. We propose an algorithm to create a replacement
    plan with three steps: estimating the replacement date, acquiring the customer
    list for replacement, and determining the delivery route. A more accurate
    estimation of the replacement date can be acquired with a smart meter, which is
    used for making a customer list for replacement. The formulation for making a
    customer list enables the gas provider to replace cylinders some days before
    the date when the gas would run out. It can suppress the concentration of
    replacements on certain days. Large-scale verification experiments were
    performed with more than 1,000 customers in Chiba prefecture in Japan. In the
    field test, the gas provider incorporated the system into its replacement
    operations. Moreover, the replacement plans developed by the proposed system
    were compared with that by the gas provider. Our system reduced the number of
    gas cylinders with gas shortage, the number of visits without replacement due
    to plenty of gas remaining, and the working duration per customer, which shows
    that our system benefits both gas providers and customers.

  • Offline map matching using time-expanded graph for low-frequency data Reviewed

    Akira Tanaka, Nariaki Tateiwa, Nozomi Hata, Akihiro Yoshida, Takashi Wakamatsu, Shota Osafune, Katsuki Fujisawa

    Transportation Research Part C: Emerging Technologies   130   2021.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Map matching is an essential preprocessing step for most trajectory-based intelligent transport system services. Due to device capability constraints and the lack of a high-performance model, map matching for low-sampling-rate trajectories is of particular interest. Therefore, we developed a time-expanded graph matching (TEG-matching) that has three advantages (1) high speed and accuracy, as it is robust for spatial measurement error and a pause such as at traffic lights; (2) being parameter-free, that is, our algorithm has no predetermined hyperparameters; and (3) only requiring ordered locations for map matching. Given a set of low-frequency GPS data, we construct a time-expanded graph (TEG) whose path from source to sink represents a candidate route. We find the shortest path on TEG to obtain the matching route with a small area between the vehicle trajectory. Additionally, we introduce two general speedup techniques (most map matching methods can apply) bottom-up segmentation and fractional cascading. Numerical experiments with worldwide vehicle trajectories in a public dataset show that TEG-matching outperforms state-of-the-art algorithms in terms of accuracy and speed, and we verify the effectiveness of the two general speedup techniques.

    DOI: 10.1016/j.trc.2021.103265

    Repository Public URL: http://hdl.handle.net/2324/4771850

  • Performance of the Supercomputer Fugaku for Breadth-First Search in Graph500 Benchmark. Reviewed

    Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, Mitsuhisa Sato

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   12728 LNCS   372 - 390   2021.6

     More details

    Language:Others   Publishing type:Research paper (other academic)  

    In this paper, we present the performance of the supercomputer Fugaku for breadth-first search (BFS) problem in the Graph500 benchmark, which is known as a ranking benchmark used to evaluate large-scale graph processing performance on supercomputer systems. Fugaku is a huge-scale Japanese exascale supercomputer that consists of 158,976 nodes connected by the Tofu interconnect D (TofuD). We have developed a BFS implementation that can extract the performance of Fugaku. We also optimize the number of processes per node, one-to-one communication, performance power ratio, and process mapping in the six-dimensional mesh/torus topology of TofuD. We evaluate the BFS performance for a large-scale graph consisting of about 2.2 trillion vertices and 35.2 trillion edges using the whole Fugaku system, and achieve 102,956 giga-traversed edges per second (GTEPS), resulting in the first position of Graph500 BFS ranking in November 2020. This performance is 3.3 times higher than that of Fugaku’s previous system, the K computer.

    DOI: 10.1007/978-3-030-78713-4_20

    Repository Public URL: http://hdl.handle.net/2324/4771851

  • Obstacle avoidable G2-continuous trajectory generated with Clothoid spline solution Reviewed

    藤澤 克樹

    The 6th International Conference on Control and Robotics Engineering(ICCRE2021)   -   23 - 27   2021.4

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    Obstacle Avoidable G2-continuous Trajectory Generated with Clothoid Spline Solution
    This research engages in generating trajectories with continuous curvature and applying blending cases. Clothoid spline has an important property that its curvature is linear related to its arclength, this property can provide a curvature (G2) continuity to the interpolation operation. But it is rarely used in the trajectory plan because its shape is hard to control to avoid obstacles. This paper uses a collision-free corridor to limit the trajectory generation to avoid obstacles. In a transformable system, using line segments to connect with Clothoid spiral segments, the computation complexity could be greatly reduced by setting the starting conditions equal to zero. With the computation, a unique solution to the spiral segment is found. The computation process and the corresponding algorithm are elaborated in this paper.

    DOI: 10.1109/ICCRE51898.2021.9435729

  • G2 B-Spline Computation for Continuous Trajectory Generation. Reviewed

    Huiqiao Ren, Katsuki Fujisawa

    2021 6th Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2021   1 - 7   2021.4

     More details

    Language:English   Publishing type:Research paper (other academic)  

    This paper introduces a scheme of B-spline calculation, which is used for G2 continuous trajectory generation. The B-spline is composed of line segments, Euler spirals, and arcs. By simplifying and digging in the qualities of Euler spirals, we discover a valid spiral segment criterion. This criterion can be used in deciding how to compose the B-spline. One main trait of the trajectory is that this B-spline trajectory is assumed and generated inside a collision-free corridor in every interpolation scenario. Hence, the trajectory can be G2 continuous and avoid instant obstacles in every scenario case.

    DOI: 10.1109/ACIRS52449.2021.9519319

  • Real-Time Automatic Anomaly Detection Approach Designed for Electrified Railway Power System. Reviewed

    Huiqiao Ren, Fulin Zhou, Katsuki Fujisawa

    2021 7th International Conference on Mechatronics and Robotics Engineering, ICMRE 2021   116 - 120   2021.2

     More details

    Language:English   Publishing type:Research paper (other academic)  

    An automatic and intelligent abnormal electrical process detection scheme is crucial for protecting the stability and power quality of an electrical power system and further, the operation of the future grid. This paper introduces the automatic monitoring system for electrified railway power system and designs a framework based on the convolution neural network for abnormal electrical process detection, integrating the data processing, feature extraction, and classification into one model. Then inception blocks are introduced as a kernel-wise approach to boost the performance. The data from the railway electrification system is applied to this scheme and receives a high performance of 97% abnormal electrical process recognition rate.

    DOI: 10.1109/ICMRE51691.2021.9384838

  • Massive parallelization for finding shortest lattice vectors based on ubiquity generator framework. Reviewed

    Nariaki Tateiwa, Yuji Shinano, Satoshi Nakamura, Akihiro Yoshida, Shizuo Kaji, Masaya Yasuda, Katsuki Fujisawa

    The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC20), to be held from 15-20 November 2020 in Atlanta, GA, USA.   2020-November   60 - 60   2020.11

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Lattice-based cryptography has received attention as a next-generation encryption technique, because it is believed to be secure against attacks by classical and quantum computers. Its essential security depends on the hardness of solving the shortest vector problem (SVP). In the cryptography, to determine security levels, it is becoming significantly more important to estimate the hardness of the SVP by high-performance computing. In this study, we develop the world's first distributed and asynchronous parallel SVP solver, the MAssively Parallel solver for SVP (MAP-SVP). It can parallelize algorithms for solving the SVP by applying the Ubiquity Generator framework, which is a generic framework for branch-and-bound algorithms. The MAP-SVP is suitable for massive-scale parallelization, owing to its small memory footprint, low communication overhead, and rapid checkpoint and restart mechanisms. We demonstrate its performance and scalability of the MAP-SVP by using up to 100,032 cores to solve instances of the Darmstadt SVP Challenge.

    DOI: 10.1109/SC41405.2020.00064

    Repository Public URL: http://hdl.handle.net/2324/4771852

  • Performance Evaluation of Supercomputer Fugaku using Breadth-First Search Benchmark in Graph500. Reviewed

    Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, Mitsuhisa Sato

    Proceedings - IEEE International Conference on Cluster Computing, ICCC   2020-September   408 - 409   2020.10

     More details

    Language:Others   Publishing type:Research paper (other academic)  

    © 2020 IEEE. There is increasing demand for the high-speed processing of large-scale graphs in various fields. However, such graph processing requires irregular calculations, making it difficult to scale performance on large-scale distributed memory systems. Against this background, Graph500, a competition for evaluating the performance of large-scale graph processing, has been held. We developed breadth-first search (BFS), which is one of the benchmark kernels used in Graph500, and took the top spot a total of 10 times using the K computer. In this paper, we tune BFS performance and evaluate it using the supercomputer Fugaku, which is the successor to the K computer. The results of evaluating BFS for a large-scale graph composed of about 1.1 trillion vertices and 17.6 trillion edges using 92,160 nodes of Fugaku indicate that Fugaku has 2.27 times the performance of the K computer. Fugaku took the top spot on Graph500 in June 2020.

    DOI: 10.1109/CLUSTER49012.2020.00053

  • Nested Subspace Arrangement for Representation of Relational Data Reviewed

    藤澤 克樹

    Thirty-seventh International Conference on Machine Learning (ICML2020)   abs/2007.02007   4127 - 4137   2020.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Nested Subspace Arrangement for Representation of Relational Data
    Studies on acquiring appropriate continuous representations of discrete
    objects, such as graphs and knowledge base data, have been conducted by many
    researchers in the field of machine learning. In this study, we introduce
    Nested SubSpace (NSS) arrangement, a comprehensive framework for representation
    learning. We show that existing embedding techniques can be regarded as special
    cases of the NSS arrangement. Based on the concept of the NSS arrangement, we
    implement a Disk-ANChor ARrangement (DANCAR), a representation learning method
    specialized to reproducing general graphs. Numerical experiments have shown
    that DANCAR has successfully embedded WordNet in ${mathbb R}^{20}$ with an F1
    score of 0.993 in the reconstruction task. DANCAR is also suitable for
    visualization in understanding the characteristics of graphs.

    Repository Public URL: http://hdl.handle.net/2324/4485645

  • Circular Arc Based Obstacle Avoiding Blending Trajectory plan Reviewed

    Huiqiao Ren, Fujisawa Katsuki

    2020 5th International Conference on Control and Robotics Engineering, ICCRE 2020   15 - 18   2020.4

     More details

    Language:English   Publishing type:Research paper (other academic)  

    © 2020 IEEE. This paper works on the problem of generating a trajectory which is capable to dodge potential obstacles in a blending occasion with a non-holonomic premise. To the problem, this paper offers a solution of a circular blending curve generation with given directions, lanes and obstacle. This technique reforms the two-dimensional information into one-dimensional representation. With this trait, the obstacles could be represented by the constraints generated with the technique. Then, a collision-free corridor could be formed by the constraints. The corridor generating algorithm can provide outcome at a high speed, also cater to one all multiple obstacles situation.

    DOI: 10.1109/ICCRE49379.2020.9096450

  • Solving the Search-LWE Problem by Lattice Reduction over Projected Bases. Reviewed

    Satoshi Nakamura, Nariaki Tateiwa, Koha Kinjo, Yasuhiko Ikematsu, Masaya Yasuda, Katsuki Fujisawa

    Advances in Intelligent Systems and Computing   1262   29 - 42   2020.3

     More details

    Language:Others   Publishing type:Research paper (other academic)  

    © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. The learning with errors (LWE) problem assures the security of modern lattice-based cryptosystems. It can be reduced to classical lattice problems such as the shortest vector problem (SVP) and the closest vector problem (CVP). In particular, the search-LWE problem is reduced to a particular case of SVP by Kannan’s embedding technique. Lattice basis reduction is a mandatory tool to solve lattice problems. In this paper, we give a new strategy to solve the search-LWE problem by lattice reduction over projected bases. Compared with a conventional method of reducing a whole lattice basis, our strategy reduces only a part of the basis and, hence, it gives a practical speed-up in solving the problem. We also develop a reduction algorithm for a projected basis, and apply it to solving several instances in the LWE challenge, which has been initiated since the middle of 2016 in order to assess the hardness of the LWE problem.

    DOI: 10.1007/978-981-15-8061-1_3

  • New Performance Index “ Attractiveness Factor ” for Evaluating Websites via Obtaining Transition of Users ’Interests Reviewed

    Akihiro Yoshida, Tatsuru Higurashi, Masaki Maruishi, Nariaki Tateiwa, Nozomi Hata, Akira Tanaka, Takashi Wakamatsu, Kenichi Nagamatsu, Akira Tajima, Katsuki Fujisawa

    Data Science and Engineering, Springer   5 ( 1 )   48 - 64   2020.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    New Performance Index "Attractiveness Factor" for Evaluating Websites via Obtaining Transition of Users' Interests.
    © 2019, The Author(s). The studies of browsing behavior have gained increasing attention in web analysis for providing better service. Most of the conventional approaches focus on simple indices such as average dwell time and conversion rate. These indices make similar evaluations to websites even if their features are significantly different. Moreover, such statistical indices are not sensitive to the dynamics of users’ interests. In this paper, we propose a new framework for measuring a website’s attractiveness that takes into account both the distribution and dynamics of users’ interests. Within the framework, we define a new index for the website, called Attractiveness Factor, which evaluates the degree of users’ attention. It consists of three procedures: First, we capture the transition of users’ interests during browsing by solving a nonnegative matrix factorization and constrained network flow problems. To accommodate multiple types of interests of a user, we applied a soft clustering as opposed to a hard clustering to model attributes of users and websites. Second, for each website, the feature of each cluster is obtained by fitting the dwell time distribution with Weibull distribution. Finally, we calculate Attractiveness Factor of a website by applying the results of clustering and fitting. Attractiveness Factor depends on the distribution of the dwell time of users interested in the website, which reflects the change of interest of users. Numerical experiments with real web access data of Yahoo Japan News are conducted by solving extremely large-scale optimization problems. They show that Attractiveness Factor captures more exceptional information about browsing behavior more effectively than well-used indices. Attractive factors give low ratings to category pages; however, it can assign high ratings to websites that attract many people, such as hot topic news about the 2018 FIFA World Cup, Japan’s new imperial era’ REIWA,’ and North Korea—the United States Hanoi Summit. Moreover, we demonstrate that Attractiveness Factor can detect the tendency of users’ attention to each website at a given time interval of the day.

    DOI: 10.1007/s41019-019-00112-1

  • Practical End-to-End Repositioning Algorithm for Managing Bike-Sharing System Reviewed

    Akihiro Yoshida, Yosuke Yatsushiro, Nozomi Hata, Tatsuru Higurashi, Nariaki Tateiwa, Takashi Wakamatsu, Akira Tanaka, Kenichi Nagamatsu, Katsuki Fujisawa

    2019 IEEE International Conference on Big Data, Big Data 2019 Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019   1251 - 1258   2019.12

     More details

    Language:English   Publishing type:Research paper (other academic)  

    One of the most critical problems in bike-sharing services is a bicycle repositioning problem, which is how service providers must relocate their bicycles to maintain the quality of service. In this paper, we propose an end-to-end approach for the bike repositioning problem, which realizes the operator-feasible repositioning plan with cooperation among multiple trucks. Our proposed algorithm consists of three procedures. First, we predict the number of rented and returned bicycles at each station with a deep learning based on the bicycle usage information. Second, we determine the optimal number of bicycles to satisfy the availability of each station by solving an integer optimization problem. Finally, we solve the vehicle routing problem formulated as another integer optimization problem. Based on our algorithm, service operators can actually perform a relocation task based with a reference to the truck capacity, routes, and the number of bicycles to be loaded and unloaded. We demonstrate the applicability of our algorithm in the real world through numerical experiments on the real bicycle data of a Japanese company.

    DOI: 10.1109/BigData47090.2019.9005986

  • Practical End-to-End Repositioning Algorithm for Managing Bike-Sharing System Reviewed

    Akihiro Yoshida, Yosuke Yatsushiro, Nozomi Hata, Tatsuru Higurashi, Nariaki Tateiwa, Takashi Wakamatsu, Akira Tanaka, Kenichi Nagamatsu, Katsuki Fujisawa

    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)   1251 - 1258   2019.12

     More details

    Language:English   Publishing type:Research paper (other academic)  

    One of the most critical problems in bike-sharing services is a bicycle repositioning problem, which is how service providers must relocate their bicycles to maintain the quality of service. In this paper, we propose an end-to-end approach for the bike repositioning problem, which realizes the operatorfeasible repositioning plan with cooperation among multiple trucks. Our proposed algorithm consists of three procedures. First, we predict the number of rented and returned bicycles at each station with a deep learning based on the bicycle usage information. Second, we determine the optimal number of bicycles to satisfy the availability of each station by solving an integer optimization problem. Finally, we solve the vehicle routing problem formulated as another integer optimization problem. Based on our algorithm, service operators can actually perform a relocation task based with a reference to the truck capacity, routes, and the number of bicycles to be loaded and unloaded. We demonstrate the applicability of our algorithm in the real world through numerical experiments on the real bicycle data of a Japanese company.

    DOI: 10.1109/BigData47090.2019.9005986

  • Mobility Optimization on Cyber Physical System via Multiple Object Tracking and Mathematical Programming Reviewed

    Nozomi Hata, Takashi Nakayama, Akira Tanaka, Takashi Wakamatsu, Akihiro Yoshida, Nariaki Tateiwa, Yuri Nishikawa, Jun Ozawa, Katsuki Fujisawa

    2018 IEEE International Conference on Big Data, Big Data 2018 Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018   4026 - 4035   2019.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Cyber-Physical Systems (CPSs) are attracting significant attention from a number of industries, including social infrastructure, manufacturing, retail, among others. We can easily gather big datasets of people and transportation movements by utilizing camera and sensor technologies, and create new industrial applications by optimizing and simulating social mobility in the cyberspace. In this paper, we develop the system which automatically performs a series of processes, including object detection, multiple object tracking, and mobility optimization. The mobility of humans and objects is one of the essential components in the real world. Therefore, our system can be widely applied to various application fields. Our major contributions to this paper are remarkable performance improvement of multiple object tracking and building the new mobility optimization engine. In the former, we improve the multiple object tracker using K-Shortest Paths (KSP), which achieves significant data reduction and acceleration by specifying and deleting unnecessary nodes. Numerical experiments show that our proposed tracker is over three times faster than the original KSP tracker while keeping the accuracy. We formulate the mobility optimization problem as the SATisfiability problem (SAT) and the Integer Programming problem (IP) in the latter. Numerical experiments demonstrate that the total transit time can be reduced from 30 s to 10 s. We discuss the characteristics of solutions obtained by the two formulations. We can finally select the appropriate optimization method according to the constraints of calculation time and accuracy for real applications.

    DOI: 10.1109/BigData.2018.8622146

  • New Performance Index “Attractiveness Factor” for Evaluating Websites via Obtaining Transition of Users’ Interests Reviewed

    Akihiro Yoshida, Tatsuru Higurashi, Masaki Maruishi, Nariaki Tateiwa, Nozomi Hata, Akira Tanaka, Takashi Wakamatsu, Kenichi Nagamatsu, Akira Tajima, Katsuki Fujisawa

    Data Science and Engineering   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The studies of browsing behavior have gained increasing attention in web analysis for providing better service. Most of the conventional approaches focus on simple indices such as average dwell time and conversion rate. These indices make similar evaluations to websites even if their features are significantly different. Moreover, such statistical indices are not sensitive to the dynamics of users’ interests. In this paper, we propose a new framework for measuring a website’s attractiveness that takes into account both the distribution and dynamics of users’ interests. Within the framework, we define a new index for the website, called Attractiveness Factor, which evaluates the degree of users’ attention. It consists of three procedures: First, we capture the transition of users’ interests during browsing by solving a nonnegative matrix factorization and constrained network flow problems. To accommodate multiple types of interests of a user, we applied a soft clustering as opposed to a hard clustering to model attributes of users and websites. Second, for each website, the feature of each cluster is obtained by fitting the dwell time distribution with Weibull distribution. Finally, we calculate Attractiveness Factor of a website by applying the results of clustering and fitting. Attractiveness Factor depends on the distribution of the dwell time of users interested in the website, which reflects the change of interest of users. Numerical experiments with real web access data of Yahoo Japan News are conducted by solving extremely large-scale optimization problems. They show that Attractiveness Factor captures more exceptional information about browsing behavior more effectively than well-used indices. Attractive factors give low ratings to category pages; however, it can assign high ratings to websites that attract many people, such as hot topic news about the 2018 FIFA World Cup, Japan’s new imperial era’ REIWA,’ and North Korea—the United States Hanoi Summit. Moreover, we demonstrate that Attractiveness Factor can detect the tendency of users’ attention to each website at a given time interval of the day.

    DOI: 10.1007/s41019-019-00112-1

  • Advanced computing and optimization infrastructure for extremely large-scale graphs on post-peta-scale supercomputers Reviewed

    Katsuki Fujisawa, Toyotaro Suzumura, Hitoshi Sato, Koji Ueno, Satoshi Imamura, Ryo Mizote, Akira Tanaka, Nozomi Hata, Toshio Endo

    Advanced Software Technologies for Post-Peta Scale Computing The Japanese Post-Peta CREST Research Project   207 - 226   2018.12

     More details

    Language:English  

    In this paper, we present our ongoing research project. The objective of many ongoing research projects in high-performance computing (HPC) areas is to develop an advanced computing and optimization infrastructure for extremely largescale graphs on the peta-scale supercomputers. The extremely large-scale graphs that have recently emerged in various application fields, such as transportation, social networks, cybersecurity, disaster prevention, and bioinformatics, require fast and scalable analysis. The Graph500 benchmark measures the performance of any supercomputer performing a breadth-first search (BFS) in terms of traversed edges per second (TEPS). In 2014-2017, our project team has achieved about 38.6TeraTEPS on K computer and been a winner at the 8th and 10th to 15th Graph500 benchmark. We commenced our research project for developing the Urban OS (Operating System) for a large-scale city in 2013. The Urban OS, which is regarded as one of the emerging applications of the cyber-physical system (CPS), gathers big data sets of the distribution of people and transportation movements by utilizing sensor technologies and storing them in the cloud storage system. In the next step, we apply optimization, simulation, and deep learning techniques to solve them and check the validity of solutions obtained on the cyberspace. The Urban OS employs the graph analysis system developed by this research project and provides a feedback to a predicting and controlling center to optimize many social systems and services.We briefly explain our ongoing research project for realizing the Urban OS.

    DOI: 10.1007/978-981-13-1924-2_11

  • Advanced computing and optimization infrastructure for extremely large-scale graphs on post-peta-scale supercomputers Reviewed

    Katsuki Fujisawa, Toyotaro Suzumura, Hitoshi Sato, Koji Ueno, Satoshi Imamura, Ryo Mizote, Akira Tanaka, Nozomi Hata, Toshio Endo

    Advanced Software Technologies for Post-Peta Scale Computing: The Japanese Post-Peta CREST Research Project   207 - 226   2018.12

     More details

    Language:Others  

    © Springer Nature Singapore Pte Ltd. 2019. All rights reserved. In this paper, we present our ongoing research project. The objective of many ongoing research projects in high-performance computing (HPC) areas is to develop an advanced computing and optimization infrastructure for extremely largescale graphs on the peta-scale supercomputers. The extremely large-scale graphs that have recently emerged in various application fields, such as transportation, social networks, cybersecurity, disaster prevention, and bioinformatics, require fast and scalable analysis. The Graph500 benchmark measures the performance of any supercomputer performing a breadth-first search (BFS) in terms of traversed edges per second (TEPS). In 2014-2017, our project team has achieved about 38.6TeraTEPS on K computer and been a winner at the 8th and 10th to 15th Graph500 benchmark. We commenced our research project for developing the Urban OS (Operating System) for a large-scale city in 2013. The Urban OS, which is regarded as one of the emerging applications of the cyber-physical system (CPS), gathers big data sets of the distribution of people and transportation movements by utilizing sensor technologies and storing them in the cloud storage system. In the next step, we apply optimization, simulation, and deep learning techniques to solve them and check the validity of solutions obtained on the cyberspace. The Urban OS employs the graph analysis system developed by this research project and provides a feedback to a predicting and controlling center to optimize many social systems and services.We briefly explain our ongoing research project for realizing the Urban OS.

    DOI: 10.1007/978-981-13-1924-2_11

  • Mobility Optimization on Cyber Physical System via Multiple Object Tracking and Mathematical Programming. Reviewed

    Nozomi Hata, Takashi Nakayama, Akira Tanaka, Takashi Wakamatsu, Akihiro Yoshida, Nariaki Tateiwa, Yuri Nishikawa, Jun Ozawa, Katsuki Fujisawa

    Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018   4026 - 4035   2018.12

     More details

    Language:English   Publishing type:Research paper (other academic)  

    © 2018 IEEE. Cyber-Physical Systems (CPSs) are attracting significant attention from a number of industries, including social infrastructure, manufacturing, retail, among others. We can easily gather big datasets of people and transportation movements by utilizing camera and sensor technologies, and create new industrial applications by optimizing and simulating social mobility in the cyberspace. In this paper, we develop the system which automatically performs a series of processes, including object detection, multiple object tracking, and mobility optimization. The mobility of humans and objects is one of the essential components in the real world. Therefore, our system can be widely applied to various application fields. Our major contributions to this paper are remarkable performance improvement of multiple object tracking and building the new mobility optimization engine. In the former, we improve the multiple object tracker using K-Shortest Paths (KSP), which achieves significant data reduction and acceleration by specifying and deleting unnecessary nodes. Numerical experiments show that our proposed tracker is over three times faster than the original KSP tracker while keeping the accuracy. We formulate the mobility optimization problem as the SATisfiability problem (SAT) and the Integer Programming problem (IP) in the latter. Numerical experiments demonstrate that the total transit time can be reduced from 30 s to 10 s. We discuss the characteristics of solutions obtained by the two formulations. We can finally select the appropriate optimization method according to the constraints of calculation time and accuracy for real applications.

    DOI: 10.1109/BigData.2018.8622146

  • Evaluating energy-efficiency of DRAM channel interleaving schemes for multithreaded programs Reviewed

    Satoshi Imamura, Yuichiro Yasui, Koji Inoue, Takatsugu Ono, Hiroshi Sasaki, Katsuki Fujisawa

    IEICE Transactions on Information and Systems   E101D ( 9 )   2247 - 2257   2018.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The power consumption of server platforms has been increasing as the amount of hardware resources equipped on them is increased. Especially, the capacity of DRAM continues to grow, and it is not rare that DRAM consumes higher power than processors on modern servers. Therefore, a reduction in the DRAM energy consumption is a critical challenge to reduce the system-level energy consumption. Although it is well known that improving row buffer locality (RBL) and bank-level parallelism (BLP) is effective to reduce the DRAM energy consumption, our preliminary evaluation on a real server demonstrates that RBL is generally low across 15 multithreaded benchmarks. In this paper, we investigate the memory access patterns of these benchmarks using a simulator and observe that cache line-grained channel interleaving schemes, which are widely applied to modern servers including multiple memory channels, hurt the RBL each of the benchmarks potentially possesses. In order to address this problem, we focus on a row-grained channel interleaving scheme and compare it with three cache line-grained schemes. Our evaluation shows that it reduces the DRAM energy consumption by 16.7%, 12.3%, and 5.5%on average (up to 34.7%, 28.2%, and 12.0%) compared to the other schemes, respectively.

    DOI: 10.1587/transinf.2017EDP7296

  • Hybrid Vehicle Control and Optimization with a New Mathematical Method Reviewed

    Nariaki Tateiwa, Nozomi Hata, Akira Tanaka, Takashi Nakayama, Akihiro Yoshida, Takashi Wakamatsu, Katsuki Fujisawa

    IFAC-PapersOnLine   51 ( 31 )   201 - 206   2018.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    © 2018 For hybrid electric vehicle (HEV) systems, studies using model-based simulators have been actively conducted. The vehicle powertrain simulator makes it easier to evaluate the powertrain system. In this paper, we utilize a Toyota Hybrid System (THS) simulator to obtain a long-term control that optimizes the fuel efficiency when the vehicle speed over a certain period is given. Our proposed method obtains optimal long-term control by solving the shortest path problem with state of charge (SOC) constraints after constructing a graph expressing the transition of the fuel and battery consumption. We also propose a search method for vehicle control using bicubic spline interpolation without the preparation of a controller. We finally remove almost all edges from a graph by 97.2% at most through the utilization of 0-1 integer linear programming, which enables a 3.88x speedup in obtaining the optimal vehicle control.

    DOI: 10.1016/j.ifacol.2018.10.037

  • Evaluating energy-efficiency of DRAM channel interleaving schemes for multithreaded programs Reviewed

    Satoshi Imamura, Yuichiro Yasui, Koji Inoue, Takatsugu Ono, Hiroshi Sasaki, Katsuki Fujisawa

    IEICE Transactions on Information and Systems   E101D ( 9 )   2247 - 2257   2018.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    © 2018 The Institute of Electronics, Information and Communication Engineers. The power consumption of server platforms has been increasing as the amount of hardware resources equipped on them is increased. Especially, the capacity of DRAM continues to grow, and it is not rare that DRAM consumes higher power than processors on modern servers. Therefore, a reduction in the DRAM energy consumption is a critical challenge to reduce the system-level energy consumption. Although it is well known that improving row buffer locality (RBL) and bank-level parallelism (BLP) is effective to reduce the DRAM energy consumption, our preliminary evaluation on a real server demonstrates that RBL is generally low across 15 multithreaded benchmarks. In this paper, we investigate the memory access patterns of these benchmarks using a simulator and observe that cache line-grained channel interleaving schemes, which are widely applied to modern servers including multiple memory channels, hurt the RBL each of the benchmarks potentially possesses. In order to address this problem, we focus on a row-grained channel interleaving scheme and compare it with three cache line-grained schemes. Our evaluation shows that it reduces the DRAM energy consumption by 16.7%, 12.3%, and 5.5%on average (up to 34.7%, 28.2%, and 12.0%) compared to the other schemes, respectively.

    DOI: 10.1587/transinf.2017EDP7296

  • Hybrid Vehicle Control and Optimization with a New Mathematical Method Reviewed

    Nariaki Tateiwa, Nozomi Hata, Akira Tanaka, Takashi Nakayama, Akihiro Yoshida, Takashi Wakamatsu, Katsuki Fujisawa

    IFAC-PapersOnLine   51 ( 31 )   201 - 206   2018

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    For hybrid electric vehicle (HEV) systems, studies using model-based simulators have been actively conducted. The vehicle powertrain simulator makes it easier to evaluate the powertrain system. In this paper, we utilize a Toyota Hybrid System (THS) simulator to obtain a long-term control that optimizes the fuel efficiency when the vehicle speed over a certain period is given. Our proposed method obtains optimal long-term control by solving the shortest path problem with state of charge (SOC) constraints after constructing a graph expressing the transition of the fuel and battery consumption. We also propose a search method for vehicle control using bicubic spline interpolation without the preparation of a controller. We finally remove almost all edges from a graph by 97.2% at most through the utilization of 0-1 integer linear programming, which enables a 3.88x speedup in obtaining the optimal vehicle control.

    DOI: 10.1016/j.ifacol.2018.10.037

  • Practical approach to evacuation planning via network flow and deep learning. Reviewed

    Akira Tanaka, Nozomi Hata, Nariaki Tateiwa, Katsuki Fujisawa

    Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017   2018-January   3368 - 3377   2017.10

     More details

    Language:English   Publishing type:Research paper (other academic)  

    © 2017 IEEE. In this paper, we propose a practical approach to evacuation planning by utilizing network flow and deep learning algorithms. In recent years, large amounts of data are rapidly being stored in the cloud system, and effective data utilization for solving real-world problems is required more than ever. Hierarchical Data Analysis and Optimization System (HDAOS) enables us to select appropriate algorithms according to the degree of difficulty in solving problems and a given time for the decision-making process, and such selection helps address real-world problems. In the field of emergency evacuation planning, however, the Lexicographically Quickest Flow (LQF) algorithm has an extremely long computation time on a large-scale network, and is therefore not a practical solution. For Osaka city, which is the second-largest city in Japan, we must solve the maximum flow problems on a large-scale network with over 8.3M nodes and 32.8M arcs for obtaining an optimal plan. Consequently, we can feed back nothing to make an evacuation plan. To solve the problem, we utilize the optimal solution as training data of a deep Convolutional Neural Network (CNN). We train a CNN by using the results of the LQF algorithm in normal time, and in emergencies predict the evacuation completion time (ECT) immediately by the well-learned CNN. Our approach provides almost precise ECT, achieving an average regression error of about 2%. We provide several techniques for combining LQF with CNN and addressing numerous movements as CNN's input, which has rarely been considered in previous studies. Hodge decomposition also demonstrates that LQF is efficient from the standpoint of the total distance traveled by all evacuees, which reinforces the validity of the method of utilizing the LQF algorithm for deep learning.

    DOI: 10.1109/BigData.2017.8258322

  • Practical approach to evacuation planning via network flow and deep learning

    Akira Tanaka, Nozomi Hata, Nariaki Tateiwa, Katsuki Fujisawa

    5th IEEE International Conference on Big Data, Big Data 2017 Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017   3368 - 3377   2017.7

     More details

    Language:English   Publishing type:Research paper (other academic)  

    In this paper, we propose a practical approach to evacuation planning by utilizing network flow and deep learning algorithms. In recent years, large amounts of data are rapidly being stored in the cloud system, and effective data utilization for solving real-world problems is required more than ever. Hierarchical Data Analysis and Optimization System (HDAOS) enables us to select appropriate algorithms according to the degree of difficulty in solving problems and a given time for the decision-making process, and such selection helps address real-world problems. In the field of emergency evacuation planning, however, the Lexicographically Quickest Flow (LQF) algorithm has an extremely long computation time on a large-scale network, and is therefore not a practical solution. For Osaka city, which is the second-largest city in Japan, we must solve the maximum flow problems on a large-scale network with over 8.3M nodes and 32.8M arcs for obtaining an optimal plan. Consequently, we can feed back nothing to make an evacuation plan. To solve the problem, we utilize the optimal solution as training data of a deep Convolutional Neural Network (CNN). We train a CNN by using the results of the LQF algorithm in normal time, and in emergencies predict the evacuation completion time (ECT) immediately by the well-learned CNN. Our approach provides almost precise ECT, achieving an average regression error of about 2%. We provide several techniques for combining LQF with CNN and addressing numerous movements as CNN's input, which has rarely been considered in previous studies. Hodge decomposition also demonstrates that LQF is efficient from the standpoint of the total distance traveled by all evacuees, which reinforces the validity of the method of utilizing the LQF algorithm for deep learning.

    DOI: 10.1109/BigData.2017.8258322

  • An indirect search algorithm for disaster restoration with precedence and synchronization constraints Reviewed

    Akifumi Kira, Hidenao Iwane, Hirokazu Anai, Yutaka Kimura, Katsuki Fujisawa

    PACIFIC JOURNAL OF MATHEMATICS FOR INDUSTRY   9   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    When a massive disaster occurs, to repair the damaged part of lifeline networks, planning is needed to appropriately allocate tasks to two or more restoration teams and optimize their traveling routes. However, precedence and synchronization constraints make restoration teams interdependent of one another, and impede a successful solution by standard local search. In this paper, we propose an indirect local search method using the product set of team-wise permutations as an auxiliary search space. It is shown that our method successfully avoids the interdependence problem induced by the precedence and synchronization constraints, and that it has the big advantage of non-deteriorating perturbations being available for iterated local search.

    DOI: 10.1186/s40736-017-0032-5

  • Efficient Breadth-First Search on Massively Parallel and Distributed-Memory Machines Reviewed

    Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, Satoshi Matsuoka

    Data Science and Engineering   2 ( 1 )   22 - 35   2017.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    There are many large-scale graphs in real world such as Web graphs and social graphs. The interest in large-scale graph analysis is growing in recent years. Breadth-First Search (BFS) is one of the most fundamental graph algorithms used as a component of many graph algorithms. Our new method for distributed parallel BFS can compute BFS for one trillion vertices graph within half a second, using large supercomputers such as the K-Computer. By the use of our proposed algorithm, the K-Computer was ranked 1st in Graph500 using all the 82,944 nodes available on June and November 2015 and June 2016 38,621.4 GTEPS. Based on the hybrid BFS algorithm by Beamer (Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing Workshops and PhD Forum, IPDPSW ’13, IEEE Computer Society, Washington, 2013), we devise sets of optimizations for scaling to extreme number of nodes, including a new efficient graph data structure and several optimization techniques such as vertex reordering and load balancing. Our performance evaluation on K-Computer shows that our new BFS is 3.19 times faster on 30,720 nodes than the base version using the previously known best techniques.

    DOI: 10.1007/s41019-016-0024-y

  • Efficient Breadth-First Search on Massively Parallel and Distributed Memory Machines Reviewed

    藤澤 克樹

    The proceedings of the IEEE BigData2016   2 ( 1 )   22 - 35   2017.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Efficient Breadth-First Search on Massively Parallel and Distributed-Memory Machines
    There are many large-scale graphs in real world such as Web graphs and social graphs. The interest in large-scale graph analysis is growing in recent years. Breadth-First Search (BFS) is one of the most fundamental graph algorithms used as a component of many graph algorithms. Our new method for distributed parallel BFS can compute BFS for one trillion vertices graph within half a second, using large supercomputers such as the K-Computer. By the use of our proposed algorithm, the K-Computer was ranked 1st in Graph500 using all the 82,944 nodes available on June and November 2015 and June 2016 38,621.4 GTEPS. Based on the hybrid BFS algorithm by Beamer (Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing Workshops and PhD Forum, IPDPSW '13, IEEE Computer Society, Washington, 2013), we devise sets of optimizations for scaling to extreme number of nodes, including a new efficient graph data structure and several optimization techniques such as vertex reordering and load balancing. Our performance evaluation on K-Computer shows that our new BFS is 3.19 times faster on 30,720 nodes than the base version using the previously known best techniques.

    DOI: 10.1007/s41019-016-0024-y

  • Power-Efficient Breadth-First Search with DRAM Row Buffer Locality-Aware Address Mapping

    Satoshi Imamura, Yuichiro Yasui, Koji Inoue, Takatsugu Ono, Hiroshi Sasaki, Katsuki Fujisawa

    2016 High Performance Graph Data Management and Processing, HPGDMP 2016 Proceedings of HPGDMP 2016 High Performance Graph Data Management and Processing - Held in conjunction with SC 2016: The International Conference for High Performance Computing, Networking, Storage and Analysis   17 - 24   2017.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Graph analysis applications have been widely used in real services such as road-traffic analysis and social network services. Breadth-first search (BFS) is one of the most representative algorithms for such applications; therefore, many researchers have tuned it to maximize performance. On the other hand, owing to the strict power constraints of modern HPC systems, it is necessary to improve power efficiency (i.e., performance per watt) when executing BFS. In this work, we focus on the power efficiency of DRAM and investigate the memory access pattern of a state-of-the-art BFS implementation using a cycle-accurate processor simulator. The results reveal that the conventional address mapping schemes of modern memory controllers do not efficiently exploit row buffers in DRAM. Thus, we propose a new scheme called per-row channel interleaving and improve the DRAM power efficiency by 30.3% compared to a conventional scheme for a certain simulator setting. Moreover, we demonstrate that this proposed scheme is effective for various configurations of memory controllers.

    DOI: 10.1109/HPGDMP.2016.010

  • Fast, Scalable, and Energy-Efficient Parallel Breadth-First Search Reviewed

    Yuichiro Yasui, Katsuki Fujisawa

    ROLE AND IMPORTANCE OF MATHEMATICS IN INNOVATION   25   61 - 75   2017.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    The breadth-first search (BFS) is one of the most centric processing in graph theory. In this paper, we presented a fast, scalable, and energy-efficient BFS for a nonuniform memory access (NUMA)-based system, in which the NUMA architecture was carefully considered. Our implementation achieved performance rates of 175 billion edges per second for Kronecker graph with 233 vertices and 237 edges on two racks of a SGI UV 2000 system with 1,280 threads and the fastest entries for a shared-memory system in the June 2014 and November 2014 Graph500 lists. It also produced the most energy-efficient entries in the first and second (small data category) and third, fourth, fifth, and sixth (big data category) Green Graph500 lists on a 4-socket Intel Xeon E5-4640 system.

    DOI: 10.1007/978-981-10-0962-4_6

  • Evaluating the Impacts of Code-Level Performance Tunings on Power Efficiency Reviewed

    藤澤 克樹

    The proceedings of the IEEE BigData2016,   -   362 - 369   2016.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Evaluating the impacts of code-level performance tunings on power efficiency.
    © 2016 IEEE. As the power consumption of HPC systems will be a primary constraint for exascale computing, a main objective in HPC communities is recently becoming to maximize power efficiency (i.e., performance per watt) rather than performance. Although programmers have spent a considerable effort to improve performance by tuning HPC programs at a code level, tunings for improving power efficiency is now required. In this work, we select two representative HPC programs (Graph500 and SDPARA) and evaluate how traditional code-level performance tunings applied to these programs affect power efficiency. We also investigate the impacts of the tunings on power efficiency at various operating frequencies of CPUs and/or GPUs. The results show that the tunings significantly improve power efficiency, and different types of tunings exhibit different trends in power efficiency by varying CPU frequency. Finally, the scalability and power efficiency of state-of-the-art Graph500 implementations are explored on both a single-node platform and a 960-node supercomputer. With their high scalability, they achieve 27.43 MTEPS/Watt with 129.76 GTEPS on the single-node system and 4.39 MTEPS/Watt with 1,085.24 GTEPS on the supercomputer.

    DOI: 10.1109/BigData.2016.7840624

  • Power-Efficient Breadth-First Search with DRAM Row Buffer Locality-Aware Address Mapping. Reviewed

    Satoshi Imamura, Yuichiro Yasui, Koji Inoue, Takatsugu Ono, Hiroshi Sasaki 0001, Katsuki Fujisawa

    2016 High Performance Graph Data Management and Processing Workshop, HPGDMP@SC 2016, Salt Lake City, UT, USA, November 13, 2016   17 - 24   2016.12

     More details

    Language:Others   Publishing type:Research paper (other academic)  

    Graph analysis applications have been widely used in real services such as road-traffic analysis and social network services. Breadth-first search (BFS) is one of the most representative algorithms for such applications; therefore, many researchers have tuned it to maximize performance. On the other hand, owing to the strict power constraints of modern HPC systems, it is necessary to improve power efficiency (i.e., performance per watt) when executing BFS. In this work, we focus on the power efficiency of DRAM and investigate the memory access pattern of a state-of-the-art BFS implementation using a cycle-accurate processor simulator. The results reveal that the conventional address mapping schemes of modern memory controllers do not efficiently exploit row buffers in DRAM. Thus, we propose a new scheme called per-row channel interleaving and improve the DRAM power efficiency by 30.3% compared to a conventional scheme for a certain simulator setting. Moreover, we demonstrate that this proposed scheme is effective for various configurations of memory controllers.

    DOI: 10.1109/HPGDMP.2016.010

  • Extreme scale breadth-first search on supercomputers. Reviewed

    Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, Satoshi Matsuoka

    Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016   1040 - 1047   2016.12

     More details

    Language:English   Publishing type:Research paper (other academic)  

    © 2016 IEEE. Breadth-First Search(BFS) is one of the most fundamental graph algorithms used as a component of many graph algorithms. Our new method for distributed parallel BFS can compute BFS for one trillion vertices graph within half a second, using large supercomputers such as the K-Computer. By the use of our proposed algorithm, the K-Computer was ranked 1st in Graph500 using all the 82,944 nodes available on June and November 2015 and June 2016 38,621.4 GTEPS. Based on the hybrid-BFS algorithm by Beamer[3], we devise sets of optimizations for scaling to extreme number of nodes, including a new efficient graph data structure and optimization techniques such as vertex reordering and load balancing. Performance evaluation on the K shows our new BFS is 3.19 times faster on 30,720 nodes than the base version using the previously-known best techniques.

    DOI: 10.1109/BigData.2016.7840705

  • NUMA-aware Scalable Graph Traversal on SGI UV Systems Reviewed

    Yuichiro Yasui, Katsuki Fujisawa, Eng Lim Goh, John Baron, Atsushi Sugiura, Takashi Uchiyama

    PROCEEDINGS OF THE ACM WORKSHOP ON HIGH PERFORMANCE GRAPH PROCESSING (HPGP'16)   19 - 26   2016.10

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Breadth-first search (BFS) is one of the most fundamental processing algorithm singraph theory. We previously presented a scalable BFS algorithm based on Beamer's direction optimizing algorithm forn on-uniform memory access(NUMA)-based systems, in which the NUMA architecture was care-fully considered. This paper presents our new implementation that reduces remote memory access in a top-down direction of direction-optimizing algorithm. We also discuss numerical results obtained on the SGI UV 2000 and UV 300 systems, which are shared-memory super computers based on a cache coherent (cc)-NUMA architecture that can handle thousands of threads on a single operating system. Our implementation has a chieved performance rates of 219 billion edges per second on a Kronecker graph with 2(34) vertices and 2(38) edges on arack of an SGI UV 300 system with 1,152 threads. This result exceeds the fast estentry for a shared memory system on the current Graph500 list presented in November 2015, which includes our previous implementation.

    DOI: 10.1145/2915516.2915522

  • Fast and power efficient computation for sparse modeling Reviewed

    Katsuki Fujisawa

    Journal of the Institute of Electronics, Information and Communication Engineers   99 ( 5 )   444 - 449   2016.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • NUMA-aware scalable graph traversal on SGI UV Systems

    Yuichiro Yasui, Katsuki Fujisawa, Eng Lim Goh, John Baron, Atsushi Sugiura, Takashi Uchiyama

    ACM Workshop on High Performance Graph Processing, HPGP 2016 HPGP 2016 - Proceedings of the ACM Workshop on High Performance Graph Processing, Co-located with HPDC 2016   19 - 26   2016.5

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Breadth-first search (BFS) is one of the most fundamental processing algorithms in graph theory. We previously presented a scalable BFS algorithm based on Beamer's direction-optimizing algorithm for non-uniform memory access (NUMA)-based systems, in which the NUMA architecture was carefully considered. This paper presents our new implementation that reduces remote memory access in a top-down direction of direction-optimizing algorithm. We also discuss numerical results obtained on the SGI UV 2000 and UV 300 systems, which are shared-memory supercomputers based on a cache coherent (cc)-NUMA architecture that can handle thousands of threads on a single operating system. Our implementation has achieved performance rates of 219 billion edges per second on a Kronecker graph with 234 vertices and 238 edges on a rack of an SGI UV 300 system with 1,152 threads. This result exceeds the fastest entry for a shared-memory system on the current Graph500 list presented in November 2015, which includes our previous implementation.

    DOI: 10.1145/2915516.2915522

  • Advanced Computing and Optimization Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers. Reviewed

    Katsuki Fujisawa, Toshio Endo, Yuichiro Yasui

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   9725   265 - 274   2016.3

     More details

    Language:English   Publishing type:Research paper (other academic)  

    © Springer International Publishing Switzerland 2016. In this talk, we present our ongoing research project. The objective of this project is to develop advanced computing and optimization infrastructures for extremely large-scale graphs on post petascale supercomputers. We explain our challenge to Graph 500 and Green Graph 500 benchmarks that are designed to measure the performance of a computer system for applications that require irregular memory and network access patterns. The 1st Graph500 list was released in November 2010. The Graph500 benchmark measures the performance of any supercomputer performing a BFS (Breadth-First Search) in terms of traversed edges per second (TEPS). In 2014 and 2015, our project team was a winner of the 8th, 10th, and 11th Graph500 and the 3rd to 6th Green Graph500 benchmarks, respectively. We also present our parallel implementation for large-scale SDP (SemiDefinite Programming) problem. The semidefinite programming (SDP) problem is a predominant problem in mathematical optimization. The primal-dual interior-point method (PDIPM) is one of the most powerful algorithms for solving SDP problems, and many research groups have employed it for developing software packages. We solved the largest SDP problem (which has over 2.33 million constraints), thereby creating a new world record. Our implementation also achieved 1.774 PFlops in double precision for largescale Cholesky factorization using 2,720 CPUs and 4,080 GPUs on the TSUBAME 2.5 supercomputer.

    DOI: 10.1007/978-3-319-42432-3_33

  • Advanced computing and optimization infrastructure for extremely large-scale graphs on post peta-scale supercomputers

    Katsuki Fujisawa, Toshio Endo, Yuichiro Yasui

    5th International Conference on Mathematical Software, ICMS 2016 Mathematical Software - 5th International Conference, ICMS 2016, Proceedings   265 - 274   2016.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    In this talk, we present our ongoing research project. The objective of this project is to develop advanced computing and optimization infrastructures for extremely large-scale graphs on post petascale supercomputers. We explain our challenge to Graph 500 and Green Graph 500 benchmarks that are designed to measure the performance of a computer system for applications that require irregular memory and network access patterns. The 1st Graph500 list was released in November 2010. The Graph500 benchmark measures the performance of any supercomputer performing a BFS (Breadth-First Search) in terms of traversed edges per second (TEPS). In 2014 and 2015, our project team was a winner of the 8th, 10th, and 11th Graph500 and the 3rd to 6th Green Graph500 benchmarks, respectively. We also present our parallel implementation for large-scale SDP (SemiDefinite Programming) problem. The semidefinite programming (SDP) problem is a predominant problem in mathematical optimization. The primal-dual interior-point method (PDIPM) is one of the most powerful algorithms for solving SDP problems, and many research groups have employed it for developing software packages. We solved the largest SDP problem (which has over 2.33 million constraints), thereby creating a new world record. Our implementation also achieved 1.774 PFlops in double precision for largescale Cholesky factorization using 2,720 CPUs and 4,080 GPUs on the TSUBAME 2.5 supercomputer.

    DOI: 10.1007/978-3-319-42432-3_33

  • Extreme scale breadth-first search on supercomputers

    Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, Satoshi Matsuoka

    4th IEEE International Conference on Big Data, Big Data 2016 Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016   1040 - 1047   2016.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Breadth-First Search(BFS) is one of the most fundamental graph algorithms used as a component of many graph algorithms. Our new method for distributed parallel BFS can compute BFS for one trillion vertices graph within half a second, using large supercomputers such as the K-Computer. By the use of our proposed algorithm, the K-Computer was ranked 1st in Graph500 using all the 82,944 nodes available on June and November 2015 and June 2016 38,621.4 GTEPS. Based on the hybrid-BFS algorithm by Beamer[3], we devise sets of optimizations for scaling to extreme number of nodes, including a new efficient graph data structure and optimization techniques such as vertex reordering and load balancing. Performance evaluation on the K shows our new BFS is 3.19 times faster on 30,720 nodes than the base version using the previously-known best techniques.

    DOI: 10.1109/BigData.2016.7840705

  • Evaluating the impacts of code-level performance tunings on power efficiency

    Satoshi Imamura, Keitaro Oka, Yuichiro Yasui, Yuichi Inadomi, Katsuki Fujisawa, Toshio Endo, Koji Ueno, Keiichiro Fukazawa, Nozomi Hata, Yuta Kakibuka, Koji Inoue, Takatsugu Ono

    4th IEEE International Conference on Big Data, Big Data 2016 Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016   362 - 369   2016.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    As the power consumption of HPC systems will be a primary constraint for exascale computing, a main objective in HPC communities is recently becoming to maximize power efficiency (i.e., performance per watt) rather than performance. Although programmers have spent a considerable effort to improve performance by tuning HPC programs at a code level, tunings for improving power efficiency is now required. In this work, we select two representative HPC programs (Graph500 and SDPARA) and evaluate how traditional code-level performance tunings applied to these programs affect power efficiency. We also investigate the impacts of the tunings on power efficiency at various operating frequencies of CPUs and/or GPUs. The results show that the tunings significantly improve power efficiency, and different types of tunings exhibit different trends in power efficiency by varying CPU frequency. Finally, the scalability and power efficiency of state-of-the-art Graph500 implementations are explored on both a single-node platform and a 960-node supercomputer. With their high scalability, they achieve 27.43 MTEPS/Watt with 129.76 GTEPS on the single-node system and 4.39 MTEPS/Watt with 1,085.24 GTEPS on the supercomputer.

    DOI: 10.1109/BigData.2016.7840624

  • The scalable petascale data-driven approach for the Cholesky factorization with multiple GPUs

    Yuki Tsujita, Toshio Endo, Katsuki Fujisawa

    1st International Workshop on Extreme Scale Programming Models and Middleware, ESPM2 2015 Proceedings of ESPM2 2015 1st International Workshop on Extreme Scale Programming Models and Middleware - Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage and Analysis   38 - 45   2015.11

     More details

    Language:English   Publishing type:Research paper (other academic)  

    The Cholesky factorization is an important linear algebra kernel which is used in the semidefinite programming (SDP) problem. However, the large computation costs for Cholesky factorization of the Schur complement matrix (SCM) has been obstacles to solve large scale problems. This paper describes a brand-new version of the parallel SDP solver, SDPARA, which has been equipped with a Cholesky factorization implementation and demonstrated 1.7PFlops performance with over two million constraints by using 4,080 GPUs. The performance and scalability is even more improved by introducing a data-driven approach, rather than traditional synchronous approach. Also we point out that typical data-driven implementations have limitation in scalability, and demonstrate the efficiency of the proposed approach via experiments on TSUBAME2.5 supercomputer.

    DOI: 10.1145/2832241.2832245

  • The scalable petascale data-driven approach for the Cholesky factorization with multiple GPUs. Reviewed

    Yuki Tsujita, Toshio Endo, Katsuki Fujisawa

    Proceedings of ESPM2 2015: 1st International Workshop on Extreme Scale Programming Models and Middleware - Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage and Analysis   38 - 45   2015.11

     More details

    Language:Others   Publishing type:Research paper (other academic)  

    © 2015 ACM. The Cholesky factorization is an important linear algebra kernel which is used in the semidefinite programming (SDP) problem. However, the large computation costs for Cholesky factorization of the Schur complement matrix (SCM) has been obstacles to solve large scale problems. This paper describes a brand-new version of the parallel SDP solver, SDPARA, which has been equipped with a Cholesky factorization implementation and demonstrated 1.7PFlops performance with over two million constraints by using 4,080 GPUs. The performance and scalability is even more improved by introducing a data-driven approach, rather than traditional synchronous approach. Also we point out that typical data-driven implementations have limitation in scalability, and demonstrate the efficiency of the proposed approach via experiments on TSUBAME2.5 supercomputer.

    DOI: 10.1145/2832241.2832245

  • Fast and Scalable NUMA-based Thread Parallel Breadth-first Search Reviewed

    Yuichiro Yasui, Katsuki Fujisawa

    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS 2015)   377 - 385   2015.10

     More details

    Language:English   Publishing type:Research paper (other academic)  

    The breadth-first search (BFS) is one of the most centric kernels in graph processing. Beamer's direction-optimizing BFS algorithm, which selects one of two traversal directions at each level, can reduce unnecessary edge traversals. In a previous paper, we presented an efficient BFS for a non-uniform memory access (NUMA)-based system, in which the NUMA architecture was carefully considered. In this paper, we investigate the locality of memory accesses in terms of the communication with remote memories in a BFS for a NUMA system, and describe a fast and highly scalable implementation. Our new implementation achieves performance rates of 174.704 billion edges per second for a Kronecker graph with 2(33) vertices and 2(37) edges on two racks of a SGI UV 2000 system with 1,280 threads. The implementations described in this paper achieved the fastest entries for a shared-memory system in the June 2014 and November 2014 Graph500 lists, and produced the most energy-efficient entries in the second, third, and fourth Green Graph500 lists (big data category).

    DOI: 10.1109/HPCSim.2015.7237065

  • A Matrix Scheduling Heuristic to Disaster Restoration of Lifeline Networks Reviewed

    Y. Kira, K. Fujisawa, H. Iwane, H. Anai

    ISMP 2015 | 22nd International Symposium on Mathematical Programming   2015.7

     More details

    Language:English  

    A Matrix Scheduling Heuristic to Disaster Restoration of Lifeline Networks

  • Fast and scalable NUMA-based thread parallel breadth-first search

    Yuichiro Yasui, Katsuki Fujisawa

    13th International Conference on High Performance Computing and Simulation, HPCS 2015 Proceedings of the 2015 International Conference on High Performance Computing and Simulation, HPCS 2015   377 - 385   2015.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    The breadth-first search (BFS) is one of the most centric kernels in graph processing. Beamer's direction-optimizing BFS algorithm, which selects one of two traversal directions at each level, can reduce unnecessary edge traversals. In a previous paper, we presented an efficient BFS for a non-uniform memory access (NUMA)-based system, in which the NUMA architecture was carefully considered. In this paper, we investigate the locality of memory accesses in terms of the communication with remote memories in a BFS for a NUMA system, and describe a fast and highly scalable implementation. Our new implementation achieves performance rates of 174.704 billion edges per second for a Kronecker graph with 233 vertices and 237 edges on two racks of a SGI UV 2000 system with 1,280 threads. The implementations described in this paper achieved the fastest entries for a shared-memory system in the June 2014 and November 2014 Graph500 lists, and produced the most energy-efficient entries in the second, third, and fourth Green Graph500 lists (big data category).

    DOI: 10.1109/HPCSim.2015.7237065

  • NVM-based Hybrid BFS with memory efficient data structure

    Keita Iwabuchi, Hitoshi Sato, Yuichiro Yasui, Katsuki Fujisawa, Satoshi Matsuoka

    2nd IEEE International Conference on Big Data, IEEE Big Data 2014 Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014   529 - 538   2015.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    We introduce a memory efficient implementation for the NVM-based Hybrid BFS algorithm that merges redundant data structures to a single graph data structure, while offloading infrequent accessed graph data on NVMs based on the detailed analysis of access patterns, and demonstrate extremely fast BFS execution for large-scale unstructured graphs whose size exceed the capacity of DRAM on the machine. Experimental results of Kronecker graphs compliant to the Graph500 benchmark on a 2-way INTEL Xeon E5-2690 machine with 256 GB of DRAM show that our proposed implementation can achieve 4.14 GTEPS for a SCALE31 graph problem with 231 vertices and 235 edges, whose size is 4 times larger than the size of graphs that the machine can accommodate only using DRAM with only 14.99 % performance degradation. We also show that the power efficiency of our proposed implementation achieves 11.8 MTEPS/W. Based on the implementation, we have achieved the 3rd and 4th position of the Green Graph500 list (2014 June) in the Big Data category.

    DOI: 10.1109/BigData.2014.7004270

  • Hybrid BFS approach using semi-external memory

    Keita Iwabuchi, Hitoshi Sato, Ryo Mizote, Yuichiro Yasui, Katsuki Fujisawa, Satoshi Matsuoka

    28th IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2014 Proceedings - IEEE 28th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2014   1698 - 1707   2014.11

     More details

    Language:English   Publishing type:Research paper (other academic)  

    NVM devices will greatly expand the possibility of processing extremely large-scale graphs that exceed the DRAM capacity of the nodes, however, efficient implementation based on detailed performance analysis of access patterns of unstructured graph kernel on systems that utilize a mixture of DRAM and NVM devices has not been well investigated. We introduce a graph data offloading technique using NVMs that augment the hybrid BFS (Breadth-first search) algorithm widely used in the Graph500 benchmark, and conduct performance analysis to demonstrate the utility of NVMs for unstructured data. Experimental results of a Scale27 problem of a Kronecker graph compliant to the Graph500 benchmark show that our approach maximally sustains 4.22 Giga TEPS (Traversed Edges Per Second), reducing DRAM size by half with only 19.18% performance degradation on a 4-way AMD Opteron 6172 machine heavily equipped with NVM devices. Although direct comparison is difficult, this is significantly greater than the result of 0.05 GTEPS for a SCALE 36 problem by using 1TB of DRAM and 12 TB of NVM as reported by Pearce et al. Although our approach uses higher DRAM to NVM ratio, we show that a good compromise is achievable between performance vs. capacity ratio for processing large-scale graphs. This result as well as detailed performance analysis of the proposed technique suggests that we can process extremely large-scale graphs per node with minimum performance degradation by carefully considering the data structures of a given graph and the access patterns to both DRAM and NVM devices. As a result, our implementation has achieved 4.35 MTEPS/W(Mega TEPS per Watt) and ranked 4th on November 2013 edition of the Green Graph500 list in the Big Data category by using only a single fat server heavily equipped with NVMs.

    DOI: 10.1109/IPDPSW.2014.189

  • Hybrid BFS approach using semi-external memory Reviewed

    Keita Iwabuchi, Hitoshi Sato, Ryo Mizote, Yuichiro Yasui, Katsuki Fujisawa, Satoshi Matsuoka

    Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS   1698 - 1707   2014.11

     More details

    Language:English   Publishing type:Research paper (other academic)  

    © 2014 IEEE. NVM devices will greatly expand the possibility of processing extremely large-scale graphs that exceed the DRAM capacity of the nodes, however, efficient implementation based on detailed performance analysis of access patterns of unstructured graph kernel on systems that utilize a mixture of DRAM and NVM devices has not been well investigated. We introduce a graph data offloading technique using NVMs that augment the hybrid BFS (Breadth-first search) algorithm widely used in the Graph500 benchmark, and conduct performance analysis to demonstrate the utility of NVMs for unstructured data. Experimental results of a Scale27 problem of a Kronecker graph compliant to the Graph500 benchmark show that our approach maximally sustains 4.22 Giga TEPS (Traversed Edges Per Second), reducing DRAM size by half with only 19.18% performance degradation on a 4-way AMD Opteron 6172 machine heavily equipped with NVM devices. Although direct comparison is difficult, this is significantly greater than the result of 0.05 GTEPS for a SCALE 36 problem by using 1TB of DRAM and 12 TB of NVM as reported by Pearce et al. Although our approach uses higher DRAM to NVM ratio, we show that a good compromise is achievable between performance vs. capacity ratio for processing large-scale graphs. This result as well as detailed performance analysis of the proposed technique suggests that we can process extremely large-scale graphs per node with minimum performance degradation by carefully considering the data structures of a given graph and the access patterns to both DRAM and NVM devices. As a result, our implementation has achieved 4.35 MTEPS/W(Mega TEPS per Watt) and ranked 4th on November 2013 edition of the Green Graph500 list in the Big Data category by using only a single fat server heavily equipped with NVMs.

    DOI: 10.1109/IPDPSW.2014.189

  • Convex optimization approaches to maximally predictable portfolio selection Reviewed

    Jun Ya Gotoh, Katsuki Fujisawa

    Optimization   63 ( 11 )   1713 - 1735   2014.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In this article we propose a simple heuristic algorithm for approaching the maximally predictable portfolio, which is constructed so that return model of the resulting portfolio would attain the largest goodness-of-fit. It is obtained by solving a fractional program in which a ratio of two convex quadratic functions is maximized, and the number of variables associated with its nonconcavity has been a bottleneck in spite of continuing endeavour for its global optimization. The proposed algorithm can be implemented by simply solving a series of convex quadratic programs, and computational results show that it yields within a few seconds a (near) Karush-Kuhn-Tucker solution to each of the instances which were solved via a global optimization method in [H. Konno, Y. Takaya and R. Yamamoto, A maximal predictability portfolio using dynamic factor selection strategy, Int. J. Theor. Appl. Fin. 13 (2010) pp. 355-366]. In order to confirm the solution accuracy, we also pose a semidefinite programming relaxation approach, which succeeds in ensuring a near global optimality of the proposed approach. Our findings through computational experiments encourage us not to employ the global optimization approach, but to employ the local search algorithm for solving the fractional program of much larger size. © 2014 Taylor & Francis Group, LLC.

    DOI: 10.1080/02331934.2012.741237

  • NVM-based Hybrid BFS with Memory Efficient Data Structure Invited Reviewed International journal

    Katsuki Fujisawa

    The proceedings of the IEEE BigData2014   2014.9

     More details

    Language:English  

  • Fast and Energy-efficient Breadth-first Search on a single NUMA system Reviewed International journal

    Katsuki Fujisawa

    Intentional Supercomputing Conference (ISC 14)   2014.6

     More details

    Language:English  

  • Fast and energy-efficient breadth-first search on a single NUMA system Reviewed

    Yuichiro Yasui, Katsuki Fujisawa, Yukinori Sato

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   8488 LNCS   365 - 381   2014.6

     More details

    Language:Others   Publishing type:Research paper (other academic)  

    Breadth-first search (BFS) is an important graph analysis kernel. The Graph500 benchmark measures a computer's BFS performance using the traversed edges per second (TEPS) ratio. Our previous nonuniform memory access (NUMA)-optimized BFS reduced memory accesses to remote RAM on a NUMA architecture system; its performance was 11 GTEPS (giga TEPS) on a 4-way Intel Xeon E5-4640 system. Herein, we investigated the computational complexity of the bottom-up, a major bottleneck in NUMA-optimized BFS. We clarify the relationship between vertex out-degree and bottom-up performance. In November 2013, our new implementation achieved a Graph500 benchmark performance of 37.66 GTEPS (fastest for a single node) on an SGI Altix UV1000 (one-rack) and 31.65 GTEPS (fastest for a single server) on a 4-way Intel Xeon E5-4650 system. Furthermore, we achieved the highest Green Graph500 performance of 153.17 MTEPS/W (mega TEPS per watt) on an Xperia-A SO-04E with a Qualcomm Snapdragon S4 Pro APQ8064. © 2014 Springer International Publishing.

    DOI: 10.1007/978-3-319-07518-1_23

  • Hybrid BFS Approach Using Semi-External Memory Reviewed International journal

    Katsuki Fujisawa

    International Workshop on High Per- formance Data Intensive Computing (HPDIC2014) in Conjunction with IEEE IPDPS 2014   2014.5

     More details

    Language:English  

  • Petascale general solver for semidefinite programming problems with over two million constraints Reviewed

    Katsuki Fujisawa, Toshio Endo, Yuichiro Yasui, Hitoshi Sato, Naoki Matsuzawa, Satoshi Matsuoka, Hayato Waki

    Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS   1171 - 1180   2014.5

     More details

    Language:English   Publishing type:Research paper (other academic)  

    The semi definite programming (SDP) problem is one of the central problems in mathematical optimization. The primal-dual interior-point method (PDIPM) is one of the most powerful algorithms for solving SDP problems, and many research groups have employed it for developing software packages. However, two well-known major bottlenecks, i.e., the generation of the Schur complement matrix (SCM) and its Cholesky factorization, exist in the algorithmic framework of the PDIPM. We have developed a new version of the semi definite programming algorithm parallel version (SDPARA), which is a parallel implementation on multiple CPUs and GPUs for solving extremely large-scale SDP problems with over a million constraints. SDPARA can automatically extract the unique characteristics from an SDP problem and identify the bottleneck. When the generation of the SCM becomes a bottleneck, SDPARA can attain high scalability using a large quantity of CPU cores and some processor affinity and memory interleaving techniques. SDPARA can also perform parallel Cholesky factorization using thousands of GPUs and techniques for overlapping computation and communication if an SDP problem has over two million constraints and Cholesky factorization constitutes a bottleneck. We demonstrate that SDPARA is a high-performance general solver for SDPs in various application fields through numerical experiments conducted on the TSUBAME 2.5 supercomputer, and we solved the largest SDP problem (which has over 2.33 million constraints), thereby creating a new world record. Our implementation also achieved 1.713 PFlops in double precision for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs. © 2014 IEEE.

    DOI: 10.1109/IPDPS.2014.121

  • Peta-scale General Solver for Semidefinite Programming Problems with over Two Mil- lion Constraints Reviewed

    Katsuki Fujisawa

    The 28th IEEE International Parallel & Distributed Processing Sym- posium (IPDPS 2014)   2014.5

     More details

    Language:English  

    最適化問題の高速計算と実社会への応用にも取り組んでおり、例えば半正定値計画問題(SDP)は組合せ最適化, システムと制御, データ科学, 金融工学, 量子化学など非常に幅広い応用を持ち、現在最適化の研究分野で最も注目されている最適化問題の一つとなっている。SDP に対しては高速かつ安定した反復解法である内点法アルゴリズムが存在しているが、巨大な線形方程式系の計算(行列要素の計算と行列のCholesky分解)が大きなボトルネックとなっている。最近の結果では多数GPU の活用や計算と通信のオーバーラップ技術を応用することによって、主要なボトルネックの1つである線形方程式系のCholesky 分解の高速化と世界最大規模の SDPを高速に解くことに成功した(最大で1.713PFlopsの性能を達成).

  • Fast and energy-efficient breadth-first search on a single NUMA system

    Yuichiro Yasui, Katsuki Fujisawa, Yukinori Sato

    29th International Supercomputing Conference, ISC 2014 Supercomputing - 29th International Conference, ISC 2014, Proceedings   365 - 381   2014.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Breadth-first search (BFS) is an important graph analysis kernel. The Graph500 benchmark measures a computer's BFS performance using the traversed edges per second (TEPS) ratio. Our previous nonuniform memory access (NUMA)-optimized BFS reduced memory accesses to remote RAM on a NUMA architecture system; its performance was 11 GTEPS (giga TEPS) on a 4-way Intel Xeon E5-4640 system. Herein, we investigated the computational complexity of the bottom-up, a major bottleneck in NUMA-optimized BFS. We clarify the relationship between vertex out-degree and bottom-up performance. In November 2013, our new implementation achieved a Graph500 benchmark performance of 37.66 GTEPS (fastest for a single node) on an SGI Altix UV1000 (one-rack) and 31.65 GTEPS (fastest for a single server) on a 4-way Intel Xeon E5-4650 system. Furthermore, we achieved the highest Green Graph500 performance of 153.17 MTEPS/W (mega TEPS per watt) on an Xperia-A SO-04E with a Qualcomm Snapdragon S4 Pro APQ8064.

    DOI: 10.1007/978-3-319-07518-1-23

  • Fast and energy-efficient breadth-first search on a single NUMA system

    Yuichiro Yasui, Katsuki Fujisawa, Yukinori Sato

    29th International Supercomputing Conference, ISC 2014 Supercomputing - 29th International Conference, ISC 2014, Proceedings   365 - 381   2014.1

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Breadth-first search (BFS) is an important graph analysis kernel. The Graph500 benchmark measures a computer's BFS performance using the traversed edges per second (TEPS) ratio. Our previous nonuniform memory access (NUMA)-optimized BFS reduced memory accesses to remote RAM on a NUMA architecture system; its performance was 11 GTEPS (giga TEPS) on a 4-way Intel Xeon E5-4640 system. Herein, we investigated the computational complexity of the bottom-up, a major bottleneck in NUMA-optimized BFS. We clarify the relationship between vertex out-degree and bottom-up performance. In November 2013, our new implementation achieved a Graph500 benchmark performance of 37.66 GTEPS (fastest for a single node) on an SGI Altix UV1000 (one-rack) and 31.65 GTEPS (fastest for a single server) on a 4-way Intel Xeon E5-4650 system. Furthermore, we achieved the highest Green Graph500 performance of 153.17 MTEPS/W (mega TEPS per watt) on an Xperia-A SO-04E with a Qualcomm Snapdragon S4 Pro APQ8064.

    DOI: 10.1007/978-3-319-07518-1_23

  • NUMA-optimized Parallel Breadth-first Search on Multicore Single-node System Reviewed

    Yuichiro Yasui, Katsuki Fujisawa, Kazushige Goto

    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA   394 - 402   2013.10

     More details

    Language:English   Publishing type:Research paper (other academic)  

    The breadth-first search (BFS) is one of the most important kernels in graph theory. The Graph500 benchmark measures the performance of any supercomputer performing a BFS in terms of traversed edges per second (TEPS). Previous studies have proposed hybrid approaches that combine a well-known top-down algorithm and an efficient bottom-up algorithm for large frontiers. This reduces some unnecessary searching of outgoing edges in the BFS traversal of a small-world graph, such as a Kronecker graph. In this paper, we describe a highly efficient BFS using column-wise partitioning of the adjacency list while carefully considering the non-uniform memory access (NUMA) architecture. We explicitly manage the way in which each working thread accesses a partial adjacency list in local memory during BFS traversal. Our implementation has achieved a processing rate of 11.15 billion edges per second on a 4-way Intel Xeon E5-4640 system for a scale-26 problem of a Kronecker graph with 2(26) vertices and 2(30) edges. Not all of the speedup techniques in this paper are limited to the NUMA architecture system. With our winning Green Graph500 submission of June 2013, we achieved 64.12 GTEPS per kilowatt hour on an ASUS Pad TF700T with an NVIDIA Tegra 3 mobile processor.

    DOI: 10.1109/BigData.2013.6691600

  • The second-order reduced density matrix method and the two-dimensional Hubbard model Reviewed

    James S.M. Anderson, Maho Nakata, Ryo Igarashi, Katsuki Fujisawa, Makoto Yamashita

    Computational and Theoretical Chemistry   1003   22 - 27   2013.1

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CCSD (T)) accuracy without using the wave-function. One question that arises is how well does the RDM method perform with the same conditions that result in CCSD (T) accuracy in the strong correlation limit. The simplest and a theoretically important model for strongly correlated electronic systems is the Hubbard model. In this paper, we establish the utility of the RDM method when employing the P,. Q,. G,. T1 and T2' conditions in the two-dimensional Hubbard model case and we conduct a thorough study applying the 4. ×. 4 Hubbard model employing a coefficients. Within the Hubbard Hamiltonian we found that even in the intermediate setting, where U/. t is between 4 and 10, the P, Q, G, T1 and T2' conditions reproduced good ground state energies. © 2012 Elsevier B.V.

    DOI: 10.1016/j.comptc.2012.08.018

  • Algorithm 925: Parallel Solver for Semidefinite Programming Problem having Sparse Schur Complement Matrix Reviewed

    Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhide Nakata, Maho Nakata

    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE   39 ( 1 )   6 - 22   2012.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A SemiDefinite Programming (SDP) problem is one of the most central problems in mathematical optimization. SDP provides an effective computation framework for many research fields. Some applications, however, require solving a large-scale SDP whose size exceeds the capacity of a single processor both in terms of computation time and available memory. SDPARA (SemiDefinite Programming Algorithm paRAllel package) [Yamashita et al. 2003b] was designed to solve such large-scale SDPs. Its parallel performance is outstanding for general SDPs in most cases. However, the parallel implementation is less successful for some sparse SDPs obtained from applications such as Polynomial Optimization Problems (POPs) or Sensor Network Localization (SNL) problems, since this version of SDPARA cannot directly handle sparse Schur Complement Matrices (SCMs). In this article we improve SDPARA by focusing on the sparsity of the SCM and we propose a new parallel implementation using the formula-cost-based distribution along with a replacement of the dense Cholesky factorization. We verify numerically that these features are key to solving SDPs with sparse SCMs more quickly on parallel computing systems. The performance is further enhanced by multithreading and the new SDPARA attains considerable scalability in general. It also finds solutions for extremely large-scale SDPs arising from POPs which cannot be obtained by other solvers.

    DOI: 10.1145/2382585.2382591

  • High-performance general solver for extremely large-scale semidefinite programming problems Reviewed

    Katsuki Fujisawa, Hitoshi Sato, Satoshi Matsuoka, Toshio Endo, Makoto Yamashita, Maho Nakata

    International Conference for High Performance Computing, Networking, Storage and Analysis, SC   93 - 93   2012.11

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Semidefinite programming (SDP) is one of the most important problems among optimization problems at present. It is relevant to a wide range of fields such as combinatorial optimization, structural optimization, control theory, economics, quantum chemistry, sensor network location and data mining. The capability to solve extremely large-scale SDP problems will have a significant effect on the current and future applications of SDP. In 1995, Fujisawa et al. started the SDPA(Semidefinite programming algorithm) Project aimed at solving large-scale SDP problems with high numerical stability and accuracy. SDPA is one of the main codes to solve general SDPs. SDPARA is a parallel version of SDPA on multiple processors with distributed memory, and it replaces two major bottleneck parts (the generation of the Schur complement matrix and its Cholesky factorization) of SDPA by their parallel implementation. In particular, it has been successfully applied to combinatorial optimization and truss topology optimization. The new version of SDPARA (7.5.0-G) on a large-scale supercomputer called TSUBAME 2.0 at the Tokyo Institute of Technology has successfully been used to solve the largest SDP problem (which has over 1.48 million constraints), and created a new world record. Our implementation has also achieved 533 TFlops in double precision for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs. © 2012 IEEE.

    DOI: 10.1109/SC.2012.67

  • Latest developments in the SDPA family for solving large-scale SDPs

    Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhiro Kobayashi, Kazuhide Nakata, Maho Nakata

    International Series in Operations Research and Management Science   687 - 713   2012.1

     More details

    Language:English  

    DOI: 10.1007/978-1-4614-0769-0_24

  • Performance characteristics of Graph500 on large-scale distributed environment Reviewed

    Toyotaro Suzumura, Koji Ueno, Hitoshi Sato, Katsuki Fujisawa, Satoshi Matsuoka

    Proceedings - 2011 IEEE International Symposium on Workload Characterization, IISWC - 2011   149 - 158   2011.11

     More details

    Language:English   Publishing type:Research paper (other academic)  

    Graph500 is a new benchmark for supercomputers based on large-scale graph analysis, which is becoming an important form of analysis in many real-world applications. Graph algorithms run well on supercomputers with shared memory. For the Linpack-based supercomputer rankings, TOP500 reports that heterogeneous and distributed-memory super-computers with large numbers of GPGPUs are becoming dominant. However, the performance characteristics of large-scale graph analysis benchmarks such as Graph500 on distributed-memory supercomputers have so far received little study. This is the first report of a performance evaluation and analysis for Graph500 on a commodity-processor-based distributed-memory supercomputer. We found that the reference implementation "replicated-csr" based on distributed level-synchronized breadth-first search solves a large free graph problem with 231 vertices and 235 edges (approximately 2.15 billon vertices and 34.3 billion edges) in 3.09 seconds with 128 nodes and 3,072 cores. This equates to 11 giga-edges traversed per second. We describe the algorithms and implementations of the reference implementations of Graph500, and analyze the performance characteristics with varying graph sizes and numbers of computer nodes and different implementations. Our results will also contribute to the development of optimized algorithms for the coming exascale machines. © 2011 IEEE.

    DOI: 10.1109/IISWC.2011.6114175

  • Efficient parallel software for large-scale SemiDefinite Programs Reviewed

    Makoto Yamashita, Katsuki Fujisawa

    Proceedings of the IEEE International Symposium on Computer-Aided Control System Design   1 - 6   2010.10

     More details

    Language:Others   Publishing type:Research paper (other academic)  

    SemiDefinite Program (SDP) is one of principal problems in mathematical programming. Its application range is very wide and covers some problems arising from control theory; for example, a stability condition for differential inclusions and discrete-time optimal control problems. Solving these applications, however, sometimes requires long computation time, since they generate largescale SDPs. When Primal-Dual Interior-Point Methods (PDIPMs) are employed for solving large-scale SDPs, most of the computation time is occupied by the computation related to the Schur Complement Matrix (SCM). We have developed SDPARA (SemiDefinite Programming Algorithm paRAllel version) to deal with such largescale SDPs. In particular, the latest version of SDPARA can handle sparse SCMs adequately. In this paper, we concisely describe how parallel implementation of SDPARA shortens the computation time of the SCM and then discuss the latest implementation for sparse SCMs. Numerical results show that SDPARA achieves remarkable parallel scalability and enables us to solve large-scale SDPs from control theory. © 2010 IEEE.

    DOI: 10.1109/CACSD.2010.5612812

  • 最適化ソフトウェアSDPA

    中田 和秀, 藤澤 克樹, 福田 光浩, 山下 真, 中田 真秀, 小林 和博

    応用数理   18 ( 1 )   2 - 14   2008.8

     More details

    Language:Japanese  

    Optimization Software SDPA
    The optimization software SDPA which has been developed by our group is a solver for symmetric cone programs. The symmetric cone program is a large scheme which includes linear programs, second-order cone programs and semidefmite programs. It has many applications covering various fields such as combinatorial optimization, systems and control theory, robust optimization and quantum chemistry. Primal-dual interior-point methods, which are polynomial-time algorithms, were proposed to solve symmetric cone programs. SDPA is based on the primal-dual interior-point method. In addition, SDPA utilizes sparsity of data in several ways and parallel computation to solve huge size problems efficiently. Using SDPA, we can obtain the solution of symmetric cone programs easily without knowing the details of the algorithm and its implementation techniques. This paper briefly explain the SDPA and its variants. Then outlines an algorithmic framework of the primal-dual interior-point method.

    DOI: 10.11540/bjsiam.18.1_2

  • Semidefinite programming for optimal power flow problems Reviewed

    Xiaoqing Bai, Hua Wei, Katsuki Fujisawa, Yong Wang

    International Journal of Electrical Power and Energy Systems   30 ( 6-7 )   383 - 392   2008.7

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    This paper presents a new solution using the semidefinite programming (SDP) technique to solve the optimal power flow problems (OPF). The proposed method involves reformulating the OPF problems into a SDP model and developing an algorithm of interior point method (IPM) for SDP. That is said, OPF in a nonlinear programming (NP) model, which is a nonconvex problem, has been accurately transformed into a SDP model which is a convex problem. Based on SDP, the OPF problem can be solved by primal-dual interior point algorithms which possess superlinear convergence. The proposed method has been tested with four kinds of objective functions of OPF. Extensive numerical simulations on test systems with sizes ranging from 4 to 300 buses have shown that this method is promising for OPF problems due to its robustness. © 2008.

    DOI: 10.1016/j.ijepes.2007.12.003

  • Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver. Reviewed International journal

    Maho Nakata, Bastiaan J Braams, Katsuki Fujisawa, Mituhiro Fukuda, Jerome K Percus, Makoto Yamashita, Zhengji Zhao

    The Journal of chemical physics   128 ( 16 )   164113 - 164113   2008.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The reduced density matrix (RDM) method, which is a variational calculation based on the second-order reduced density matrix, is applied to the ground state energies and the dipole moments for 57 different states of atoms, molecules, and to the ground state energies and the elements of 2-RDM for the Hubbard model. We explore the well-known N-representability conditions (P, Q, and G) together with the more recent and much stronger T1 and T2(') conditions. T2(') condition was recently rederived and it implies T2 condition. Using these N-representability conditions, we can usually calculate correlation energies in percentage ranging from 100% to 101%, whose accuracy is similar to CCSD(T) and even better for high spin states or anion systems where CCSD(T) fails. Highly accurate calculations are carried out by handling equality constraints and/or developing multiple precision arithmetic in the semidefinite programming (SDP) solver. Results show that handling equality constraints correctly improves the accuracy from 0.1 to 0.6 mhartree. Additionally, improvements by replacing T2 condition with T2(') condition are typically of 0.1-0.5 mhartree. The newly developed multiple precision arithmetic version of SDP solver calculates extraordinary accurate energies for the one dimensional Hubbard model and Be atom. It gives at least 16 significant digits for energies, where double precision calculations gives only two to eight digits. It also provides physically meaningful results for the Hubbard model in the high correlation limit.

    DOI: 10.1063/1.2911696

  • SDPA Project: Solving large-scale semidefinite programs Reviewed

    Katsuki Fujisawa, Kazuhide Nakata, Makoto Yamashita, Mituhiro Fukuda

    Journal of the Operations Research Society of Japan   50 ( 4 )   278 - 298   2007.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The Semidefinite Program (SDP) has recently attracted much attention of researchers in various fields for the following reasons: (i) It has been intensively studied in both theoretical and numerical aspects. Especially the primal-dual interior-point method is known as a powerful tool for solving large-scale SDPs with accuracy. (ii) Many practical problems in various fields such as combinatorial optimization, control and systems theory, robust optimization and quantum chemistry can be modeled or approximated by using SDPs. (iii) Several software packages for solving SDPs and related problems (ex. the Second-Order Cone Program : SOCP) are available on the Internet. In 1995, we started the SDPA Project aimed for solving large-scale SDPs with numerical stability and accuracy. The SDPA (SemiDefinite Programming Algorithm) is a C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method for solving the standard form SDP and its dual. We have also developed some variants of the SDPA to handle SDPs with various features. The SDPARA is a parallel version of the SDPA on multiple processors and distributed memory, which replaces two major bottleneck components of the SDPA by their parallel implementation using MPI and ScaLAPACK. The SDPARA on parallel computer has attractive features; it can load a large-scale SDP into the distributed memory and solve it in a reasonable time. In this paper, we show through some numerical experiments that the SDPARA attains high performance. The SDPARA-C is an integration of two software SDPARA and SDPA-C which is a primal-dual interior-point method using the positive definite matrix completion technique. The SDPARA-C requires a small amount of memory when we solve sparse SDPs with a large-scale matrix variable and/or a large number of equality constraints. The paper also explains a grid portal system for solving SDPs, which we call the SDPA Online Solver. In this paper, we review the major achievements of the SDPA Project on solving large-scale SDPs. This paper provides an introductory and comprehensive materials for researchers who are interested in practical computational aspects of the SDPs.

    DOI: 10.15807/jorsj.50.278

  • Parallel Solver for SemiDefinite Programming Reviewed

    Makoto Yamashita, Katsuki Fujisawa, Kazuhide Nakata

    International Journal of Logistics and SCM systems   2 ( 1 )   22 - 29   2007.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Parallel Solver for SemiDefinite Programming

  • グリッドチャレンジテストベッドの構築と運用 : グリチャレテストベッドの作り方

    合田 憲人, 大澤 清, 大角 知孝, 笠井 武史, 小野 功, 實本 英之, 松岡 聡, 斎藤 秀雄, 遠藤 敏夫, 横山 大作, 田浦 健次朗, 近山 隆, 田中 良夫, 下坂 久司, 梶原 広輝, 廣安 知之, 藤澤 克樹

    情報処理学会研究報告. HPC,[ハイパフォーマンスコンピューティング]   107 ( 87 )   49 - 54   2006.8

     More details

    Language:Japanese  

    Construction and Operation of the Grid Challenge Testbed
    This paper presents a case study to operate the Grid testbed for the Grid Challenge in SACSIS2006. The Grid Challenge is a programming competition on a Grid testbed, which is organized by multiple computing resources installed in universities and laboratories. In the last competition, the Grid testbed with more than 1200 CPUs was operated. The paper shows hardware/software specifications of the Grid testbed, and reports experience of the operation, which includes accounting, job management, and troubleshooting.

  • Parallel Primal-Dual Interior-Point Methods for SemiDefinite Programs

    Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, Kazuhide Nakata

    Parallel Combinatorial Optimization   211 - 238   2006.4

     More details

    Language:English  

    DOI: 10.1002/9780470053928.ch9

  • Preprocessing sparse semidefinite programs via matrix completion Reviewed

    Katsuki Fujisawa, Mituhiro Fukuda, Kazuhide Nakata

    Optimization Methods and Software   21 ( 1 )   17 - 39   2006.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Considering that preprocessing is an important phase in linear programing, it should be more systematically incorporated in semidefinite programing (SDP) solvers. The conversion method proposed by the authors [Fukuda, M., Kojima, M., Murota, K. and Nakata, K., 2000, SIAM Journal on Optimization , 11, 647-674 and Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M. and Murota, K., 2003, Mathematical Programming (Series B) , 95, 303-327] is a preprocessing method for sparse SDPs based on matrix completion. This article proposed a new version of the conversion method, which employs a flop estimation function inside its heuristic procedure. Extensive numerical experiments are included showing the advantage of preprocessing by the conversion method for certain classes of very sparse SDPs.

    DOI: 10.1080/10556780512331319523

  • Visualization of stability of dynamical systems by 3D graphics supported by cluster computing Reviewed

    Takashi Funasaka, Masami Iwase, Katsuki Fujisawa, Shoshiro Hatakeyama

    Proceedings of the Third Workshop - 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2005   588 - 592   2005.10

     More details

    Language:English   Publishing type:Research paper (other academic)  

    The stabilization of nonlinear systems depend strongly on the initial state and the parameters of the systems. The initial state and the parameters with which the system is stabilized can be distinguished by the geometrical structure. It is, however, difficult and sometimes impossible to analyze the structure analytically. Therefore it comes important to show and analyze the structure of the parameters and initial states numerically and visually. In this paper, we present a method to draw and visualize such region and structure in the three dimensional space. In general, the projection of the original high-dimensional space to the lower dimension one is required for using visual analysis. Thus, it is convenient that the viewpoint can be moved, without time loss, in the direction where analyst would like to see. As often as the viewpoint moves, the recomputation as quick as possible is required to realize the quick motion of viewpoint. It is, however, obvious that lots of computation and time are taken to draw the region. Therefore, high performance calculators are needed to realize the real-time drawing. In order to overcome this problem, FPGA and cluster-computing is used in this paper. Then it is demonstrated by illustrative examples that FPGA and cluster-computing shows high performance to draw the region of the parameters and initial state in 3D with which z n+1 = z2n + C can be stabilized, that is Mandelbrot and Julia sets, respectively. ©2005 IEEE.

    DOI: 10.1109/IDAACS.2005.283052

  • Parallel implementation of polyhedral continuation methods for systems of polynomial equations Reviewed

    M Kojima, Y Dai, K Fujisawa, S Kim, A Takeda

    MATHEMATICAL SOFTWARE, PROCEEDINGS   283 - 284   2002.10

     More details

    Language:English   Publishing type:Research paper (other academic)  

  • Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm Reviewed

    Maho Nakata, Hiroshi Nakatsuji, Masahiro Ehara, Mituhiro Fukuda, Kazuhide Nakata, Katsuki Fujisawa

    The Journal of Chemical Physics   114 ( 19 )   8282 - 8292   2001.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm
    null

    DOI: 10.1063/1.1360199

  • 半正定値計画法を用いた指定座屈荷重係数を有するトラスのトポロジー最適化

    寒野 善博, 大崎 純, 藤澤 克樹, 加藤 直樹

    日本建築学会構造系論文集   66 ( 541 )   113 - 119   2001.8

     More details

    Language:Japanese  

    TOPOLOGY OPTIMIZATION OF TRUSSES FOR SPECIFIED MULTIPLE LINEAR BUCKLING LOAD FACTORS BY USING SEMIDEFINITE PROGRAMMING
    An algorithm based on Semi-Definite Programming (SDP) is proposed for the truss topology optimization problem for specified linear buckling load factor, and optimal topologies of trusses are computed by using the Semi-Definite Programming Algorithm (SDPA). It is well known that optimizing structures for specified buckling load factor is difficult because of non-differentiability of the buckling load factor for the case of multimodal solutions. It is shown, in the examples, that the proposed algorithm is applicable to multimodal cases, and an optimal topology with five-fold buckling load factors is found without any difficulty.

    DOI: 10.3130/aijs.66.113_1

  • Solving Sparse Semidefinite Programs by Matrix Completion(Part 2) (Mathematical Science of Optimization)

    中田 和秀, 藤澤 克樹, 福田 光浩, 小島 政和, 室田 一雄

    数理解析研究所講究録   1174 ( 1174 )   130 - 137   2000.10

     More details

    Language:English  

    Solving Sparse Semidefinite Programs by Matrix Completion(Part 2) (Mathematical Science of Optimization)

  • Matrix Completion and Semidefinite Programming

    Kazuhide Nakata, Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, Kazuo Murota

    統計数理研究所共同研究レポート   135   223 - 237   2000.10

     More details

    Language:English  

    Matrix Completion and Semidefinite Programming

  • 半正定値計画問題に対するソフトウェアSDPAの広域並列計算システム

    藤沢 克樹, 武田 朗子, 小島 政和, 中田 和秀

    統計数理研究所共同研究レポート   135   215 - 222   2000.8

     More details

    Language:Japanese  

    半正定値計画問題に対するソフトウェアSDPAの広域並列計算システム

  • 半正定値計画問題に対する内点法ソフトウェアSDPA (SemiDefinite Programming Algorithm) (最適化のための連続と離散数理)

    藤澤 克樹, 小島 政和, 中田 和秀

    数理解析研究所講究録   1114 ( 1114 )   149 - 159   1999.11

     More details

    Language:Japanese  

    半正定値計画問題に対する内点法ソフトウェア

  • Semidefinite Programming with the Conjugate Gradient Method

    中田 和秀, 藤沢 克樹, 小島 政和

    統計数理研究所共同研究レポート   1113   224 - 247   1998.4

     More details

    Language:English  

    Semidefinite Programming with the Conjugate Gradient Method

  • Publications and Research Reports http://sdpa.imi.kyushu-u.ac.jp/~fujisawa/research.html

    Katsuki Fujisawa

    1900

     More details

    Language:English  

▼display all

Books

  • 量子技術の実用化と研究開発業務への導入方法 (分担執筆)

    藤澤克樹

    技術情報協会  2023.1 

     More details

    Language:Others  

  • 量子技術の実用化と研究開発業務への導入方法 (分担執筆)

    藤澤克樹

    技術情報協会  2023.1 

     More details

  • 業績リスト 2020 http://opt.imi.kyushu-u.ac.jp/~fujisawa/gyoseki.pdf

    藤澤克樹

    2020.4 

     More details

    Language:Japanese  

  • Research Map https://researchmap.jp/read0057396/

    藤澤克樹

    2020.1 

     More details

    Language:Japanese  

  • 著書リスト2019 http:⁄⁄sdpa.imi.kyushu-u.ac.jp⁄~fujisawa⁄gyoseki.pdf

    藤澤 克樹

    2019.5 

     More details

    Language:Japanese  

  • 防災・避難計画の数理モデルの高度化と社会実装へ向けて

    瀧澤, 重志, 小林, 和博, 佐藤, 憲一郎, 斎藤, 努, 清水, 正明, 間瀬, 正啓, 藤澤. 克樹, 神山, 直之, 九州大学マス・フォア・インダストリ研究所

    九州大学マス・フォア・インダストリ研究所, 九州大学大学院数理学府  2016.3 

     More details

    Responsible for pages:総ページ数:v, 136p   Language:Others  

  • Excelで学ぶOR

    藤澤, 克樹, 後藤, 順哉, 安井, 雄一郎

    オーム社  2011.10 

     More details

    Responsible for pages:総ページ数:xv, 310p   Language:Japanese  

  • Excel で学ぶ OR

    藤澤 克樹

    オーム社  2011.7 

     More details

    Language:Others  

  • 応用に役立つ50の最適化問題 (応用最適化シリーズ 3)

    藤澤 克樹

    2009.8 

     More details

    Language:Others  

  • 応用に役立つ50の最適化問題

    藤澤, 克樹, 梅谷, 俊治

    朝倉書店  2009.3 

     More details

    Responsible for pages:総ページ数:vi, 174p   Language:Japanese  

  • 線型行列不等式と半正定値計画法

    京都大学数理解析研究所

    京都大学数理解析研究所  1997.7 

     More details

    Responsible for pages:総ページ数:199p   Language:Others  

  • 著書リスト2018 http:⁄⁄sdpa.imi.kyushu-u.ac.jp⁄~fujisawa⁄gyoseki.pdf

    藤澤 克樹

     More details

    Language:Japanese   Book type:General book, introductory book for general audience

  • 著書リスト http://sdpa.imi.kyushu-u.ac.jp/~fujisawa/gyoseki2014.pdf

    藤澤 克樹

     More details

    Language:Japanese   Book type:General book, introductory book for general audience

▼display all

Presentations

  • 都市 OS 実現のための数理モデルと計算基盤 Invited

    藤澤 克樹

    IoT が実現するスマートシ ティ最新研究と応用事例  2016.3 

     More details

    Event date: 2016.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:コンピュータソフトウェア協会   Country:Japan  

  • グラフ解析と最適化技術で実現する都市 OS Invited

    藤澤 克樹

    システム制御情報学会 SCI 2015  2015.5 

     More details

    Event date: 2016.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大阪市中央電気倶楽部   Country:Japan  

  • Katsuki Fujisawa, Large-Scale Graph Analysis for Cyber Security on Post Peta-Scale Supercomputers Invited International conference

    Katsuki Fujisawa

    Kyushu Universuty Cybersecurity Center Opening Ceremony and Cybersecurity Symposium  2015.7 

     More details

    Event date: 2016.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:九州大学   Country:Japan  

  • A Challenge to Graph500 Benchmark: Trillion-Scale Graph Process- ing on K Computer Invited International conference

    Katsuki Fujisawa

    ISC15 : HPC in Asia 02  2015.7 

     More details

    Event date: 2016.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Frankfurt Messe, Germany   Country:Germany  

  • A Challenge to Graph500 Benchmark: Trillion-Scale Graph Process- ing on K Computer Invited International conference

    Katsuki Fujisawa

    iDB2015  2015.8 

     More details

    Event date: 2016.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:奈良市   Country:Japan  

  • How to win Graph500 – A Challenge to Graph500 Benchmark – Invited International conference

    Katsuki Fujisawa

    Summer School for Combinatorial Optimization, Co@work  2015.10 

     More details

    Event date: 2016.5

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:ZIB, Berlin   Country:Germany  

  • Advanced Computing and Optimization Infrastructure for Ex- tremely Large-Scale Graphs on Post Peta-Scale Supercomputers Invited International conference

    Katsuki Fujisawa

    HPCCON  2015.10 

     More details

    Event date: 2016.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

  • Advanced Computing and Optimization Infrastructure for Ex- tremely Large-Scale Graphs on Post Peta-Scale Supercomputers Invited International conference

    Katsuki Fujisawa

    SC15  2015.11 

     More details

    Event date: 2016.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:オースティン   Country:United States  

  • 高速かつ省電力なグラフ解析とその実応用 Invited

    藤澤 克樹

    ACSI2016  2016.1 

     More details

    Event date: 2016.5

    Language:Japanese  

    Venue:九州大学   Country:Japan  

  • 大規模グラフ解析と都市 OS の開発 ―ヒト・モノのモビリティに関する新 しい数理モデルとその応用― Invited

    藤澤 克樹

    DEIM 2016  2016.3 

     More details

    Event date: 2016.5

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:ヒルトン福岡シーホーク   Country:Japan  

  • Petascale general solver for semidefinite programming problems with over two million constraints

    Katsuki Fujisawa, Toshio Endo, Yuichiro Yasui, Hitoshi Sato, Naoki Matsuzawa, Satoshi Matsuoka, Hayato Waki

    28th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2014  2014.1 

     More details

    Event date: 2014.5

    Language:English  

    Venue:Phoenix, AZ   Country:United States  

    The semi definite programming (SDP) problem is one of the central problems in mathematical optimization. The primal-dual interior-point method (PDIPM) is one of the most powerful algorithms for solving SDP problems, and many research groups have employed it for developing software packages. However, two well-known major bottlenecks, i.e., the generation of the Schur complement matrix (SCM) and its Cholesky factorization, exist in the algorithmic framework of the PDIPM. We have developed a new version of the semi definite programming algorithm parallel version (SDPARA), which is a parallel implementation on multiple CPUs and GPUs for solving extremely large-scale SDP problems with over a million constraints. SDPARA can automatically extract the unique characteristics from an SDP problem and identify the bottleneck. When the generation of the SCM becomes a bottleneck, SDPARA can attain high scalability using a large quantity of CPU cores and some processor affinity and memory interleaving techniques. SDPARA can also perform parallel Cholesky factorization using thousands of GPUs and techniques for overlapping computation and communication if an SDP problem has over two million constraints and Cholesky factorization constitutes a bottleneck. We demonstrate that SDPARA is a high-performance general solver for SDPs in various application fields through numerical experiments conducted on the TSUBAME 2.5 supercomputer, and we solved the largest SDP problem (which has over 2.33 million constraints), thereby creating a new world record. Our implementation also achieved 1.713 PFlops in double precision for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs.

  • NUMA-optimized parallel breadth-first search on multicore single-node system

    Yuichiro Yasui, Katsuki Fujisawa, Kazushige Goto

    2013 IEEE International Conference on Big Data, Big Data 2013  2013.12 

     More details

    Event date: 2013.10

    Language:English  

    Venue:Santa Clara, CA   Country:United States  

    The breadth-first search (BFS) is one of the most important kernels in graph theory. The Graph500 benchmark measures the performance of any supercomputer performing a BFS in terms of traversed edges per second (TEPS). Previous studies have proposed hybrid approaches that combine a well-known top-down algorithm and an efficient bottom-up algorithm for large frontiers. This reduces some unnecessary searching of outgoing edges in the BFS traversal of a small-world graph, such as a Kronecker graph. In this paper, we describe a highly efficient BFS using column-wise partitioning of the adjacency list while carefully considering the non-uniform memory access (NUMA) architecture. We explicitly manage the way in which each working thread accesses a partial adjacency list in local memory during BFS traversal. Our implementation has achieved a processing rate of 11.15 billion edges per second on a 4-way Intel Xeon E5-4640 system for a scale-26 problem of a Kronecker graph with 2 26 vertices and 230 edges. Not all of the speedup techniques in this paper are limited to the NUMA architecture system. With our winning Green Graph500 submission of June 2013, we achieved 64.12 GTEPS per kilowatt hour on an ASUS Pad TF700T with an NVIDIA Tegra 3 mobile processor.

  • High-performance general solver for extremely large-scale semidefinite programming problems

    Katsuki Fujisawa, Hitoshi Sato, Satoshi Matsuoka, Toshio Endo, Makoto Yamashita, Maho Nakata

    2012 24th International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2012  2012.12 

     More details

    Event date: 2012.11

    Language:English  

    Venue:Salt Lake City, UT   Country:United States  

    Semidefinite programming (SDP) is one of the most important problems among optimization problems at present. It is relevant to a wide range of fields such as combinatorial optimization, structural optimization, control theory, economics, quantum chemistry, sensor network location and data mining. The capability to solve extremely large-scale SDP problems will have a significant effect on the current and future applications of SDP. In 1995, Fujisawa et al. started the SDPA(Semidefinite programming algorithm) Project aimed at solving large-scale SDP problems with high numerical stability and accuracy. SDPA is one of the main codes to solve general SDPs. SDPARA is a parallel version of SDPA on multiple processors with distributed memory, and it replaces two major bottleneck parts (the generation of the Schur complement matrix and its Cholesky factorization) of SDPA by their parallel implementation. In particular, it has been successfully applied to combinatorial optimization and truss topology optimization. The new version of SDPARA (7.5.0-G) on a large-scale supercomputer called TSUBAME 2.0 at the Tokyo Institute of Technology has successfully been used to solve the largest SDP problem (which has over 1.48 million constraints), and created a new world record. Our implementation has also achieved 533 TFlops in double precision for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs.

  • Performance characteristics of Graph500 on large-scale distributed environment

    Toyotaro Suzumura, Koji Ueno, Hitoshi Sato, Katsuki Fujisawa, Satoshi Matsuoka

    2011 IEEE International Symposium on Workload Characterization, IISWC - 2011  2011.12 

     More details

    Event date: 2011.11

    Language:English  

    Venue:Austin, TX   Country:United States  

    Graph500 is a new benchmark for supercomputers based on large-scale graph analysis, which is becoming an important form of analysis in many real-world applications. Graph algorithms run well on supercomputers with shared memory. For the Linpack-based supercomputer rankings, TOP500 reports that heterogeneous and distributed-memory super-computers with large numbers of GPGPUs are becoming dominant. However, the performance characteristics of large-scale graph analysis benchmarks such as Graph500 on distributed-memory supercomputers have so far received little study. This is the first report of a performance evaluation and analysis for Graph500 on a commodity-processor-based distributed-memory supercomputer. We found that the reference implementation "replicated-csr" based on distributed level-synchronized breadth-first search solves a large free graph problem with 231 vertices and 235 edges (approximately 2.15 billon vertices and 34.3 billion edges) in 3.09 seconds with 128 nodes and 3,072 cores. This equates to 11 giga-edges traversed per second. We describe the algorithms and implementations of the reference implementations of Graph500, and analyze the performance characteristics with varying graph sizes and numbers of computer nodes and different implementations. Our results will also contribute to the development of optimized algorithms for the coming exascale machines.

  • Efficient parallel software for large-scale SemiDefinite Programs

    Makoto Yamashita, Katsuki Fujisawa

    2010 IEEE International Symposium on Computer-Aided Control System Design, CACSD 2010  2010.12 

     More details

    Event date: 2010.9

    Language:English  

    Venue:Yokohama   Country:Japan  

    SemiDefinite Program (SDP) is one of principal problems in mathematical programming. Its application range is very wide and covers some problems arising from control theory; for example, a stability condition for differential inclusions and discrete-time optimal control problems. Solving these applications, however, sometimes requires long computation time, since they generate largescale SDPs. When Primal-Dual Interior-Point Methods (PDIPMs) are employed for solving large-scale SDPs, most of the computation time is occupied by the computation related to the Schur Complement Matrix (SCM). We have developed SDPARA (SemiDefinite Programming Algorithm paRAllel version) to deal with such largescale SDPs. In particular, the latest version of SDPARA can handle sparse SCMs adequately. In this paper, we concisely describe how parallel implementation of SDPARA shortens the computation time of the SCM and then discuss the latest implementation for sparse SCMs. Numerical results show that SDPARA achieves remarkable parallel scalability and enables us to solve large-scale SDPs from control theory.

  • Visualization of stability of dynamical systems by 3D graphics supported by cluster computing

    Takashi Funasaka, Masami Iwase, Katsuki Fujisawa, Shoshiro Hatakeyama

    3rd IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2005  2005.1 

     More details

    Event date: 2005.9

    Language:English  

    Venue:Sofia   Country:Bulgaria  

    The stabilization of nonlinear systems depend strongly on the initial state and the parameters of the systems. The initial state and the parameters with which the system is stabilized can be distinguished by the geometrical structure. It is, however, difficult and sometimes impossible to analyze the structure analytically. Therefore it comes important to show and analyze the structure of the parameters and initial states numerically and visually. In this paper, we present a method to draw and visualize such region and structure in the three dimensional space. In general, the projection of the original high-dimensional space to the lower dimension one is required for using visual analysis. Thus, it is convenient that the viewpoint can be moved, without time loss, in the direction where analyst would like to see. As often as the viewpoint moves, the recomputation as quick as possible is required to realize the quick motion of viewpoint. It is, however, obvious that lots of computation and time are taken to draw the region. Therefore, high performance calculators are needed to realize the real-time drawing. In order to overcome this problem, FPGA and cluster-computing is used in this paper. Then it is demonstrated by illustrative examples that FPGA and cluster-computing shows high performance to draw the region of the parameters and initial state in 3D with which z n+1 = z2n + C can be stabilized, that is Mandelbrot and Julia sets, respectively.

  • High performance grid and cluster computing for some optimization problems

    Katsuki Fujisawa, Masakazu Kojima, Akiko Takeda, Makoto Yamashita

    Proceedings - 2004 International Symposium on Applications and the Internet Workshops (Saint 2004Workshop)  2004.6 

     More details

    Event date: 2004.1

    Language:English  

    Venue:Tokyo   Country:Japan  

    The aim of this short article is to show that grid and cluster computing provides tremendous power to optimization methods. The methods that the article picks up are a successive convex relaxation method for quadratic optimization problems, a polyhedral homotopy method for polynomial systems of equations and a primal-dual interior-point method for semidefinite programming problems. Their parallel implementations on grids and clusters together with numerical results are reported.

  • Approximation of optimal two-dimensional association rules for categorical attributes using semidefinite programming

    Katsuki Fujisawa, Yukinobu Hamuro, Naoki Katoh, Takeshi Tokuyama, Katsutoshi Yada

    2nd International Conference on Discovery Science, DS 1999  1999.1 

     More details

    Event date: 1999.12

    Language:English  

    Venue:Tokyo   Country:Japan  

    We consider the problem of finding two-dimensional association rules for categorical attributes. Suppose we have two conditional attributes A and B both of whose domains are categorical, and one binary target attribute whose domain is {“positive”, “negative”}. We want to split the Cartesian product of domains of A and B into two subsets so that a certain objective function is optimized, i.e., we want to find a good segmentation of the domains of A and B. We consider in this paper the objective function that maximizes the confidence under the constraint of the upper bound of the support size. We first prove that the problem is NP-hard, and then propose an approximation algorithm based on semidefinite programming. In order to evaluate the effectiveness and efficiency of the proposed algorithm, we carry out computational ex- periments for problem instances generated by real sales data consisting of attributes whose domain size is a few hundreds at maximum. Approxi- mation ratios of the solutions obtained measured by comparing solutions for semidefinite programming relaxation range from 76% to 95%. It is observed that the performance of generated association rules are signifi- cantly superior to that of one-dimensional rules.

  • 学会発表リスト http://sdpa.imi.kyushu-u.ac.jp/~fujisawa/gyoseki2014.pdf

    藤澤 克樹

     More details

    Language:Japanese  

    Country:Japan  

    Other Link: http://sdpa.imi.kyushu-u.ac.jp/~fujisawa/research.html

  • Petascale General Solver for Semidefinite Programming Problems with over Two Million Constraints Invited International conference

    Katsuki Fujisawa

    RTE-IBM Workshop Semi-Definite Programming for Optimal Power Flow Problem  2014.4 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Dublin   Country:Ireland  

  • Tegra K1 プロセッサ上での高速かつ省電力なグラフ探索ソフトウェアの開発 Invited

    藤澤 克樹

    NVIDIA GTC Japan 2014  2014.7 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京ミッドタウンホール&カンファレンス   Country:Japan  

  • グラフ解析・ネットワーク分析入門 Invited

    藤澤 克樹

    日本オペレーショ ンズ・リサーチ学会 2014 年秋季研究発表会  2014.8 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:北海道科学大学   Country:Japan  

  • Advanced Computing and Optimization Infrastructure for Ex- tremely Large-Scale Graphs on Post Peta-Scale Supercomputers Invited

    Katsuki Fujisawa

    IMI Workshop on Optimization in the Real World  2014.10 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Kyushu University   Country:Japan  

  • スーパーコンピュータを用いた大規模グラフ解析と Graph500 ベンチマー ク Invited

    藤澤 克樹

    サイエンティフィック・システム研究会 科学技術計算分科会 2014 年度会合次世代 HPC を支える技術  2014.10 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:ホーテルオークラ神戸   Country:Japan  

  • Advanced Computing and Optimization Infrastructure for Ex- tremely Large-Scale Graphs on Post Peta-Scale Supercomputers Invited International conference

    Katsuki Fujisawa

    2014 ATIP Workshop: Japanese Research Toward Next-Generation Extreme Computing  2014.11 

     More details

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:New Orleans   Country:United States  

  • 最適化問題と計算の今後 – 大規模問題をどこまで解決できるのか? Invited

    藤澤 克樹

    平成 26年度 SICE 制御部門プラントモデリング部会第2回研究会  2014.12 

     More details

    Language:Japanese  

    Country:Japan  

  • グラフ解析と最適化ソフトウェアにおける三位一体の開発の現状と今後 - ア ルゴリズム + アプリケーション + HPC - Invited

    藤澤 克樹

    数値シミュレーションだ けではないスーパーコンピュータ活用  2015.1 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:九州大学情報基盤研究開発センター   Country:Japan  

  • 藤澤克樹, チュートリアル講演: 最適化問題と計算の今後 – 大規模問題をどこまで解決 できるのか? Invited

    藤澤 克樹

    ウィンタースクール  2015.2 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:九州大 学   Country:Japan  

▼display all

MISC

  • ディジタルツインのための数理・情報技術と産業応用—Mathematical and Information Technologies for Digital Twin and Industrial Applications—小特集 接近するバーチャルとリアル : メタバース・ディジタルツインの現在と未来

    藤澤 克樹

    電子情報通信学会誌 = The journal of the Institute of Electronics, Information and Communication Engineers   2023.8

     More details

    Language:Japanese  

  • ディジタルツインのための数理・情報技術と産業応用—Mathematical and Information Technologies for Digital Twin and Industrial Applications—小特集 接近するバーチャルとリアル : メタバース・ディジタルツインの現在と未来

    藤澤 克樹

    電子情報通信学会誌 = The journal of the Institute of Electronics, Information and Communication Engineers   106 ( 8 )   735 - 742   2023.8   ISSN:0913-5693

     More details

    Language:Japanese   Publisher:電子情報通信学会  

    CiNii Books

    CiNii Research

    researchmap

    Other Link: https://ndlsearch.ndl.go.jp/books/R000000004-I033004183

  • 遺伝的アルゴリズムに基づいた広域スキャンのフィンガープリント特定技術の提案

    田中, 智, 韓, 燦洙, 高橋, 健志, 藤澤, 克樹

    コンピュータセキュリティシンポジウム2021論文集   2021.10

     More details

    Language:Japanese  

    Proposing a Genetic Algorithm Approach for Unveiling Fingerprint of Internet-Wide Scanner

  • 大規模グラフ解析の高速計算と実社会への応用—High-performance Computing for Large-scale Graph Analysis and Its Application to the Real World

    藤澤 克樹

    電子情報通信学会誌 = The journal of the Institute of Electronics, Information and Communication Engineers   2021.4

     More details

    Language:Japanese  

  • 大規模グラフ解析の高速計算と実社会への応用

    藤澤克樹

    電子情報通信学会誌   2021.4

     More details

    Language:Japanese  

  • スーパコンピュータ「富岳」4冠達成—Feat of Winning Four Major Benchmarks on Supercomputer Fugaku

    石川 裕, 佐藤 三久, 今村 俊幸, 中尾 昌広, 児玉 祐悦, 工藤 周平, 似鳥 啓吾, 伊奈 拓也, 上野 晃司, 藤澤 克樹, 清水 俊幸, 三吉 郁夫, 三輪 英樹, 細井 聡

    電子情報通信学会誌 = The journal of the Institute of Electronics, Information and Communication Engineers   2020.12

     More details

    Language:Japanese  

  • 最短格子ベクトル問 題求解における Ubiquity Generator Framework を用いた大規模 MPI 並列化

    立岩 斉明, 品野 勇治, 吉田 明広, 鍛冶 静雄, 安田 雅哉, 藤澤 克樹

    研究報告 ハイパフォーマンスコンピューティング(HPC)   2020.8

     More details

    Language:Japanese  

    Massive MPI Parallelization for Solving Shortest Vector Problem Based on Ubiquity Generator Framework

  • 巨大行列とグラフ解析 (特集 巨大行列)

    藤澤 克樹

    数学セミナー   2020.2

     More details

    Language:Japanese  

  • データサイエンスと最適化 : ヒト・モノのモビリティの数理モデル (特集 データサイエンスの数理 : 数理で読み解くデータの価値)

    藤澤 克樹, 秦 希望

    数理科学   2019.6

     More details

    Language:Japanese  

  • サイバーフィジカルシステムにおけるモビリティ最適化エンジンの開発 (特集 B2Bソリューション)

    藤澤 克樹

    パナソニック技報 = Panasonic technical journal   2019.5

     More details

    Language:Japanese  

  • K-Shortest Pathsを用いた多人数追跡におけるデータ削減による高速化

    秦 希望, 西川 由理, 中山 俊, 小澤 順, 藤澤 克樹

    人工知能学会全国大会論文集   2018.10

     More details

    Language:Japanese  

    Performance enhancement of multi-human tracking based on K-Shortest Paths by data reduction
    <p>Object tracking is a challenging problem and it has been improving dramatically in recent years. In this paper, we perform parallelized multi-object tracking system. Object tracking problem has 2 difficulties; one is to detect objects collect, and the other is to track collect using the collect object detection. Jerome et al. performed a multi-object tracking system using K-Shortest Paths to avoid these problems efficiently. However, it is difficult to calculate in parallel because of the iterations calculation of shortest paths on the graph while changing the weight of graph. In our method, we divided time intervals to apply KSP method from Probability Occupancy Map(POM), which is also obtained via using KSP method. Performance evaluation shows our algorithm is 5.4 times faster than the original KSP with 87&#37; accuracy.</p>

    DOI: 10.11517/pjsai.JSAI2018.0_2D103

  • Hybrid Vehicle Control and Optimization with a New Mathematical Method

    立岩 斉明, 秦 希望, 田中 智, 吉田 明宏, 若松 孝, 中山 俊, 藤澤 克樹

    自動制御連合講演会講演論文集   2018.9

     More details

    Language:Japanese  

    Hybrid Vehicle Control and Optimization with a New Mathematical Method

    DOI: 10.11511/jacc.61.0_1792

  • 大規模グラフ解析と都市OSの開発~ヒト・モノのモビリティに関する新しい数理モデルとその応用~

    藤澤克樹

    電子情報通信学会技術研究報告   2018.5

     More details

    Language:Japanese  

    大規模グラフ解析と都市OSの開発~ヒト・モノのモビリティに関する新しい数理モデルとその応用~

  • Performance evaluation of Graph500 considering CPU-DRAM power shifting Reviewed

    藤澤 克樹

    SC17 Regular, Electronic, and Educational Poster, International Conference for High Performance Computing, Networking, Storage and Analysis 17 (SC17)   2017.11

     More details

    Language:Others  

  • ヒト・モノのモビリティの数理モデルと産業応用

    藤澤克樹

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2017.9

     More details

    Language:Japanese  

    ヒト・モノのモビリティの数理モデルと産業応用

  • ポストペタスケールシステムにおける超大規模グラフ最適化基盤

    藤澤克樹

    戦略的創造研究推進事業CREST終了報告書(Web)   2017.4

     More details

    Language:Japanese  

    ポストペタスケールシステムにおける超大規模グラフ最適化基盤

  • 避難計画モデルに対する辞書式最速流の幾何学的分解と解析

    秦希望, 藤澤克樹, 藤澤克樹, 松林達史

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2017.3

     More details

    Language:Japanese  

    避難計画モデルに対する辞書式最速流の幾何学的分解と解析

  • 辞書式最速流と深層学習を用いた避難完了時間の予測

    田中智, 秦希望, 金子有旗, 藤澤克樹, 藤澤克樹

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2017.3

     More details

    Language:Japanese  

    辞書式最速流と深層学習を用いた避難完了時間の予測

  • Power-Efficient Breadth-First Search with DRAM Row Buffer Locality-Aware Address Mapping Reviewed

    Satoshi Imamura, Yuichiro Yasui, Koji Inoue, Takatsugu Ono, Hiroshi Sasaki, Katsuki Fujisawa

    Proceedings of HPGDMP 2016: High Performance Graph Data Management and Processing - Held in conjunction with SC 2016: The International Conference for High Performance Computing, Networking, Storage and Analysis   2017.1

     More details

    Language:Others  

    © 2016 IEEE. Graph analysis applications have been widely used in real services such as road-traffic analysis and social network services. Breadth-first search (BFS) is one of the most representative algorithms for such applications; therefore, many researchers have tuned it to maximize performance. On the other hand, owing to the strict power constraints of modern HPC systems, it is necessary to improve power efficiency (i.e., performance per watt) when executing BFS. In this work, we focus on the power efficiency of DRAM and investigate the memory access pattern of a state-of-the-art BFS implementation using a cycle-accurate processor simulator. The results reveal that the conventional address mapping schemes of modern memory controllers do not efficiently exploit row buffers in DRAM. Thus, we propose a new scheme called per-row channel interleaving and improve the DRAM power efficiency by 30.3&#37; compared to a conventional scheme for a certain simulator setting. Moreover, we demonstrate that this proposed scheme is effective for various configurations of memory controllers.

    DOI: 10.1109/HPGDMP.2016.010

  • コードレベル性能最適化が電力効率に与える影響の分析

    今村智史, 安井雄一郎, 稲富雄一, 藤澤克樹, 井上弘士, 小野貴継

    情報処理学会研究報告(Web)   2016.8

     More details

    Language:Japanese  

    コードレベル性能最適化が電力効率に与える影響の分析

  • CPUとDRAMへの電力バジェット配分を考慮したGraph500の性能評価

    垣深悠太, 安井雄一郎, 小野貴継, 稲富雄一, 藤澤克樹, 井上弘士

    情報処理学会研究報告(Web)   2016.8

     More details

    Language:Japanese  

    CPUとDRAMへの電力バジェット配分を考慮したGraph500の性能評価

  • 辞書式最速流による避難計画作成モデルの実験的解析

    小林 和博, 成澤 龍人, 安井 雄一郎, 藤澤 克樹

    日本オペレーションズ・リサーチ学会和文論文誌   2016.6

     More details

    Language:Japanese  

    EXPERIMENTAL ANALYSES OF THE EVACUATION PLANNING MODEL USING LEXICOGRAPHICALLY QUICKEST FLOW
    <p>In the case of disasters such as tsunamis, people should be quickly evacuated from the area affected by the disasters. In this article, we consider a dynamic network flow model of the evacuation planning for the people in the affected area. In the model, we represent the evacuation of the people as the dynamic flow, and the effective evacuation plan as the lexicographically quickest flow. More specifically, we show the model in which the capacity constraint of refuges is taken into account. We conduct computational experiments using the geospatial information and census data of local cities in Japan.</p>

    DOI: 10.15807/torsj.59.86

  • Mathematical Software – ICMS 2016—5th International Conference, Berlin, Germany, July 11-14, 2016, Proceedings

    藤澤 克樹

    Lecture Notes in Computer Science   2016.6

     More details

    Language:Others  

    DOI: 10.1007/978-3-319-42432-3

  • 大規模グラフ解析と都市OSの開発 : ヒト・モノのモビリティに関する新しい数理モデルとその応用

    藤澤 克樹

    回路とシステムワークショップ論文集 Workshop on Circuits and Systems   2016.5

     More details

    Language:Japanese  

    Large-scale Graph Analysis and Development of Urban OS : New Mathematical Models for Mobility Analysis

  • スパースモデリングのための高速・省電力計算 (特集 スパースモデリングの発展 : 原理から応用まで) -- (情報通信工学分野への応用) Reviewed

    藤澤 克樹

    電子情報通信学会誌 = The journal of the Institute of Electronics, Information and Communication Engineers   2016.5

     More details

    Language:Japanese  

    Fast and power efficient computation for sparse modeling

  • スパースモデリングのための高速・省電力計算 (特集 スパースモデリングの発展 : 原理から応用まで) -- (情報通信工学分野への応用)

    藤澤 克樹

    電子情報通信学会誌 = The journal of the Institute of Electronics, Information and Communication Engineers   2016.5

     More details

    Language:Japanese  

    Fast and Power Efficient Computation for Sparse Modeling

  • 招待講演 グラフ解析と最適化技術で実現する都市OS

    藤澤 克樹, 松尾 久人, 安井 雄一郎

    システム制御情報学会研究発表講演会講演論文集   2015.5

     More details

    Language:Japanese  

    Graph Analysis and Mathematical Optimization Techniques for Realizing Urban OS

  • 2-B-1 グラフ解析と最適化技術で実現する都市OS(統一テーマ関連(1))

    藤澤 克樹, 安井 雄一郎, 松尾 久人

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2015.3

     More details

    Language:Japanese  

  • NVM-based Hybrid BFS with memory efficient data structure Reviewed

    Keita Iwabuchi, Hitoshi Sato, Yuichiro Yasui, Katsuki Fujisawa, Satoshi Matsuoka

    Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014   2015.1

     More details

    Language:English  

    © 2014 IEEE. We introduce a memory efficient implementation for the NVM-based Hybrid BFS algorithm that merges redundant data structures to a single graph data structure, while offloading infrequent accessed graph data on NVMs based on the detailed analysis of access patterns, and demonstrate extremely fast BFS execution for large-scale unstructured graphs whose size exceed the capacity of DRAM on the machine. Experimental results of Kronecker graphs compliant to the Graph500 benchmark on a 2-way INTEL Xeon E5-2690 machine with 256 GB of DRAM show that our proposed implementation can achieve 4.14 GTEPS for a SCALE31 graph problem with 231 vertices and 235 edges, whose size is 4 times larger than the size of graphs that the machine can accommodate only using DRAM with only 14.99 &#37; performance degradation. We also show that the power efficiency of our proposed implementation achieves 11.8 MTEPS/W. Based on the implementation, we have achieved the 3rd and 4th position of the Green Graph500 list (2014 June) in the Big Data category.

    DOI: 10.1109/BigData.2014.7004270

  • Convex optimization approaches to maximally predictable portfolio selection Reviewed

    Jun Ya Gotoh, Katsuki Fujisawa

    Optimization   2014.11

     More details

    Language:English  

    In this article we propose a simple heuristic algorithm for approaching the maximally predictable portfolio, which is constructed so that return model of the resulting portfolio would attain the largest goodness-of-fit. It is obtained by solving a fractional program in which a ratio of two convex quadratic functions is maximized, and the number of variables associated with its nonconcavity has been a bottleneck in spite of continuing endeavour for its global optimization. The proposed algorithm can be implemented by simply solving a series of convex quadratic programs, and computational results show that it yields within a few seconds a (near) Karush-Kuhn-Tucker solution to each of the instances which were solved via a global optimization method in [H. Konno, Y. Takaya and R. Yamamoto, A maximal predictability portfolio using dynamic factor selection strategy, Int. J. Theor. Appl. Fin. 13 (2010) pp. 355-366]. In order to confirm the solution accuracy, we also pose a semidefinite programming relaxation approach, which succeeds in ensuring a near global optimality of the proposed approach. Our findings through computational experiments encourage us not to employ the global optimization approach, but to employ the local search algorithm for solving the fractional program of much larger size.

    DOI: 10.1080/02331934.2012.741237

  • 計算機のメモリ階層構造を考慮した実装手法 (特集 実装における計算技術 : アルゴリズムと数理の現実場面での活躍)

    安井 雄一郎, 藤澤 克樹

    オペレーションズ・リサーチ   2014.10

     More details

    Language:Japanese  

    近年の計算機技術の発展や,数理科学分野におけるアルゴリズムの進歩により,以前では考えられない規模の問題を扱うことができるようになってきた.その一方で,実装したソフトウェアが期待される性能を示さないといった場面も少なくない.本稿ではなぜそのような状況になってしまうのか,現在主流となるNUMAアーキテクチャを有したプロセッサの特性を示し,高速に動作することが求められるアルゴリズム実装の際にどのような点を考慮しながら進めれば良いか,それらの改善方法について解説を行う.

  • 2-H-5 プリミティブ・ソーティング・ネットワークの高速数え上げ算法(最適化(2))

    田中 勇真, 池上 敦子, 松井 泰子, 藤澤 克樹, 安井 雄一郎

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2014.8

     More details

    Language:Japanese  

  • 大規模グラフ解析と避難シミュレーションへの応用

    藤澤 克樹

    人工知能学会全国大会論文集   2014.5

     More details

    Language:Japanese  

    <p>スーパーコンピュータを用いた超大規模なグラフ最適化技術,およびその社会応用の例として,緊急避難シミュレーションを紹介する.</p>

    DOI: 10.11517/pjsai.JSAI2014.0_1C5OS13b1

  • 次世代スーパコンピュータ技術を用いた超大規模グラフ解析と実社会への応用 (特集 データを読み解く技術 : ビッグデータ,e-サイエンス,潜在的ダイナミクス) -- (e-サイエンス時代のアルゴリズム研究) Reviewed

    藤澤 克樹

    電子情報通信学会誌 = The journal of the Institute of Electronics, Information and Communication Engineers   2014.5

     More details

    Language:Japanese  

    Large-scale graph analysis and its applications using techniques of the next generation super computer

  • 1-F-5 Peta-scale General Solver for Semidefinite Programming : Extremely Large-scale Parallel Cholesky Solver

    FUJISAWA Katsuki, ENDO Toshio

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2014.3

     More details

    Language:English  

    1-F-5 Peta-scale General Solver for Semidefinite Programming : Extremely Large-scale Parallel Cholesky Solver

  • 2-E-1 緊急避難計画に対する普遍的最速流の実験的解析(防災・減災)

    成澤 龍人, 安井 雄一郎, 藤澤 克樹, 小林 和博

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2014.3

     More details

    Language:Japanese  

  • 1-F-4 省電力性能を考慮した幅優先探索(大規模計算)

    安井 雄一郎, 藤澤 克樹

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2014.3

     More details

    Language:Japanese  

  • 超大規模半正定値計画問題に対する高性能汎用ソルバの開発と評価

    藤澤克樹

    情報処理学会研究報告. AL, アルゴリズム研究会報告   2014.2

     More details

    Language:Japanese  

  • NUMAを考慮した並列幅優先探索

    安井雄一郎, 藤澤克樹

    情報処理学会研究報告. AL, アルゴリズム研究会報告   2014.2

     More details

    Language:Japanese  

    本発表では,NUMA アーキテクチャを有する計算機上で高い性能を示す幅優先探索について説明する.提案手法は汎用的なグラフ分割手法を用いて,プロセッサソケットと対となるローカルメモリを考慮し,局所性を高めることに成功している.本研究で開発した実装は,HPC 分野において注目されている幅優先探索の性能を用いたベンチマーク Graph500 の 1 ノード最高性能を,幅優先探索の省電力性能を用いたベンチマーク Green Graph500 では世界 1 位をそれぞれ獲得している.

  • 不揮発性メモリを用いたHybrid BFSアルゴリズム

    岩渕圭太, 佐藤仁, 溝手竜, 安井雄一郎, 藤澤克樹, 松岡聡

    情報処理学会研究報告. AL, アルゴリズム研究会報告   2014.2

     More details

    Language:Japanese  

    近年、SNS 解析、道路ネットワークの経路探索、スマートグリッド、創薬、遺伝子解析等の様々な分野で大規模なグラフに対する高速処理が求められているが、従来手法では、妥当な性能を得るためには全てのデータを DRAM 上にロードして実行する必要があり、その結果、DRAM の容量を増設することによる消費電力、価格の面でのコストの増加が問題になっている。そこで、我々は、BFS に対して NVM(不揮発性メモリ) を補助的に利用することで、DRAM の容量を超えるサイズのグラフを性能低下を抑えながら高速に処理する手法を提案し、開発を進めている。現時点で、省電力なビッグデータ処理のランキングである GreenGraph500 (2013 年 11 月) のビッグデータカテゴリのリストで 4 位 (1 ノードでは世界一) を達成した。

  • 最適化と計算の今後 : 大規模問題をどこまで解決できるのか? (特集 研究の楽しさ)

    藤澤 克樹, 品野 勇治

    オペレーションズ・リサーチ   2014.1

     More details

    Language:Japanese  

    近年,大規模かつ複雑な最適化問題を高速に解く需要はさまざまな産業界や学術分野において急速に高まりつつある.これからの研究においては最先端理論(Theory)+超大規模実データ(Practice)+最新計算技術(Computation)の三つを有機的に組み合わせることによって,実用に耐えうる解決策の提示と大規模最適化問題を扱う際の先例となることが求められている.本稿では最適化と計算に関する最新の傾向に触れるとともに,最適化の計算の今後についても考えていきたい.

  • Large-scale graph analysis and its applications using techniques of the next generation super computer Reviewed

    Katsuki Fujisawa

    Journal of the Institute of Electronics, Information and Communication Engineers   2014

     More details

    Language:English  

  • ULIBCライブラリを用いた共有メモリ型並列アルゴリズムの高速化

    安井 雄一郎, 藤澤 克樹, 竹内 聖悟, 湊 真一

    ハイパフォーマンスコンピューティングと計算科学シンポジウム論文集   2013.12

     More details

    Language:Japanese  

    Fast implementation of shared-memory parallel algorithm using ULIBC (Ubiquity Library for Intelligently Binding Cores)

  • 最適化と計算の今後 : 大規模問題をどこまで解決できるのか?(特別講演(1))

    藤澤 克樹

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2013.9

     More details

    Language:Japanese  

  • 1-E-4 大規模グラフに対する幅優先探索の高速化(探索理論)

    安井 雄一郎, 藤澤 克樹, 後藤 和茂

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2013.9

     More details

    Language:Japanese  

  • 2-F-10 最速フローを用いた避難所の評価(最適化(2))

    成澤 龍人, 安井 雄一郎, 藤澤 克樹, 小林 和博

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2013.9

     More details

    Language:Japanese  

  • 不揮発性メモリを用いたHybrid-BFSアルゴリズムの最適化と性能解析

    岩渕圭太, 佐藤仁, 安井雄一郎, 藤澤克樹, 松岡聡

    情報処理学会研究報告. [ハイパフォーマンスコンピューティング]   2013.9

     More details

    Language:Japanese  

    近年さまざまな分野で大規模なグラフに対する高速な処理が求められているが,その処理の特性上,妥当な性能を得るためには全てのデータを DRAM 上にロードして実行する必要があり,その結果,DRAM の容量を増設することによる消費電力,価格面でのコストの増加が問題となっている.そこで,Hybrid-BFS アルゴリズムに対して不揮発性メモリを補助的に利用した場合の I/O の最適化,性能低下要因の解析を行うことで性能低下を抑えながら大規模グラフ処理が実行可能かの評価を行った.その結果,一部データを不揮発性メモリに退避することで DRAM 用量が半分の環境において性能低下を 47.1&#37; まで抑えることができた.また,参照され難いエッジデータをさらに退避することで性能の低下を抑えながらより DRAM 使用量が削減可能なことの確認,さらに,性能低下要因の特定とその改善案を示し,性能低下を抑えながら大規模グラフ処理の実現可能性が示唆された.

  • 大規模半正定値計画問題に対する内点法アルゴリズムの高速計算

    藤澤 克樹, 遠藤 敏夫

    計算工学講演会論文集 Proceedings of the Conference on Computational Engineering and Science   2013.6

     More details

    Language:Japanese  

    Solving Extremely Large-scale Semidefinite Optimization Problems via Parallel Computation of Interior-point Method

  • 不揮発性メモリを用いたGraph500ベンチマークの大規模実行へ向けた予備評価

    岩渕圭太, 佐藤仁, 安井雄一郎, 藤澤克樹, 松岡聡

    先進的計算基盤システムシンポジウム論文集   2013.5

     More details

    Language:Japanese  

  • 不揮発性メモリを用いたGraph500ベンチマークの大規模実行へ向けた予備評価

    岩渕圭太, 佐藤仁, 安井雄一郎, 藤澤克樹, 松岡聡

    研究報告ハイパフォーマンスコンピューティング(HPC)   2013.2

     More details

    Language:Japanese  

    近年大規模グラフはさまざまな分野で出現しており,DRAM の容量を増設することによる消費電力増加の問題やそもそもシングルノード上の DRAM 容量を超えるグラフも出現している.本研究ではGraph 500 ベンチマークに対して不揮発性メモリを補助的に利用することで性能低下を最小限に押さえながらシングルノード上でできる限り大容量のグラフを扱えるようにすることを目指している.そこでまず本論文ではDRAM に乗りきらない問題サイズを実行するための手法を提案し,DRAM と不揮発性メモリの容量の比率が実行性能にどのような影響を与えるかについての予備評価を行った.

  • Parallel Computing for Large-scale Semidefinite Programs

    Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhide Nakata, Maho Nakata

    Tokyo Institute of Technology Bulletin   2013.2

     More details

    Language:Others  

    Parallel Computing for Large-scale Semidefinite Programs

  • The second-order reduced density matrix method and the two-dimensional Hubbard model Reviewed

    James S.M. Anderson, Maho Nakata, Ryo Igarashi, Katsuki Fujisawa, Makoto Yamashita

    Computational and Theoretical Chemistry   2013.1

     More details

    Language:English  

    The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CCSD (T)) accuracy without using the wave-function. One question that arises is how well does the RDM method perform with the same conditions that result in CCSD (T) accuracy in the strong correlation limit. The simplest and a theoretically important model for strongly correlated electronic systems is the Hubbard model. In this paper, we establish the utility of the RDM method when employing the P,. Q,. G,. T1 and T2' conditions in the two-dimensional Hubbard model case and we conduct a thorough study applying the 4. ×. 4 Hubbard model employing a coefficients. Within the Hubbard Hamiltonian we found that even in the intermediate setting, where U/. t is between 4 and 10, the P, Q, G, T1 and T2' conditions reproduced good ground state energies.

    DOI: 10.1016/j.comptc.2012.08.018

  • 大規模半正定値計画問題に対する内点法アルゴリズムの高速計算

    藤澤 克樹, 遠藤 敏夫

    Tsubame ESJ. : e-science journal   2012.12

     More details

    Language:Japanese  

    High-Performance General Solver for Extremely Large-Scale Semidefinite Programming Problems

  • Algorithm 925 Parallel solver for semidefinite programming problem having sparse schur complement matrix Reviewed

    Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhide Nakata, Maho Nakata

    ACM Transactions on Mathematical Software   2012.11

     More details

    Language:English  

    A SemiDefinite Programming (SDP) problem is one of the most central problems in mathematical optimization. SDP provides an effective computation framework for many research fields. Some applications, however, require solving a large-scale SDP whose size exceeds the capacity of a single processor both in terms of computation time and available memory. SDPARA (SemiDefinite Programming Algorithm parallel package) [Yamashita et al. 2003b] was designed to solve such large-scale SDPs. Its parallel performance is outstanding for general SDPs in most cases. However, the parallel implementation is less successful for some sparse SDPs obtained from applications such as Polynomial Optimization Problems (POPs) or Sensor Network Localization (SNL) problems, since this version of SDPARA cannot directly handle sparse Schur Complement Matrices (SCMs). In this article we improve SDPARA by focusing on the sparsity of the SCM and we propose a new parallel implementation using the formula-cost-based distribution along with a replacement of the dense Cholesky factorization. We verify numerically that these features are key to solving SDPs with sparse SCMs more quickly on parallel computing systems. The performance is further enhanced by multithreading and the new SDPARA attains considerable scalability in general. It also finds solutions for extremely large-scale SDPs arising from POPs which cannot be obtained by other solvers.

    DOI: 10.1145/2382585.2382591

  • Latest developments in the SDPA family for solving large-scale SDPs Reviewed

    Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhiro Kobayashi, Kazuhide Nakata, Maho Nakata

    International Series in Operations Research and Management Science   2012.10

     More details

    Language:Others  

    DOI: 10.1007/978-1-4614-0769-0_24

  • The second-order reduced density matrix method and the two-dimensional Hubbard model Reviewed

    James S. M. Anderson, Maho Nakata, Ryo Igarashi, Katsuki Fujisawa, Makoto Yamashita

    2012.7

     More details

    Language:Others  

    The second-order reduced density matrix method (the RDM method) has performed
    well in determining energies and properties of atomic and molecular systems,
    achieving coupled-cluster singles and doubles with perturbative triples (CC
    SD(T)) accuracy without using the wave-function. One question that arises is
    how well does the RDM method perform with the same conditions that result in
    CCSD(T) accuracy in the strong correlation limit. The simplest and a
    theoretically important model for strongly correlated electronic systems is the
    Hubbard model. In this paper, we establish the utility of the RDM method when
    employing the &#36;P&#36;, &#36;Q&#36;, &#36;G&#36;, &#36;T1&#36; and &#36;T2^prime&#36; conditions in the
    two-dimension al Hubbard model case and we conduct a thorough study applying
    the &#36;4 imes 4&#36; Hubbard model employing a coefficients. Within the Hubbard
    Hamilt onian we found that even in the intermediate setting, where &#36;U/t&#36; is
    between 4 and 10, the &#36;P&#36;, &#36;Q&#36;, &#36;G&#36;, &#36;T1&#36; and &#36;T2^prime&#36; conditions re
    produced good ground state energies.

    DOI: 10.1016/j.comptc.2012.08.018

  • PGAS言語X10による半正定値計画法の実装と評価

    渡部優, 藤澤克樹, 鈴村豊太郎

    先進的計算基盤システムシンポジウム論文集   2012.5

     More details

    Language:Japanese  

  • PGAS言語X10による半正定値計画問題の実装と評価

    渡部 優, 藤澤 克樹, 鈴村 豊太郎

    研究報告ハイパフォーマンスコンピューティング(HPC)   2012.3

     More details

    Language:Japanese  

    Evaluating Peformance of SDP Solver on PGAS Language X10

  • Netal: High-performance implementation of network analysis library considering computer memory hierarchy Reviewed

    Yuichiro Yasui, Katsuki Fujisawa, Kazushige Goto, Naoyuki Kamiyama, Mizuyo Talcamatsu

    Journal of the Operations Research Society of Japan   2011.12

     More details

    Language:Others  

    The use of network analysis has increased in various fields. In particular, a lot of attention has been paid to centrality metrics using shortest paths, which require a comparatively smaller amount of computation, and the global characteristic features within the network. While theoretical and experimental progress has enabled greater control over networks, large amounts of computation required for dealing with large-scale networks is a major hurdle. This research is on high-performance network analysis considering the memory hierarchy in a computer; it targets extremely important kernel types called shortest paths and centrality. Our implementation, called NETAL (NETwork Analysis Library), can achieve high efficiency in parallel processing using many-core processors such as the AMD Opteron 6174, which has the NUMA architecture. We demonstrated through tests on real-world networks that NETAL is faster than previous implementations. In the all-pairs shortest paths for the weighted graph USA-road-d. NY. gr (n. -264K, m -734K), our implementatioll solved the shortest path distance labels in 44.4 seconds and the shortest paths with multiple predecessors in 411.2 seconds. Compared with the 9th DJMACS benchmark solver, our implementation is, respectively, 302.7 times and 32.7 times faster. NETAL succeeded in solving the shortest path distance labels for the USA-road-d.IJSA.gr (ii =24M, m =581V1) without preprocessing in 7.75 days. Numerical results showed that our implementation performance was 432.4 times that of the Δ-stepping algorithm and 228.9 times that of the 9th DIMACS benchmark solver. Furthermore, while GraphCT took 18 hours to compute the betweenness of web-BerkStan, our implementation computed multiple centrality metncs (closeness, graph, stress, and betweenness) simultaneously within 1 hour. A performance increase of 2.4-3.7 times compared with R-MAT graph was confirmed for SSCA#2. © The Operations Research Society of Japan.

    DOI: 10.15807/jorsj.54.259

  • A special issue of the scope (seminar on computation and optimization for new extensions) Reviewed

    Katsuki Fujisawa, Jun Ya Gotoh

    Journal of the Operations Research Society of Japan   2011.12

     More details

    Language:Others  

  • A special issue of the scope (seminar on computation and optimization for new extensions) Reviewed

    Katsuki Fujisawa, Jun Ya Gotoh

    Journal of the Operations Research Society of Japan   2011.12

     More details

    Language:English  

  • Netal High-performance implementation of network analysis library considering computer memory hierarchy Reviewed

    Yuichiro Yasui, Katsuki Fujisawa, Kazushige Goto, Naoyuki Kamiyama, Mizuyo Talcamatsu

    Journal of the Operations Research Society of Japan   2011.12

     More details

    Language:English  

    The use of network analysis has increased in various fields. In particular, a lot of attention has been paid to centrality metrics using shortest paths, which require a comparatively smaller amount of computation, and the global characteristic features within the network. While theoretical and experimental progress has enabled greater control over networks, large amounts of computation required for dealing with large-scale networks is a major hurdle. This research is on high-performance network analysis considering the memory hierarchy in a computer; it targets extremely important kernel types called shortest paths and centrality. Our implementation, called NETAL (NETwork Analysis Library), can achieve high efficiency in parallel processing using many-core processors such as the AMD Opteron 6174, which has the NUMA architecture. We demonstrated through tests on real-world networks that NETAL is faster than previous implementations. In the all-pairs shortest paths for the weighted graph USA-road-d. NY. gr (n. -264K, m -734K), our implementatioll solved the shortest path distance labels in 44.4 seconds and the shortest paths with multiple predecessors in 411.2 seconds. Compared with the 9th DJMACS benchmark solver, our implementation is, respectively, 302.7 times and 32.7 times faster. NETAL succeeded in solving the shortest path distance labels for the USA-road-d.IJSA.gr (ii =24M, m =581V1) without preprocessing in 7.75 days. Numerical results showed that our implementation performance was 432.4 times that of the Δ-stepping algorithm and 228.9 times that of the 9th DIMACS benchmark solver. Furthermore, while GraphCT took 18 hours to compute the betweenness of web-BerkStan, our implementation computed multiple centrality metncs (closeness, graph, stress, and betweenness) simultaneously within 1 hour. A performance increase of 2.4-3.7 times compared with R-MAT graph was confirmed for SSCA#2.

    DOI: 10.15807/jorsj.54.259

  • 計算機のメモリ階層構造を考慮した高性能ネットワーク解析ライブラリNETAL

    安井 雄一郎, 藤澤 克樹, 佐藤 仁, 鈴村 豊太郎, 後藤 和茂

    情報処理学会研究報告. 計算機アーキテクチャ研究会報告   2011.11

     More details

    Language:Japanese  

    NETAL: High-Performance Implementation of NETwork Analysis Library Considering Computer Memory Hierarchy
    The use of network analysis has increased in various fields. The large amounts of computation required for dealing with large-scale networks is a major hurdle. We propose an efficient multithreaded computation which considers computer memory hierarchy on general computing environments to solve the shortest paths and the centrality metrics. Our implementation, called NETAL (NETwork Analysis Library), configures the processor core and local memory allocation (affinity), to avoid computational resource request conflicts by considering the difference in distances between processor cores and the RAM within the NUMA architecture of the AMD Opteron 6174. We demonstrated through tests on real-world networks that NETAL is faster than previous implementations. NETAL succeeded in solving the exact shortest path distance table for the USA-road-d.USA.gr (n =24M, m =58M) without preprocessing in 7.75 days. Numerical results showed that our implementation performance was 432.4 times that of the Δ-stepping algorithm and 228.9 times that of the 9th DIMACS reference solver. Furthermore, while it took GraphCT 21 days to compute the exact betweenness of USA-road-d.LKS.gr, our implementation computed multiple centrality metrics (closeness, graph, stress, and betweenness) simultaneously within 1 hour. A performance increase of 2.4-3.7 times compared with R-MAT graph was confirmed for SSCA#2.

  • 最適化分野におけるクラウド技術の利用

    藤澤 克樹, 安井 雄一郎, 高宮 安仁, 佐藤 仁

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   2011.6

     More details

    Language:Japanese  

    最適化問題に対するクラウド・コンピューティングの適用には様々な方法が提案されている.例えば大規模最適化問題に対して数値実験等を行うために,必要なときに,必要な量だけ計算機資源をインターネット上から調進してくるIaaSと呼ばれる技術の利用等がある.本解説ではこの利用方法に関連するクラウド技術による計算資源の動的な確保について触れてから,最適化問題として大規模なネットワークデータにおけるグラフ探索と応用,およびクラウド・コンピューティングの技術を用いた高速化などに関する話題について説明していく.

  • 大規模最短路問題に対するダイクストラ法の高速化

    安井 雄一郎, 藤澤 克樹, 笹島 啓史, 後藤 和茂

    日本オペレーションズ・リサーチ学会和文論文誌   2011.4

     More details

    Language:Japanese  

    FAST IMPLEMENTATION OF DIJKSTRA'S ALGORITHM FOR THE LARGE-SCALE SHORTEST PATH PROBLEM
    The shortest path problem can be widely applied not only to route search in large-scale network but to other optimization problems where the shortest path problems are used as subproblems. Although there exist stable and efficient algorithms for the shortest path problem, we need fast implementations when solving large-scale shortest path problems. In this paper, we discuss how to make fast and general implementations of Dijkstra's algorithm, where the memory hierarchy is carefully considered to specify the bottleneck of the algorithm and to improve the performance. Our implementations with the binary heap are superior to other existing implementations when taking three factors (performance, robustness, and required computational memory) into consideration. We show that our implementations can get optimal routes very quickly and require smaller computational memory compared with other implementations through systematic numerical experiments. We also explain the Web service for large-scale shortest path problems, which employs our implementations.

    DOI: 10.15807/torsj.54.58

  • 2-A-6 最適化と計算に関する最新の傾向について(計算と最適化の新展開)

    藤澤 克樹

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2011.3

     More details

    Language:Japanese  

  • 大規模最短路問題に対するダイクストラ法の高速化 (最適化モデルとアルゴリズムの新展開--RIMS研究集会報告集)

    安井 雄一郎, 藤澤 克樹, 鳥海 重喜, 田口 東

    数理解析研究所講究録   2011.2

     More details

    Language:Japanese  

  • 大規模最適化問題に対する高速計算--理論からスパコンまで

    藤澤 克樹

    数学セミナー   2010.10

     More details

    Language:Japanese  

  • Variational approach for the electronic structure calculation on the second-order reduced density matrices and the &#36;N&#36;-representability problem Reviewed

    Maho Nakata, Mituhiro Fukuda, Katsuki Fujisawa

    2010.10

     More details

    Language:Others  

    The reduced-density-matrix method is an promising candidate for the next
    generation electronic structure calculation method; it is equivalent to solve
    the Schr"odinger equation for the ground state. The number of variables is the
    same as a four electron system and constant regardless of the electrons in the
    system. Thus many researchers have been dreaming of a much simpler method for
    quantum mechanics. In this chapter, we give a overview of the reduced-density
    matrix method; details of the theories, methods, history, and some new
    computational results. Typically, the results are comparable to the CCSD(T)
    which is a sophisticated traditional approach in quantum chemistry.

  • 高速化・最適化のためのBLAS入門

    藤澤 克樹

    数学セミナー   2010.9

     More details

    Language:Japanese  

  • "Bare Metal" Cloud : 実マシンを提供するクラウドサービス

    高宮 安仁, 田浦 健次朗, 安井 雄一郎, 藤澤 克樹

    情報処理学会研究報告. [ハイパフォーマンスコンピューティング]   2010.8

     More details

    Language:Japanese  

    "Bare Metal" Cloud : A cloud service delivering real machines

  • 特集にあたって

    藤澤 克樹

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   2010.7

     More details

    Language:Japanese  

  • 最適化ソルバー開発への最新の情報技術の適用について

    藤澤 克樹

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   2010.7

     More details

    Language:Japanese  

    最適化ソフトウェアに関連性の高い情報技術には,マルチコア・プロセッサ,GPUコンピューティング,スーパーコンピュータ,クラウド・コンピューティングなどがある.これらの新技術が個別あるいは複合して最適化ソフトウェアとどのように絡んでくるのか,あるいはどのように活用すれば性能向上などの成果を上げることができるのかについては,最新の研究成果を含めてあまり知られていない.そこで本解説では,著者らのグループによる半正定値計画問題(SDP)に対するソフトウェア開発を題材にして,最先端の最適化アルゴリズムと最新の情報技術の有機的な融合方法等について触れていく.

  • 半正定値計画問題の使い方とソルバーの性能について

    藤澤 克樹

    システム制御情報学会 研究発表講演会講演論文集   2010.5

     More details

    Language:Japanese  

    Usage and Performance of SDP solvers

    DOI: 10.11509/sci.SCI10.0.320.0

  • 大規模最短路問題に対する高速処理システム--メモリ階層構造の考慮とクラスタ&クラウド技術による高速化 (21世紀の数理計画--アルゴリズムとモデリング--RIMS研究集会報告集)

    安井 雄一郎, 高宮 安仁, 藤澤 克樹

    数理解析研究所講究録   2010.4

     More details

    Language:Japanese  

  • 半正定値計画問題に対するソフトウェア開発で用いられる新技術について (21世紀の数理計画--アルゴリズムとモデリング--RIMS研究集会報告集)

    藤澤 克樹

    数理解析研究所講究録   2010.4

     More details

    Language:Japanese  

    New technologies in the SDPA project

  • 2-B-8 決定係数最大化ポートフォリオ選択に対する凸最適化アプローチ(連続最適化)

    後藤 順哉, 藤澤 克樹

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2010.3

     More details

    Language:Japanese  

  • 最短路検索

    宮本 裕一郎, 藤澤 克樹, 久保 幹雄

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   2009.11

     More details

    Language:Japanese  

  • 最短路問題

    藤澤 克樹, 宮本 裕一郎, 久保 幹雄

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   2009.11

     More details

    Language:Japanese  

  • 2-G-2 重み付き対数行列式を持つ半正定値計画問題を解くSDPA(連続最適化(1))

    福田 光浩, 中田 和秀, 藤澤 克樹, 山下 真

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2009.9

     More details

    Language:Japanese  

  • 2-A-15 アルゴリズムサイエンス分野における最適化ソフトウエアの実装方式(計算と最適化(3))

    藤澤 克樹

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2009.3

     More details

    Language:Japanese  

  • 1-A-5 大規模最短路問題に対する高速処理システム : メモリ階層構造の考慮とクラスタ&クラウド技術による高速化(つくばOR学生発表(5))

    安井 雄一郎, 藤澤 克樹, 笹島 啓史, 高宮 安仁, 後藤 和茂

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2009.3

     More details

    Language:Japanese  

  • 1-A-7 計算と最適化の新展開に向けて(計算と最適化(1))

    久野 誉人, 村松 正和, 藤澤 克樹

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2009.3

     More details

    Language:Japanese  

  • SDPA project and new features of SDPA 7.1.0 (計算科学の基盤技術としての高速アルゴリズムとその周辺--RIMS研究集会)

    藤澤 克樹, 小島 政和, 中田 和秀, 福田 光浩, 山下 真, 中田 真秀

    数理解析研究所講究録   2008.10

     More details

    Language:English  

    SDPA Project and New Features of SDPA 7.1.0 (High Performance Algorithms for Computational Science and Their Applications)

  • 2-F-14 大規模最短路問題に対するダイクストラ法の高速化(グラフ(2))

    安井 雄一郎, 藤澤 克樹, 笹島 啓史, 後藤 和茂, 宮本 裕一郎

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2008.9

     More details

    Language:Japanese  

  • 2-D-14 最適化問題用オンライン・ソルバーの構築と自動選択機能の開発(非線形計画(3))

    藤澤 克樹, 山下 真, 中田 和秀, 後藤 和茂

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   2008.9

     More details

    Language:Japanese  

  • Solution of optimal power flow problems by semi-definite programming Reviewed

    Xiao Qing Bai, Hua Wei, Katsuki Fujisawa

    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering   2008.7

     More details

    Language:Others  

    A new method using semi-definite programming (SDP) to solve optimal power flow (OPF) problems was presented. Named as SDP-OPF, the proposed method involves reformulating the OPF problem into a SDP model, which is a convex problem, and developing an interior point method (IPM) for SDP. Furthermore, the SDP sparsity technique can greatly improve the efficiency of storage and computing. A simple 4-bus power system was employed to explain the implementation process, which includes converting the OPF problem to the SDP model and mapping the results of SDP's to the OPF solutions. Extensive numerical simulations show that the results by SDP-OPF are the same as by NLP-OPF. SDP-OPF has the super-linear convergence, and it can guarantee the global optimal solutions within the polynomial times. Therefore, the study for SDP-OPF offers a good prospect.

  • Semidefinite programming for optimal power flow problems Reviewed

    Xiaoqing Bai, Hua Wei, Katsuki Fujisawa, Yong Wang

    International Journal of Electrical Power and Energy Systems   2008.7

     More details

    Language:English  

    This paper presents a new solution using the semidefinite programming (SDP) technique to solve the optimal power flow problems (OPF). The proposed method involves reformulating the OPF problems into a SDP model and developing an algorithm of interior point method (IPM) for SDP. That is said, OPF in a nonlinear programming (NP) model, which is a nonconvex problem, has been accurately transformed into a SDP model which is a convex problem. Based on SDP, the OPF problem can be solved by primal-dual interior point algorithms which possess superlinear convergence. The proposed method has been tested with four kinds of objective functions of OPF. Extensive numerical simulations on test systems with sizes ranging from 4 to 300 buses have shown that this method is promising for OPF problems due to its robustness.

    DOI: 10.1016/j.ijepes.2007.12.003

  • Solution of optimal power flow problems by semi-definite programming Reviewed

    Xiao Qing Bai, Hua Wei, Katsuki Fujisawa

    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering   2008.7

     More details

    Language:English  

    A new method using semi-definite programming (SDP) to solve optimal power flow (OPF) problems was presented. Named as SDP-OPF, the proposed method involves reformulating the OPF problem into a SDP model, which is a convex problem, and developing an interior point method (IPM) for SDP. Furthermore, the SDP sparsity technique can greatly improve the efficiency of storage and computing. A simple 4-bus power system was employed to explain the implementation process, which includes converting the OPF problem to the SDP model and mapping the results of SDP's to the OPF solutions. Extensive numerical simulations show that the results by SDP-OPF are the same as by NLP-OPF. SDP-OPF has the super-linear convergence, and it can guarantee the global optimal solutions within the polynomial times. Therefore, the study for SDP-OPF offers a good prospect.

  • Variational calculation of second-order reduced density matrices by strong N -representability conditions and an accurate semidefinite programming solver Reviewed

    Maho Nakata, Bastiaan J. Braams, Katsuki Fujisawa, Mituhiro Fukuda, Jerome K. Percus, Makoto Yamashita, Zhengji Zhao

    Journal of Chemical Physics   2008.5

     More details

    Language:English  

    The reduced density matrix (RDM) method, which is a variational calculation based on the second-order reduced density matrix, is applied to the ground state energies and the dipole moments for 57 different states of atoms, molecules, and to the ground state energies and the elements of 2-RDM for the Hubbard model. We explore the well-known N -representability conditions (P, Q, and G) together with the more recent and much stronger T1 and T 2′ conditions. T 2′ condition was recently rederived and it implies T2 condition. Using these N -representability conditions, we can usually calculate correlation energies in percentage ranging from 100% to 101%, whose accuracy is similar to CCSD(T) and even better for high spin states or anion systems where CCSD(T) fails. Highly accurate calculations are carried out by handling equality constraints and/or developing multiple precision arithmetic in the semidefinite programming (SDP) solver. Results show that handling equality constraints correctly improves the accuracy from 0.1 to 0.6 mhartree. Additionally, improvements by replacing T2 condition with T 2′ condition are typically of 0.1-0.5 mhartree. The newly developed multiple precision arithmetic version of SDP solver calculates extraordinary accurate energies for the one dimensional Hubbard model and Be atom. It gives at least 16 significant digits for energies, where double precision calculations gives only two to eight digits. It also provides physically meaningful results for the Hubbard model in the high correlation limit.

    DOI: 10.1063/1.2911696

  • 2-D-6 半正定値計画による分子の電子構造計算(数理計画(1))

    福田 光浩, 中田 真秀, BRAAMS Bastiaan J., 藤澤 克樹, PERCUS Jerome K., 山下 真, ZHAO Zhengji

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2008.3

     More details

    Language:Japanese  

  • SDPA Project Solving large-scale semidefinite programs Reviewed

    Katsuki Fujisawa, Kazuhide Nakata, Makoto Yamashita, Mituhiro Fukuda

    Journal of the Operations Research Society of Japan   2007.12

     More details

    Language:English  

    The Semidefinite Program (SDP) has recently attracted much attention of researchers in various fields for the following reasons: (i) It has been intensively studied in both theoretical and numerical aspects. Especially the primal-dual interior-point method is known as a powerful tool for solving large-scale SDPs with accuracy. (ii) Many practical problems in various fields such as combinatorial optimization, control and systems theory, robust optimization and quantum chemistry can be modeled or approximated by using SDPs. (iii) Several software packages for solving SDPs and related problems (ex. the Second-Order Cone Program : SOCP) are available on the Internet. In 1995, we started the SDPA Project aimed for solving large-scale SDPs with numerical stability and accuracy. The SDPA (SemiDefinite Programming Algorithm) is a C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method for solving the standard form SDP and its dual. We have also developed some variants of the SDPA to handle SDPs with various features. The SDPARA is a parallel version of the SDPA on multiple processors and distributed memory, which replaces two major bottleneck components of the SDPA by their parallel implementation using MPI and ScaLAPACK. The SDPARA on parallel computer has attractive features; it can load a large-scale SDP into the distributed memory and solve it in a reasonable time. In this paper, we show through some numerical experiments that the SDPARA attains high performance. The SDPARA-C is an integration of two software SDPARA and SDPA-C which is a primal-dual interior-point method using the positive definite matrix completion technique. The SDPARA-C requires a small amount of memory when we solve sparse SDPs with a large-scale matrix variable and/or a large number of equality constraints. The paper also explains a grid portal system for solving SDPs, which we call the SDPA Online Solver. In this paper, we review the major achievements of the SDPA Project on solving large-scale SDPs. This paper provides an introductory and comprehensive materials for researchers who are interested in practical computational aspects of the SDPs.

    DOI: 10.15807/jorsj.50.278

  • 最適化問題に対する並列計算技術の適用

    藤澤 克樹

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   2007.10

     More details

    Language:Japanese  

    数年前からクラスタやグリッドなどの並列計算技術が広く普及し,多くの分野に適用されて成功を収めている.最近ではマルチコアを搭載したプロセッサの登場によって,さらに簡単,安価に並列計算の適用が行えるようになった.本稿では最適化問題をめぐる並列計算技術の現状に触れた後,最適化問題として半正定値計画問題を取り上げ,並列計算の適用に関する実験結果と考察等を報告する

  • 半正定値計画問題(SDP)に対するソフトウェアと超大規模計算(ここまで使える数理計画法)

    藤澤 克樹

    シンポジウム   2006.9

     More details

    Language:Japanese  

    大規模最適化問題を解くための試みは様々な分野で行われているが,実用的なレベルで問題を解くためにはアルゴリズムの改良だけでなく,最新の情報技術を駆使して大規模な計算基盤上で並列計算を行うことも必要である.本解説では大規模最適化問題として半正定値計画問題(SDP)とSDPを解くためのソフトウェアSDPAを取り上げ,SDPの定義,例題や利用法などを簡単に説明した後で,SDPAで採用したアルゴリズム,超大規模なSDPに対する数値実験結果,クラスタ&グリッド技術を用いたSDPA Online Solverなどについて解説を行う.

  • PHoMpara - Parallel implementation of the polyhedral homotopy continuation method for polynomial systems Reviewed

    T. Gunji, S. Kim, K. Fujisawa, M. Kojima

    Computing (Vienna/New York)   2006.6

     More details

    Language:English  

    The polyhedral homotopy continuation method is known to be a successful method for finding all isolated solutions of a system of polynomial equations. PHoM, an implementation of the method in C++, finds all isolated solutions of a polynomial system by constructing a family of modified polyhedral homotopy functions, tracing the solution curves of the homotopy equations, and verifying the obtained solutions. A software package PHoMpara parallelizes PHoM to solve a polynomial system of large size. Many characteristics of the polyhedral homotopy continuation method make parallel implementation efficient and provide excellent scalability. Numerical results include some large polynomial systems that had not been solved.

    DOI: 10.1007/s00607-006-0166-2

  • PHoMpara - Parallel implementation of the polyhedral homotopy continuation method for polynomial systems Reviewed

    T. Gunji, S. Kim, K. Fujisawa, M. Kojima

    Computing (Vienna/New York)   2006.6

     More details

    Language:English  

    The polyhedral homotopy continuation method is known to be a successful method for finding all isolated solutions of a system of polynomial equations. PHoM, an implementation of the method in C++, finds all isolated solutions of a polynomial system by constructing a family of modified polyhedral homotopy functions, tracing the solution curves of the homotopy equations, and verifying the obtained solutions. A software package PHoMpara parallelizes PHoM to solve a polynomial system of large size. Many characteristics of the polyhedral homotopy continuation method make parallel implementation efficient and provide excellent scalability. Numerical results include some large polynomial systems that had not been solved.

    DOI: 10.1007/s00607-006-0166-2

  • 庁舎建築の企画・設計におけるコストプランニングシステムに関する研究(建築経済・住宅問題)

    古阪 秀三, 金多 隆, 加藤 直樹, 藤澤 克樹, 水野 隆介

    日本建築学会技術報告集   2006.4

     More details

    Language:Japanese  

    COST PLANNING SYSTEM FOR PUBLIC BUILDING CONSTRUCTION PROJECTS(Building Economics and Housing Problems)
    The purpose of the this research is to develop the cost planning system to be used step by step during the production process on construction projects of public offices. The purposes of the research are as follows. 1)System development for cost planning to achieve business decisions. 2)Improvement for traditional cost planning system by public clients. 3)System development for change order and Value Engineering clarified predictable construction costs. 4)System development to reduce workloads for estimating construction costs.

    DOI: 10.3130/aijt.12.437

  • Parallel Primal-Dual Interior-Point Methods for SemiDefinite Programs Reviewed

    Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, Kazuhide Nakata

    Parallel Combinatorial Optimization   2006.4

     More details

    Language:Others  

    DOI: 10.1002/9780470053928.ch9

  • Preprocessing sparse semidefinite programs via matrix completion Reviewed

    Katsuki Fujisawa, Mituhiro Fukuda, Kazuhide Nakata

    Optimization Methods and Software   2006.2

     More details

    Language:English  

    Considering that preprocessing is an important phase in linear programing, it should be more systematically incorporated in semidefinite programing (SDP) solvers. The conversion method proposed by the authors [Fukuda, M., Kojima, M., Murota, K. and Nakata, K., 2000, SIAM Journal on Optimization , 11, 647-674 and Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M. and Murota, K., 2003, Mathematical Programming (Series B) , 95, 303-327] is a preprocessing method for sparse SDPs based on matrix completion. This article proposed a new version of the conversion method, which employs a flop estimation function inside its heuristic procedure. Extensive numerical experiments are included showing the advantage of preprocessing by the conversion method for certain classes of very sparse SDPs.

    DOI: 10.1080/10556780512331319523

  • A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion Reviewed

    Kazuhide Nakata, Makoto Yamashita, Katsuki Fujisawa, Masakazu Kojima

    Parallel Computing   2006.1

     More details

    Language:Others  

    A parallel computational method SDPARA-C is presented for SDPs (semidefinite programs). It combines two methods SDPARA and SDPA-C proposed by the authors who developed a software package SDPA. SDPARA is a parallel implementation of SDPA and it features parallel computation of the elements of the Schur complement equation system and a parallel Cholesky factorization of its coefficient matrix. SDPARA can effectively solve SDPs with a large number of equality constraints; however, it does not solve SDPs with a large scale matrix variable with similar effectiveness. SDPA-C is a primal-dual interior-point method using the positive definite matrix completion technique by Fukuda et al., and it performs effectively with SDPs with a large scale matrix variable, but not with a large number of equality constraints. SDPARA-C benefits from the strong performance of each of the two methods. Furthermore, SDPARA-C is designed to attain a high scalability by considering most of the expensive computations involved in the primal-dual interior-point method. Numerical experiments with the three parallel software packages SDPARA-C, SDPARA and PDSDP by Benson show that SDPARA-C efficiently solves SDPs with a large scale matrix variable as well as a large number of equality constraints with a small amount of memory. © 2005 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.parco.2005.07.002

  • A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion Reviewed

    Kazuhide Nakata, Makoto Yamashita, Katsuki Fujisawa, Masakazu Kojima

    Parallel Computing   2006.1

     More details

    Language:English  

    A parallel computational method SDPARA-C is presented for SDPs (semidefinite programs). It combines two methods SDPARA and SDPA-C proposed by the authors who developed a software package SDPA. SDPARA is a parallel implementation of SDPA and it features parallel computation of the elements of the Schur complement equation system and a parallel Cholesky factorization of its coefficient matrix. SDPARA can effectively solve SDPs with a large number of equality constraints; however, it does not solve SDPs with a large scale matrix variable with similar effectiveness. SDPA-C is a primal-dual interior-point method using the positive definite matrix completion technique by Fukuda et al., and it performs effectively with SDPs with a large scale matrix variable, but not with a large number of equality constraints. SDPARA-C benefits from the strong performance of each of the two methods. Furthermore, SDPARA-C is designed to attain a high scalability by considering most of the expensive computations involved in the primal-dual interior-point method. Numerical experiments with the three parallel software packages SDPARA-C, SDPARA and PDSDP by Benson show that SDPARA-C efficiently solves SDPs with a large scale matrix variable as well as a large number of equality constraints with a small amount of memory.

    DOI: 10.1016/j.parco.2005.07.002

  • 実務的な大規模最適化問題に対する並列メタ戦略アルゴリズムの開発

    藤澤 克樹

    総合研究所年報   2005.4

     More details

    Language:Japanese  

  • グリッド技術を用いたサプライ・チェイン最適化システム

    久保 幹雄, 藤澤 克樹

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   2004.12

     More details

    Language:Japanese  

  • SOLVING LARGE SCALE OPTIMIZATION PROBLEMS VIA GRID AND CLUSTER COMPUTING(<Special Issue>Network Design, Control and Optimization) Reviewed

    Fujisawa Katsuki, Kojima Masakazu, Takeda Akiko, Yamashita Makoto

    日本オペレーションズ・リサーチ学会論文誌   2004.9

     More details

    Language:English  

    SOLVING LARGE SCALE OPTIMIZATION PROBLEMS VIA GRID AND CLUSTER COMPUTING(<Special Issue>Network Design, Control and Optimization)
    Solving large scale optimization problems requires a huge amount of computational power. The size of optimization problems that can be solved on a few CPUs has been limited due to a lack of computational power. Grid and cluster computing has received much attention as a powerful and inexpensive way of solving large scale optimization problems that an existing single-unit CPU cannot process. The aim of this paper is to show that grid and cluster computing provides tremendous power to optimization methods. The methods that this paper picks up are a successive convex relaxation method for quadratic optimization problems, a polyhedral homotopy method for polynomial systems of equations and a primal-dual interiorpoint method for semidefinite programs. Their parallel implementations on grids and clusters together with numerical results are reported. The paper also mentions a grid portal system for optimization problems briefly.

    DOI: 10.15807/jorsj.47.265

  • High performance grid and cluster computing for some optimization problems Reviewed

    Katsuki Fujisawa, Masakazu Kojima, Akiko Takeda, Makoto Yamashita

    Proceedings - International Symposium on Applications and the Internet Workshops   2004.9

     More details

    Language:English  

    The aim of this short article is to show that grid and cluster computing provides tremendous power to optimization methods. The methods that the article picks up are a successive convex relaxation method for quadratic optimization problems, a polyhedral homotopy method for polynomial systems of equations and a primal-dual interior-point method for semidefinite programming problems. Their parallel implementations on grids and clusters together with numerical results are reported.

  • PHoM - a polyhedral homotopy continuation method for polynomial systems

    T Gunji, S Kim, M Kojima, A Takeda, K Fujisawa, T Mizutani

    COMPUTING   2004.7

     More details

    Language:English  

    PHoM is a software package in C++ for finding all isolated solutions of polynomial systems using a polyhedral homotopy continuation method. Among three modules constituting the package, the first module StartSystem constructs a family of polyhedral-linear homotopy functions, based on the polyhedral homotopy theory, from input data for a given system of polynomial equations f(x)=0. The second module CMPSc traces the solution curves of the homotopy equations to compute all isolated solutions of f(x)=0. The third module Verify checks whether all isolated solutions of f(x)=0 have been approximated correctly. We describe numerical methods used in each module and the usage of the package. Numerical results to demonstrate the performance of PHoM include some large polynomial systems that have not been solved previously.

    DOI: 10.1007/s00607-003-0032-4

  • 大規模最適化問題への挑戦 -クラスタ&グリッド計算の適用例について-

    藤澤 克樹

    情報処理   2004.4

     More details

    Language:Japanese  

    A Challenge to Large Scale Optimization Problem - Applications of Grid & Cluster Computing -

  • 半正定値計画に対する行列補完型主双対内点法の並列化(錘計画問題と相補正問題)

    中田 和秀, 山下 真, 藤沢 克樹, 小島 政和

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2004.3

     More details

    Language:Japanese  

  • PHoM - A polyhedral homotopy continuation method for polynomial systems Reviewed

    Takayuki Gunji, Sunyoung Kim, Masakazu Kojima, Akiko Takeda, Katsuki Fujisawa, Tomohiko Mizutani

    Computing (Vienna/New York)   2004.1

     More details

    Language:English  

    PHoM is a software package in C++ for finding all isolated solutions of polynomial systems using a polyhedral homotopy continuation method. Among three modules constituting the package, the first module StartSystem constructs a family of polyhedral-linear homotopy functions, based on the polyhedral homotopy theory, from input data for a given system of polynomial equations f(x) = 0. The second module CMPSc traces the solution curves of the homotopy equations to compute all isolated solutions of f(x) = 0. The third module Verify checks whether all isolated solutions of f(x) = 0 have been approximated correctly. We describe numerical methods used in each module and the usage of the package. Numerical results to demonstrate the performance of PHoM include some large polynomial systems that have not been solved previously.

    DOI: 10.1007/s00607-003-0032-4

  • Solving large scale optimization problems via grid and cluster computing Reviewed

    Katsuki Fujisawa, Masakazu Kojima, Akiko Takeda, Makoto Yamashita

    Journal of the Operations Research Society of Japan   2004.1

     More details

    Language:English  

    Solving large scale optimization problems requires a huge amount of computational power. The size of optimization problems that can be solved on a few CPUs has been limited due to a lack of computational power. Grid and cluster computing has received much attention as a powerful and inexpensive way of solving large scale optimization problems that an existing single-unit CPU cannot process. The aim of this paper is to show that grid and cluster computing provides tremendous power to optimization methods. The methods that this paper picks up are a successive convex relaxation method for quadratic optimization problems, a polyhedral homotopy method for polynomial systems of equations and a primal-dual interior-point method for semidefinite programs. Their parallel implementations on grids and clusters together with numerical results are reported. The paper also mentions a grid portal system for optimization problems briefly.

    DOI: 10.15807/jorsj.47.265

  • ウェーブレット解析手法を用いた建築内部空間画像と知覚イメージの相関関係の分析

    宮高 泰匡, 加藤 直樹, 藤沢 克樹

    日本建築学会環境系論文集   2003.10

     More details

    Language:Japanese  

    CORRELATION ANALYSIS BETWEEN PHOTOS OF INTERNAL SPACE AND SUBJECTIVE IMPRESSION USING TWO-DIMENSIONAL WAVELET TRANSFORM
    When one experinces an architectural space, he/she perceives various impressions. The purpose of this paper is to quantitatively clarify the relationship between the impression perceived on a photo of an architectural internal space and the phsical features of its color image. For fifty sample color images of internal space, we have performed a questionaire concerning what impression he/she acquires for each image by asking him/her to choose one of the impression words from a pair of antonyms. Also, we have computed color and texture features of photos. Here we used two-dimensional wavelet transform to obtain texture features while Lab-color space is used to extract color features. We then applied a decision-tree algorithm in order to derive interpretable and meaningful correlation of the impression words and image features. As a result, for images for which a majority of people had the same impression, we have found an interesting, interpretable common feature among the images.

    DOI: 10.3130/aije.68.133

  • 半正定値計画問題に対するソフトウェア

    藤沢 克樹

    電子情報通信学会誌   2003.10

     More details

    Language:Japanese  

    The Survey of Softwares for the Semidefinite Programming

  • SDPARA: Semidefinite programming algorithm paRAllel version Reviewed

    M. Yamashita, K. Fujisawa, M. Kojima

    Parallel Computing   2003.8

     More details

    Language:Others  

    The SDPA (SemidDefinite Programming Algorithm) is known as efficient computer software based on the primal-dual interior-point method for solving SDPs (SemiDefinite Programs). In many applications, however, some SDPs become larger and larger, too large for the SDPA to solve on a single processor. In execution of the SDPA applied to large scale SDPs, the computation of the so-called Schur complement matrix and its Cholesky factorization consume most of the computational time. The SDPARA (SemiDefinite Programming Algorithm paRAllel version) is a parallel version of the SDPA on multiple processors and distributed memory, which replaces these two parts by their parallel implementation using MPI and ScaLAPACK. Through numerical results, we show that the SDPARA on a PC cluster consisting of 64 processors attains high scalability for large scale SDPs without losing the stability of the SDPA. © 2003 Elsevier B.V. All rights reserved.

    DOI: 10.1016/S0167-8191(03)00087-5

  • Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) Reviewed

    Makoto Yamashita, Katsuki Fujisawa, Masakazu Kojima

    Optimization Methods and Software   2003.8

     More details

    Language:English  

    SDP (SemiDefinite Programming) is one of the most attractive optimization models. It has many applications from various fields such as control theory, combinatorial and robust optimization, and quantum chemistry. The SDPA (SemiDefinite Programming Algorithm) is a software package for solving general SDPs based on primal-dual interior-point methods with the HRVW/KSH/M search direction. It is written in C++ with the help of LAPACK for numerical linear algebra for dense matrix computation. The purpose of this paper is to present a brief description of the latest version of the SDPA and its high performance for large scale problems through numerical experiments and comparisons with some other major software packages for general SDPs.

    DOI: 10.1080/1055678031000118482

  • Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) Reviewed

    Makoto Yamashita, Katsuki Fujisawa, Masakazu Kojima

    Optimization Methods and Software   2003.8

     More details

    Language:English  

    SDP (SemiDefinite Programming) is one of the most attractive optimization models. It has many applications from various fields such as control theory, combinatorial and robust optimization, and quantum chemistry. The SDPA (SemiDefinite Programming Algorithm) is a software package for solving general SDPs based on primal-dual interior-point methods with the HRVW/KSH/M search direction. It is written in C++ with the help of LAPACK for numerical linear algebra for dense matrix computation. The purpose of this paper is to present a brief description of the latest version of the SDPA and its high performance for large scale problems through numerical experiments and comparisons with some other major software packages for general SDPs.

    DOI: 10.1080/1055678031000118482

  • SDPARA Semidefinite programming algorithm paRAllel version Reviewed

    M. Yamashita, Katsuki Fujisawa, M. Kojima

    Parallel Computing   2003.8

     More details

    Language:English  

    The SDPA (SemidDefinite Programming Algorithm) is known as efficient computer software based on the primal-dual interior-point method for solving SDPs (SemiDefinite Programs). In many applications, however, some SDPs become larger and larger, too large for the SDPA to solve on a single processor. In execution of the SDPA applied to large scale SDPs, the computation of the so-called Schur complement matrix and its Cholesky factorization consume most of the computational time. The SDPARA (SemiDefinite Programming Algorithm paRAllel version) is a parallel version of the SDPA on multiple processors and distributed memory, which replaces these two parts by their parallel implementation using MPI and ScaLAPACK. Through numerical results, we show that the SDPARA on a PC cluster consisting of 64 processors attains high scalability for large scale SDPs without losing the stability of the SDPA.

    DOI: 10.1016/S0167-8191(03)00087-5

  • 半正定値計画問題を解くソフトウェアのPCクラスタ上における並列実装(最適化(2))

    山下 真, 藤沢 克樹, 小島 政和

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2003.3

     More details

    Language:Japanese  

  • Exploiting sparsity in semidefinite programming via matrix completion II: Implementation and numerical results Reviewed

    Kazuhide Nakata, Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, Kazuo Murota

    Mathematical Programming, Series B   2003.2

     More details

    Language:English  

    In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a conversion of a given sparse SDP having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller positive semidefinite matrix variables. The other is by incorporating a positive definite matrix completion itself in a primal-dual interior-point method. The current article presents the details of their implementations. We introduce new techniques to deal with the sparsity through a clique tree in the former method and through new computational formulae in the latter one. Numerical results over different classes of SDPs show that these methods can be very efficient for some problems.

    DOI: 10.1007/s10107-002-0351-9

  • Exploiting sparsity in semidefinite programming via matrix completion II Implementation and numerical results Reviewed

    Kazuhide Nakata, Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, Kazuo Murota

    Mathematical Programming, Series B   2003.2

     More details

    Language:English  

    In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a conversion of a given sparse SDP having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller positive semidefinite matrix variables. The other is by incorporating a positive definite matrix completion itself in a primal-dual interior-point method. The current article presents the details of their implementations. We introduce new techniques to deal with the sparsity through a clique tree in the former method and through new computational formulae in the latter one. Numerical results over different classes of SDPs show that these methods can be very efficient for some problems.

    DOI: 10.1007/s10107-002-0351-9

  • High Performance Grid Computing for Optimization Problem〔和文〕 (最適化の数理とアルゴリズム研究集会報告集)

    藤沢 克樹

    数理解析研究所講究録   2002.12

     More details

    Language:Japanese  

    High Performance Grid Computing for Optimization Problem (Mathematics and Algorithms of Optimization)

  • 11022 ウェーブレット解析手法を用いた建築内部空間画像と知覚イメージの相関分析

    宮高 泰匡, 加藤 直樹, 藤沢 克樹

    学術講演梗概集. 構造系   2002.8

     More details

    Language:Japanese  

    11022 Correlation Analysis between Photos of Internal Space and Perceptual Image using Wavelet Analysis

  • Parallel Implementation of Successive Convex Relaxation Methods for Quadratic Optimization Problems

    Akiko Takeda, Katsuki Fujisawa, Yusuke Fukaya, Masakazu Kojima

    Journal of Global Optimization   2002.6

     More details

    Language:Others  

    Parallel Implementation of Successive Convex Relaxation Methods for Quadratic Optimization Problems

  • 繰り返し型建築工事におけるTOCを用いた工程計画に関する研究

    植田 浩二, 古阪 秀三, 藤沢 克樹, 室谷 泰蔵, 金多 隆

    日本建築学会計画系論文集   2002.4

     More details

    Language:Japanese  

    CONSTRUCTION PLANNING OF REPETITIVE WORK WITH THEORY OF CONSTRAINTS
    The daily number of work labor is radical changeable in a jobsite when the contractors build a construction project. To improve this situation, various construction-planning methods were studied. But in recent years, because the building become high-rise and large-scale, it is very difficult to plan schedule with effective building production using past planning method, and construction planning included repetitive schedule is frequently planned. There are many past studies about construction planning of repetitive work, but until now, schedule planning is still depended on experience of the manager of construction site. Then, in this paper, the authors build a model of repetitive work, and search the optimization of this schedule planning with theory of constraints.

    DOI: 10.3130/aija.67.281_4

  • ENUMERATION OF ALL SOLUTIONS OF A COMBINATORIAL LINEAR INEQUALITY SYSTEM ARISING FROM THE POLYHEDRAL HOMOTOPY CONTINUATION METHOD Reviewed

    Takeda Akiko, Kojima Masakazu, Fujisawa Katsuki

    日本オペレーションズ・リサーチ学会論文誌   2002.4

     More details

    Language:English  

    ENUMERATION OF ALL SOLUTIONS OF A COMBINATORIAL LINEAR INEQUALITY SYSTEM ARISING FROM THE POLYHEDRAL HOMOTOPY CONTINUATION METHOD
    An interesting combinatorial (enumeration) problem arises in the initial phase of the polyhedral homotopy continuation method for computing all solutions of a polynomial equation system in complex variables. It is formulated as a problem of finding all solutions of a specially structured system of linear inequalities with a certain additional combinatorial condition. This paper presents a computational method for the problem fully utilizing the duality theory and the simplex method for linear programs, and report numerical results on a single cpu implementation and a parallel cpu implementation of the method.

    DOI: 10.15807/jorsj.45.64

  • 建築プロジェクトにおける工事編成最適化 : 工事編成支援システムの提案

    和田 祐考, 古阪 秀三, 藤澤 克樹, 金多 隆

    日本応用数理学会論文誌   2002.4

     More details

    Language:Japanese  

    Optimization of Sub-package Problem in Building Construction Project : Proposal of Sub-package Support System
    A single construction project is undertaken by a multitude of firms comprised of a prime contractor and many subcontractors. Generally, these organizations are assembled only for the period of the construction project. The success of the project depends largely on whether subcontractor organizations can be properly engaged and managed. The general contractor has the right to define the work scope for each component of the construction project and to assign the subcontractor to carry out each subtask. Therefore, it is very important for the general contractor to develop a good subcontractor team based on the specific characteristics of each project. In this paper, we present a new concept of a sub-package problem by focusing on its management time and cost. Also, we formulate the sub-package problem as a mathematical programming model through which we demonstrate some numerical results.

    DOI: 10.11540/jsiamt.12.1_9

  • 多面体ホモトピー法から生じる条件付き線形不等式系の全解列挙法

    武田 朗子, 小島 政和, 藤沢 克樹

    オペレーションズ・リサーチ : 経営の科学   2002.3

     More details

    Language:Japanese  

    1995年に多面体ホモトピー法が提案されて以来,多項式方程式系の全根列挙問題に関する研究は飛躍的に発展してきた.多面体ホモトピー法はそれまでのホモトピー法に比べて計算量が少なく済むという素晴らしい性質を持つ反面,ホモトピー法に必要な"初期方程式系"を形成するために「条件付き線形不等式系に対する全解列挙」という新たな組合せ問題が生じてしまう.現在,多項式方程式系の全根列挙に必要な計算時間の約3分の1が,この組合せ問題を解くことに費されており,この部分の高速化が望まれている.本論文では,条件付き線形不等式系の全解列挙問題に対して,線形計画法の感度分析テクニック,双対理論を使ったアルゴリズムを提案する.また,本アルゴリズムに対して効率の良い並列計算処理が可能であり,並列計算機に実装した結果,今まで解けなかった規模の問題まで扱えるようになった.本アルゴリズムの必要とする計算機メモリーや計算時間などを既存の実験結果と比べることにより,その有効性を検証する.

  • Enumeration of all solutions of a combinatorial linear inequality system arising from the polyhedral homotopy continuation method Reviewed

    Akiko Takeda, Masakazu Kojima, Katsuki Fujisawa

    Journal of the Operations Research Society of Japan   2002.1

     More details

    Language:English  

    An interesting combinatorial (enumeration) problem arises in the initial phase of the polyhedral homotopy continuation method for computing all solutions of a polynomial equation system in complex variables. It is formulated as a problem of finding all solutions of a specially structured system of linear inequalities with a certain additional combinatorial condition. This paper presents a computational method for the problem fully utilizing the duality theory and the simplex method for linear programs, and report numerical results on a single cpu implementation and a parallel cpu implementation of the method.

    DOI: 10.15807/jorsj.45.64

  • 建築画像の消失点検出手法の開発とそれに基づく3次元建築モデルの再構成手法

    山中 俊介, 加藤 直樹, 藤澤 克樹

    日本建築学会計画系論文集   2001.12

     More details

    Language:Japanese  

    DEVELOPMENT OF A METHOD FOR DETECTING VANISHING POINTS OF AN ARCHITECTURAL IMAGE AND RECONSTRUCTING A 3D ARCHITECTURAL MODEL
    We present a method for detecting vanishing points of an architectural image, which consists of mainly parallel and orthogonal lines, and reconstructing a 3D architectural model. For this, we implement an algorithm for line detection from an architectural image, based on the Hough Transform employing the plane sweep technique and test its efficiency and ability of the line detection from digital images. We then apply it to architectural images in order to see the practical usefulness of the proposed method.

    DOI: 10.3130/aija.66.269_1

  • 建築生産情報の確定過程に関する研究

    勝山 典一, 古阪 秀三, 藤澤 克樹, 金多 隆

    日本建築学会計画系論文集   2001.12

     More details

    Language:Japanese  

    STUDY ON WORKING DRAWINGS AND SHOP DRAWINGS SCHEDULING
    The objectives that this paper has aimed at are as follows: 1) To develop a system which can quantitatively indicate the influence on the project cost by focusing on the finish time of working drawings and shop drawings. 2) To propose the method of optimizing the schedule of making working drawings and shop drawings under consideration of various constrained conditions. Using this system, the owner of the project can get theoretical background for the adjustment of the conflict between the design team and the construction team from the point of the optimization of the project cost in the schedule of making working drawings and shop drawings. As local search is one of the most effective heuristic algorithms for optimization problem, it is applied to the optimization of the schedule of making working drawings and shop drawings.

    DOI: 10.3130/aija.66.223_5

  • 建築生産分野における最適化(統合オペレーション)

    藤沢 克樹

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   2001.5

     More details

    Language:Japanese  

  • Variational calculations of fermion second-order reduced density matrices be semidefinite programming algorithm Reviewed

    Maho Nakata, Hiroshi Nakatsuji, Masahiro Ehara, Mitsuhiro Fukuda, Kazuhide Nakata, Katsuki Fujisawa

    Journal of Chemical Physics   2001.5

     More details

    Language:English  

    The DMVT was developed systematically by using semidefinite programming algorithm (SDPA) as a problem solver. It was shown that the technique is very stable. Although errors were found, these are permissible in both energy and properties.

    DOI: 10.1063/1.1360199

  • 広域分散コンピューティング環境における数理計画ソフトウェアSDPA

    藤沢 克樹, 武田 朗子, 小島 政和, 中田 和秀

    情報処理学会研究報告. HPC,[ハイパフォーマンスコンピューティング]   2001.5

     More details

    Language:Japanese  

    The SDPA (SemiDefinite Programming Algorithm) on the Ninf (A Network based Information Library for the Global Computing)
    In resent years, semidefinite program(SDP)has been intensively studied both in theoretical and practical aspects of various fields including interior-point methods, combinatorial optimization and the control and systems theory. The SDPA(SemiDefinite Programming Algorithm)[1]is an optimization software, implemented by C++ language, of a Mehrotra-type primal-dual predictor-corrector interior-point method for solving the standard form semidefinite program. In this paper, we also discuss parallel execution of the SDPA on the Ninf[3], a global network-wide computing infrastructure which has been developed for high-performance numerical computation services. We report some numerical results on a parallel implementation of the successive convex relaxation method proposed by Kojima and Tuncel[4]applying the SDPA on the Ninf.

  • Variational calculations of fermion second-order reduced density matrices be semidefinite programming algorithm Reviewed

    Maho Nakata, Hiroshi Nakatsuji, Masahiro Ehara, Mitsuhiro Fukuda, Kazuhide Nakata, Katsuki Fujisawa

    Journal of Chemical Physics   2001.5

     More details

    Language:English  

    The DMVT was developed systematically by using semidefinite programming algorithm (SDPA) as a problem solver. It was shown that the technique is very stable. Although errors were found, these are permissible in both energy and properties.

    DOI: 10.1063/1.1360199

  • 建築工事編成最適化システムの構築

    則武 譲二, 古阪 秀三, 藤澤 克樹, 金多 隆

    日本建築学会計画系論文集   2001.4

     More details

    Language:Japanese  

    OPTIMIZATION SYSTEM OF SUB-PACKAGE PROBLEM IN BUILDING CONSTRUCTION PROJECT USING MATHEMATICAL PROGRAMMING
    This paper describes the sub-package problem in the building construction project which is defined to combine various resources under some constrained conditions and multipurpose. Multipurpose includes the term of works, the cost, the quality, the safety, and so on. Various resources include the labor, the material, and the temporary facilities and machinery, etc. The sub-package is currently arranged through the personal judgment of the site manager. However, this way of arrangement comes to the limitation. In this paper, the methods of the sub-package in construction firms are collected through interviews and surveys. Then, the decision-making support system of the sub-package is developed to achieve the optimization with mathematical programming model where the evaluation criteria are the overhead cost and the management time in sub-package problem.

    DOI: 10.3130/aija.66.235_2

  • TD-1-1 目で見るグラフ分割アルゴリズム

    加藤 直樹, 藤沢 克樹

    電子情報通信学会総合大会講演論文集   2001.3

     More details

    Language:Japanese  

    Animating Graph Partition Algorithm

  • 半正定値計画法を用いた重複固有値を有するトラスのトポロジー最適化問題

    寒野 善博, 大崎 純, 藤澤 克樹, 加藤 直樹

    最適化シンポジウム講演論文集   2000.10

     More details

    Language:Japanese  

    Topology Optimization of Trusses for Specified Multiple Eigenvalue by using Semidefinite Programming
    Algorithms based on Semi-Definite Programming (SDP) are proposed for the truss topology optimization problems for specified fundamental eigenvalue of free vibration and linear buckling load factor, and optimal topologies of trusses are computed by using the Semi-Definite Programming Algorithm (SDPA). It is well known that optimizing structures for specified minimum eigenvalue is difficult because of non-differentiability of the minimum eigenvalue for the cases of multimodal solutions. It is shown, in the examples, that the proposed algorithms are applicable to multimodal cases.

    DOI: 10.1299/jsmeoptis.2000.4.151

  • 半正定値計画問題に対するソフトウェアSDPAの広域並列計算システム (Mathematical Science of Optimization)

    藤澤 克樹, 武田 朗子, 小島 政和, 中田 和秀

    数理解析研究所講究録   2000.10

     More details

    Language:Japanese  

    The SDPA (SemiDefinite Programming Algorithm) on the Ninf (A Network based Information Library for the Global Computing) (Mathematical Science of Optimization)

  • A Combinatorial Problem Arising from Polyhedral Homotopies for Solving Polynomial Systems (Mathematical Science of Optimization)

    武田 朗子, 小島 政和, 藤澤 克樹

    数理解析研究所講究録   2000.10

     More details

    Language:English  

    A Combinatorial Problem Arising from Polyhedral Homotopies for Solving Polynomial Systems (Mathematical Science of Optimization)

  • Solving Sparse Semidefinite Programs by Matrix Completion(Part 1) (Mathematical Science of Optimization)

    福田 光浩, 中田 和秀, 藤澤 克樹, 小島 政和, 室田 一雄

    数理解析研究所講究録   2000.10

     More details

    Language:English  

    Solving Sparse Semidefinite Programs by Matrix Completion(Part 1) (Mathematical Science of Optimization)

  • 8114 キャッシュフローを考慮した複数プロジェクトスケジューリング

    上甲 武司, 加藤 直樹, 古阪 秀三, 藤沢 克樹

    学術講演梗概集. F-1, 都市計画, 建築経済・住宅問題   2000.7

     More details

    Language:Japanese  

    Multi-Project Scheduling with Discounted Cash Flows

  • 11009 建築画像の消失点検出手法の開発とそれに3次元建築モデルの再構成手法

    山中 俊介, 加藤 直樹, 藤沢 克樹

    学術講演梗概集. A-2, 防火,海洋,情報システム技術   2000.7

     More details

    Language:Japanese  

    Development of a method for detecting vanishing points of an architectural image and reconstructing a 3D architectural model

  • 半正定値計画問題に対する内点法ソフトウェアSDPA(SemiDefinite Programming Algorithm)

    藤沢 克樹

    システム/制御/情報   2000.6

     More details

    Language:Japanese  

    The Software of the Primal-Dual Interior-Point Method for Semidefinite Programming SPDA(SemiDefinite Programming Algorithm)

    DOI: 10.11509/isciesci.44.2_51

  • 2033 半正定値計画法を用いた指定座屈荷重係数を有するトラスのトポロジー最適化(構造)

    寒野 善博, 大崎 純, 藤澤 克樹, 加藤 直樹

    日本建築学会近畿支部研究報告集. 構造系   2000.5

     More details

    Language:Japanese  

    2033 Topology Optimization of Trusses for Specified Multiple Linear Buckling Load Factor by using Semidefinite Programming

  • SDPA(半正定値計画問題に対するソフトウェア)

    藤沢 克樹

    オペレーションズ・リサーチ : 経営の科学 = [O]perations research as a management science [r]esearch   2000.3

     More details

    Language:Japanese  

  • 半正定値計画法を用いた構造最適設計 (最適化のための連続と離散数理)

    寒野 善博, 藤澤 克樹, 大崎 純, 加藤 直樹

    数理解析研究所講究録   1999.11

     More details

    Language:Japanese  

  • Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints Reviewed

    M. Ohsaki, K. Fujisawa, N. Katoh, Y. Kanno

    Computer Methods in Applied Mechanics and Engineering   1999.11

     More details

    Language:English  

    Topology optimization problem of trusses for specified eigenvalue of vibration is formulated as Semi-Definite Programming (SDP), and an algorithm is presented based on the Semi-Definite Programming Algorithm (SDPA) which utilizes extensively the sparseness of the matrices. Since the sensitivity coefficients of the eigenvalues with respect to the design variables are not needed, the SDPA is especially useful for the case where the optimal design has multiple fundamental eigenvalues. Global and local modes are defined and a procedure is presented for generating optimal topology from the practical point of view. It is shown in the examples, that SDPA has advantage over existing methods in view of computational efficiency and accuracy of the solutions, and an optimal topology with five-fold fundamental eigenvalue is found without any difficulty. © 1999 Elsevier Science S.A.

    DOI: 10.1016/S0045-7825(99)00056-0

  • Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints Reviewed

    M. Ohsaki, K. Fujisawa, N. Katoh, Y. Kanno

    Computer Methods in Applied Mechanics and Engineering   1999.11

     More details

    Language:English  

    Topology optimization problem of trusses for specified eigenvalue of vibration is formulated as Semi-Definite Programming (SDP), and an algorithm is presented based on the Semi-Definite Programming Algorithm (SDPA) which utilizes extensively the sparseness of the matrices. Since the sensitivity coefficients of the eigenvalues with respect to the design variables are not needed, the SDPA is especially useful for the case where the optimal design has multiple fundamental eigenvalues. Global and local modes are defined and a procedure is presented for generating optimal topology from the practical point of view. It is shown in the examples, that SDPA has advantage over existing methods in view of computational efficiency and accuracy of the solutions, and an optimal topology with five-fold fundamental eigenvalue is found without any difficulty.

    DOI: 10.1016/S0045-7825(99)00056-0

  • Approximation of Optimal Two-Dimensional Association Rules for Categorical Attributes Using Semidefinite Programming Reviewed

    藤沢 克樹, 羽室 行信, 加藤 直樹

    人工知能基礎論研究会   1999.7

     More details

    Language:English  

    Approximation of Optimal Two-Dimensional Association Rules for Categorical Attributes Using Semidefinite Programming
    © Springer-Verlag Berlin Heidelberg 1999. We consider the problem of finding two-dimensional association rules for categorical attributes. Suppose we have two conditional attributes A and B both of whose domains are categorical, and one binary target attribute whose domain is {“positive”, “negative”}. We want to split the Cartesian product of domains of A and B into two subsets so that a certain objective function is optimized, i.e., we want to find a good segmentation of the domains of A and B. We consider in this paper the objective function that maximizes the confidence under the constraint of the upper bound of the support size. We first prove that the problem is NP-hard, and then propose an approximation algorithm based on semidefinite programming. In order to evaluate the effectiveness and efficiency of the proposed algorithm, we carry out computational ex- periments for problem instances generated by real sales data consisting of attributes whose domain size is a few hundreds at maximum. Approxi- mation ratios of the solutions obtained measured by comparing solutions for semidefinite programming relaxation range from 76&#37; to 95&#37;. It is observed that the performance of generated association rules are signifi- cantly superior to that of one-dimensional rules.

    DOI: 10.1007/3-540-46846-3_14

  • 20190 半正定値計画法を用いた重複固有振動数を有するトラスのトポロジー最適化

    寒野 善博, 藤澤 克樹, 大崎 純, 加藤 直樹

    学術講演梗概集. B-1, 構造I, 荷重・信頼性,応用力学・構造解析,基礎構造,シェル・立体構造・膜構造   1999.7

     More details

    Language:Japanese  

    Semi-Definite Programming for Topology Optimization of Trusses under Multiple Eigenvalue Constraints

  • 8048 キャッシュフローを考慮した一般化資源制約付きプロジェクトスケージューリング問題に関する研究

    後藤 英司, 加藤 直樹, 藤沢 克樹, 上甲 武司

    学術講演梗概集. F-1, 都市計画, 建築経済・住宅問題   1999.7

     More details

    Language:English  

    Maximizing Net Present Value for Generalized Resouece Constrained Project Scheduling Problem

  • 非線形最適化と変分不等式に関する国際会議(学術会合報告)

    藤沢 克樹

    応用数理   1999.6

     More details

    Language:Japanese  

    International Conference on Nonlinear Programming and Variational Inequalities(Conference Reports)

    DOI: 10.11540/bjsiam.9.3_269_1

  • 8025 キャッシュフローを考慮した一般化資源制約付きプロジェクトスケジューリング問題に関する研究(建築経済・住宅問題)

    藤沢 克樹, 後藤 英司, 加藤 直樹, 上甲 武司

    日本建築学会近畿支部研究報告集. 計画系   1999.5

     More details

    Language:English  

    8025 Maximizing Net Present Value for Generalized Resource Constrained Project Scheduling Problem

  • 2019 半正定値計画法を用いた指定1次固有振動数を有するトラスのトポロジー最適化(構造)

    寒野 善博, 加藤 直樹, 大崎 純, 藤澤 克樹

    日本建築学会近畿支部研究報告集. 構造系   1999.5

     More details

    Language:Japanese  

    2019 Semi-Definite Programming for Topology Optimization of Trusses under Multiple Eigenvalue Constraints

  • 半正定値計画問題に対する主双対内点法における共役勾配法の実装

    中田 和秀, 藤沢 克樹, 小島 政和

    統計数理 = Proceedings of the Institute of Statistical Mathematics   1998.12

     More details

    Language:Japanese  

    Using the Conjugate Gradient Method in Interior-points Methods for Semidefinite Programs

  • The life span method - A new variant of local search Reviewed

    Mikio Kubo, Katsuki Fujisawa

    Japan Journal of Industrial and Applied Mathematics   1998.10

     More details

    Language:Others  

    In this paper, we present a variant of local search, namely the Life Span Method (LSM), for generic combinatorial optimization problems. The LSM can be seen as a variation of tabu search introduced by Glover [18, 19]. We outline applications of the LSM to several combinatorial optimization problems such as the maximum stable set problem, the traveling salesman problem, the quadratic assignment problem, the graph partitioning problem, the graph coloring problem, and the job-shop scheduling problem.

    DOI: 10.1007/BF03167318

  • 半正定値計画問題(SDP)に対する主双対内点法の実装と工学的応用について

    藤沢 克樹

    情報処理学会研究報告. AL, アルゴリズム研究会報告   1998.9

     More details

    Language:English  

    The Implementation of the Primal-Dual Interior-Point Method for the Semidefinite Programs and its Engineering Applications
    In resent years, semidefinite program (SDP) has been intensively studies both in theoretical and practical aspects of various fields including interior-point method, combinatorial optimization and the control and systems theory. The SDPA (SemiDefinite Programming Algorithm) [4] is a C++ implementation of a Mehrotra-type primal-dual predictor-corrector interior-point method for solving the standard form semidefinite program. The SDPA incorporates data structures for handling sparse matrices and an efficient method proposed by Fujisawa et al. [5] for computing search directions when problems to be solved are large scale and sparse. Finally, we report numerical experiments of the SDP for the structural optimization under multiple eigenvalue constraints.

  • The life span method - A new variant of local search Reviewed

    Mikio Kubo, Katsuki Fujisawa

    Japan Journal of Industrial and Applied Mathematics   1998.1

     More details

    Language:English  

    In this paper, we present a variant of local search, namely the Life Span Method (LSM), for generic combinatorial optimization problems. The LSM can be seen as a variation of tabu search introduced by Glover [18, 19]. We outline applications of the LSM to several combinatorial optimization problems such as the maximum stable set problem, the traveling salesman problem, the quadratic assignment problem, the graph partitioning problem, the graph coloring problem, and the job-shop scheduling problem.

    DOI: 10.1007/BF03167318

  • Exploiting sparsity in primal-dual interior-point methods for semidefinite programming Reviewed

    Katsuki Fujisawa, Masakazu Kojima, Kazuhide Nakata

    Mathematical Programming, Series B   1997.10

     More details

    Language:English  

    The Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro and Nesterov-Todd search directions have been used in many primal-dual interior-point methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when the semidefinite program to be solved is large scale and sparse. © 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

    DOI: 10.1007/BF02614319

  • Exploiting sparsity in primal-dual interior-point methods for semidefinite programming Reviewed

    Katsuki Fujisawa, Masakazu Kojima, Kazuhide Nakata

    Mathematical Programming, Series B   1997.10

     More details

    Language:English  

    The Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro and Nesterov-Todd search directions have been used in many primal-dual interior-point methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when the semidefinite program to be solved is large scale and sparse.

    DOI: 10.1007/BF02614319

  • 半正定値計画(SDP)に対する内点法プログラムの数値実験(線型行列不等式と半正定値計画法)

    藤沢 克樹

    数理解析研究所講究録   1997.6

     More details

    Language:Japanese  

  • ロジスティクスにおける最適化ツールの開発(交通・輸送(2))

    宇野 毅明, 藤沢 克樹, 久保 幹雄

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   1997.4

     More details

    Language:Japanese  

  • 組合せ最適化問題に対する近似解法

    藤沢克樹

    第8回RAMPシンポジウム論文集, 1996   1996.7

     More details

    Language:Others  

  • 最大カット問題に対するSemidefinite Programming緩和(数理計画(2))

    古屋 貴行, 藤江 哲也, 藤沢 克樹, 小島 政和

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   1996.5

     More details

    Language:Japanese  

  • Experimental analysis of a semidefinite programming approach to the graph partitioning problem

    久保 幹雄, 藤沢 克樹, 森戸 晋

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   1995.3

     More details

    Language:English  

    Experimental analysis of a semidefinite programming approach to the graph partitioning problem

  • Clusteringによるグラフ分割問題へのメタ解法(グラフ・ネットワーク(2))

    下村 雅彦, 藤沢 克樹, 森戸 晋, 久保 幹雄

    日本オペレーションズ・リサーチ学会春季研究発表会アブストラクト集   1995.3

     More details

    Language:Japanese  

  • Tabu Search with a Diversification Strategy for Job Shop Scheduling Problem(スケジューリング(2))

    山越 康裕, 高山 裕志, 藤沢 克樹, 今泉 淳

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   1994.10

     More details

    Language:Japanese  

    Tabu Search with a Diversification Strategy for Job Shop Scheduling Problem

  • Fast Implementation and Experiments of n Queens' Problem

    久保 幹雄, 藤沢 克樹, 森戸 晋

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   1994.10

     More details

    Language:English  

    Fast Implementation and Experiments of n Queens' Problem

  • Parameter Optimization of the Tabu Search for the Maximum Clique Problem

    藤沢 克樹, 久保 幹雄, 森戸 晋

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   1994.10

     More details

    Language:English  

    Parameter Optimization of the Tabu Search for the Maximum Clique Problem

  • Tabu Searchのグラフ分割問題への適用と実験的解析

    藤沢 克樹, 久保 幹雄, 森戸 晋

    電気学会論文誌. C   1994.6

     More details

    Language:Others  

    An Application of Tabu Search to the Graph Partitioning Problem and its Experimental Analysis
    In this paper, we report on an application of tabu search to the graph partitioning problem which has applications on circuit board wiring and program segmentation. We discuss how to adapt tabu search to the graph partitioning problem and compare the performance with simulated annealing, another variant of local search incorporating randomized technique. Numerical experiments show that our algorithm dominates the simulated annealing algorithm in accuracy of solutions and speed on both uniform and geometric instances. In particular, our tabu search implementation works much better than the simulated annealing algorithm on structured (geometric) instances. We also investigate how to tune up our implementation and to optimize the various parameters via extensive numerical experiments.

    DOI: 10.1541/ieejeiss1987.114.4_430

  • Tabu Searchアルゴリズムの組合せ最適化問題への適用

    藤沢 克樹

    オペレーションズ・リサーチ : 経営の科学   1994.1

     More details

    Language:Japanese  

  • An Approximate Algorithm for the Maximum Stable Set Problem

    久保 幹雄, 藤沢 克樹, 吉川 明男, 森戸 晋

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   1993.10

     More details

    Language:English  

    An Approximate Algorithm for the Maximum Stable Set Problem

  • グラフ分割問題に対するTabu Searchの数値実験(グラフ・ネットワーク(2))

    藤沢 克樹, 森戸 晋

    日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集   1992.9

     More details

    Language:Japanese  

  • 総説・論評・解説・書評・報告書リスト http://sdpa.imi.kyushu-u.ac.jp/~fujisawa/gyoseki2014.pdf

    藤澤 克樹

    1900

     More details

    Language:Japanese  

  • 総説・論評・解説・書評・報告書リスト2015 http:⁄⁄sdpa.imi.kyushu-u.ac.jp⁄~fujisawa⁄gyoseki2015.pdf

    藤澤 克樹

    1900

     More details

    Language:Japanese  

▼display all

Professional Memberships

  • SIAM

  • INFORMATION PROCESSING SOCIETY OF JAPAN

  • 日本オペレーションズリサーチ学会

  • THE JAPAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS

  • INFORMS

  • IEEE

  • THE JAPAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS

      More details

  • 日本オペレーションズリサーチ学会

      More details

  • INFORMATION PROCESSING SOCIETY OF JAPAN

      More details

  • SIAM

      More details

  • INFORMS

      More details

  • IEEE

      More details

▼display all

Committee Memberships

  • SIAM Conference on Parallel Processing for Scientific Computing (PP22), Organizing Committee  

    2021.4 - 2022.3   

      More details

    Committee type:Academic society

    researchmap

  • ICPP   PC Member  

    2020.4 - 2023.3   

      More details

    Committee type:Academic society

    researchmap

  • Pacific Journal of Mathematics of Industry   Editorial Board  

    2014.4 - 2023.3   

      More details

    Committee type:Academic society

    researchmap

  • IEEE Control Systems Society Technical Committee on Computational Aspects of Control Systems Design (TC-CACSD)   Technical Committee  

    2010.9 - Present   

      More details

    Committee type:Academic society

    researchmap

Academic Activities

  • Organizing Committee International contribution

    SIAM Conference on Parallel Processing for Scientific Computing (PP22)  ( UnitedStatesofAmerica ) 2022.2

     More details

    Type:Competition, symposium, etc. 

  • 実行委員長

    日本オペレーションズ・リサーチ学会秋季シンポジウム  ( Japan ) 2021.9

     More details

    Type:Competition, symposium, etc. 

  • 創発的研究支援事業 事前評価における外部専門家

    Role(s): Review, evaluation

    JST  2021.6 - 2024.3

     More details

    Type:Scientific advice/Review 

  • 科研費 学術変革領域研究(A)各区分委員

    Role(s): Review, evaluation

    独立行政法人日本学術振興会  2021.4 - 2023.3

     More details

    Type:Scientific advice/Review 

  • 科研費 基盤研究(S)中間評価委員

    Role(s): Review, evaluation

    独立行政法人日本学術振興会  2021.4 - 2021.6

     More details

    Type:Scientific advice/Review 

  • Program Committee International contribution

    ICPP : 49th International Conference on Parallel Processing  ( Online Canada ) 2020.8

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:0

    Proceedings of International Conference Number of peer-reviewed papers:10

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • A-STEP機能検証フェーズ専門委員

    Role(s): Review, evaluation

    JST  2019.4 - 2024.3

     More details

    Type:Scientific advice/Review 

  • 特別研究員等審査会専門委員

    Role(s): Review, evaluation

    独立行政法人日本学術振興会  2019.4 - 2020.3

     More details

    Type:Scientific advice/Review 

  • Local Arrangement Chair International contribution

    HPC Asia 2020  ( Fukuoka Japan ) 2019.1 - 2020.1

     More details

    Type:Competition, symposium, etc. 

    Number of participants:220

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Number of peer-reviewed articles in Japanese journals:2

    Proceedings of International Conference Number of peer-reviewed papers:7

    Proceedings of domestic conference Number of peer-reviewed papers:1

  • プログラム委員

    xSIG (Cross-SIG)  ( Japan ) 2017.4 - 2021.3

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:4

    Proceedings of International Conference Number of peer-reviewed papers:10

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • ACS 情報処理学会

    2015.5 - 2019.3

     More details

    Type:Academic society, research group, etc. 

  • プログラム委員

    Annual Meeting on Advanced Computing System and Infrastructure (ACSI2015)  ( Japan ) 2015.4 - 2016.3

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    IEEE Cluster 2015  ( UnitedStatesofAmerica ) 2015.4 - 2015.9

     More details

    Type:Competition, symposium, etc. 

  • Pacific Journal of Mathematics for Industry International contribution

    2014.4 - 2019.3

     More details

    Type:Academic society, research group, etc. 

  • Committee International contribution

    ISP2S2  ( Japan ) 2014.1 - 2014.12

     More details

    Type:Competition, symposium, etc. 

  • 実行委員

    RAMP シンポジウム 2014  ( Japan ) 2014.1 - 2014.10

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員長

    HPCS 2014  ( Japan ) 2013.7 - 2014.1

     More details

    Type:Competition, symposium, etc. 

    Number of participants:150

▼display all

Other

  • ソフトバンクと九州大学がLPガス容器の配送最適化の共同研究を実施 ~9月20日からフィールドテストを実施、AIやIoTの活用でLPガス業界のDXを推進~ 2021年9月13日 ソフトバンク株式会社 国立大学法人九州大学

    2021.9

  • TISとの共同研究:量子コンピューターアルゴリズムに関する

    2021.4 - Present

     More details

  • TISとの共同研究:量子コンピューターアルゴリズムに関する

    2021.4

  • Fixstars 共同研究 : 量子アニーリング・イジングマシンの組合せ最適化問題への適用とソフトウェアの性能評価

    2021.1 - Present

     More details

  • Fixstars 共同研究 : 量子アニーリング・イジングマシンの組合せ最適化問題への適用とソフトウェアの性能評価

    2021.1

  • 国立大学法人九州大学(以下「九州大学」)、ソフトバンク株式会社(以下「ソフトバンク」)および株式会社豆蔵(以下「豆蔵」)は、企業や自治体、教育・研究機関などで蓄積されているさまざまなデジタルデータ(以下「データ」)について、データの品質を数学的な理論を用いて客観的に判定し、格付けとして明示する「データ格付け」の実現に向けた共同研究を、2020年11月から開始しました。3者は、「データ格付け」により産官学が保有するデータの品質を明確化することで、データの相互利用の促進や、データ流通市場の活性化を目指します。

    2020.11

  • ソフトバンク:データ分析アルゴリズムを活用したLPガス事業者向けLPガス配送業務の最適化(ガス残量予測、配送ルート最適化等)

    2020.5 - Present

     More details

  • ソフトバンク:データ分析アルゴリズムを活用したLPガス事業者向けLPガス配送業務の最適化(ガス残量予測、配送ルート最適化等)

    2020.5

  • ロート製薬 共同研究:IoT・CPSを活用したスマート工場の実現

    2019.10 - Present

     More details

  • ロート製薬 共同研究:IoT・CPSを活用したスマート工場の実現

    2019.10

  • NTT研究所:共同研究

    2018.12 - Present

     More details

    コヒーレントイジングマシンの応用に関する研究

    researchmap

  • NTT研究所:共同研究

    2018.12

     More details

    コヒーレントイジングマシンの応用に関する研究

  • Yahoo! Japan:共同研究

    2018.4 - Present

     More details

    検索データを用いたヒト・モノのモビリティに関する数理モデルの構築と検証実験

    researchmap

  • Yahoo! Japan:共同研究

    2018.4

     More details

    検索データを用いたヒト・モノのモビリティに関する数理モデルの構築と検証実験

  • 産業技術総合研究所&パナソニック連携ラボ:共同研究

    2017.4

     More details

    グラフ解析と高性能計算を用いた多人数追跡に関する研究

  • トヨタ自動車

    2017.4

     More details

    大規模最適化に関する共同研究

  • 住友電気工業:共同研究

    2017.4

     More details

    ハーネス自働外観検査向けDeep Learningによる不良画像認識に関する研究

  • 沖電気工業:共同研究

    2017.4

     More details

    プローブデータ分析に関する共同研究

  • パナソニック:共同研究

    2016.4 - 2023.3

     More details

    物流&人流データ解析に関する共同研究

    researchmap

  • パナソニック:共同研究

    2016.4 - 2023.3

     More details

    グラフ理論を用いた大型施設動向シュミレーションに関する研究

    researchmap

  • パナソニック:共同研究

    2016.4

     More details

    グラフ理論を用いた大型施設動向シュミレーションに関する研究

  • パナソニック:共同研究

    2016.4

     More details

    物流&人流データ解析に関する共同研究

  • 日本電気株式会社:共同研究

    2015.4

     More details

    IoTに向けたデータ取得・管理技術の研究

  • 住友電気工業:共同研究

    2015.4

     More details

    路車協調システム(コネクティッドカー)向けCANデータ及び車載映像データに関する調査研究

▼display all

Research Projects

  • 自動性能チューニング機能を持つ高性能グラフライブラリの開発

    Grant number:23K21672  2021.4 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    中尾 昌広, 藤澤 克樹, 児玉 祐悦

      More details

    Grant type:Scientific research funding

    ソーシャルネットワークや創薬などの様々な分野において、計算機上でデータの関係性をグラフ構造として表現し、それを高速に解析する試みが盛んに行われている。しかしながら、既存のグラフライブラリの研究の多くは特定のグラフや計算機システムを対象としているため、ユーザの性能チューニングの負担が問題となっている。
    そこで、本研究課題では自動性能チューニング機能を持つグラフライブラリを開発する。ユーザが利用したいグラフおよび計算機システムに応じて、適切なグラフアルゴリズムと高速化手法を自動的に選択・利用可能にする。この機能により、ユーザの性能チューニングの負担を省くことが可能になる。

    CiNii Research

  • Development and Industrial Application of Universal Manifold Learning Algorithm for Realization of Super Smart Society

    Grant number:21H04599  2021 - 2025

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    藤澤 克樹, 鍛冶 静雄, 伊藤 聡

      More details

    Grant type:Scientific research funding

    サイバーフィジカルシステム(CPS)では実社会で起きている現象をカメラやセンサー等で収集して計算機上でモデル化する前半部分と、深層学習や最適化アルゴリズムを活用するアプリケーション開発の後半部分に分かれている。しかし現状では各アプリケーションに合わせて個別にCPS前後半を作り込む必要があり、開発効率の低下と CPS 普及の妨げになっている。本研究ではこれらを解決するため様々な現象や情報の関係を少数の原理から説明可能なユニバーサル多様体学習のアルゴリズムの開発を行い、CPS 前後半の中間層に組み入れることによって実社会の多種多様なデータを抽象化された中間データとして共有化することを目指す。

    CiNii Research

  • 自動性能チューニング機能を持つ高性能グラフライブラリの開発

    Grant number:21H03450  2021 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • ML based asset pricing model using alternative data

    Grant number:21H00755  2021 - 2023

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    岡田 克彦, 藤澤 克樹, 月岡 靖智, 羽室 行信

      More details

    Grant type:Scientific research funding

    理論的には、企業価値は当該企業が生み出す将来期待キャッシュ・フローをその不確実性を考慮して現在価値に引き直したものとして考えられている。しかし現実には、将来キャッシュ・フローの推定や、リスクの推定は、ヒトの予測が市場に反映されているため、様々な非財務情報や行動ファイナンス的要因(Behavioral Factors)に左右されることがわかっている。本研究では、非財務情報と既知のリスク要因を同時に学習させ、予測能力の高い説明可能な機械学習モデルを開発することで、既知のリスク要因と行動ファイナンス的要因がどのように時系列にからみあって株式市場を形成しているのかをあきらかにする。

    CiNii Research

  • 格子暗号の大規模解読実験と解読計算量評価

    Grant number:20H04142  2020 - 2023

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    安田 雅哉, 鍛冶 静雄, 藤澤 克樹, 青野 良範

      More details

    Grant type:Scientific research funding

    量子計算機の実用化に向けた開発競争が加速する一方,RSA暗号や楕円曲線暗号などの現在普及の暗号の量子計算機による危殆化に備え,米国標準技術研究所NISTは量子計算機に耐性のあるポスト量子暗号の標準化計画を進めている.現在,格子暗号はポスト量子暗号の有力候補として期待されている.本研究の目的は以下の2点である:
    (1) 格子暗号の安全性を支える格子問題に対する最良の解読アルゴリズムの設計・並列化開発と大規模な解読実験を行い,想定される攻撃者の計算限界を実験的に見積もる.
    (2) さらに,開発した解読アルゴリズムの解読計算量を理論的に解析し,理論と実験の両面から格子暗号の解読計算量を精密に評価する.

    CiNii Research

  • エッジでの高効率なデータ解析を実現するグラフ計算基盤

    2018.10 - 2024.3

    慶応大学 

      More details

    Authorship:Coinvestigator(s) 

    Society5.0 が目指す社会の実現には、エッジで生成される大量かつ多様、そしてタイムリーなデー タを、ヒトやモノが搭載するエッジデバイスがローカル蓄積して解析処理を行い、実世界にリアルタ イムでフィードバックを行うための情報基盤が求められる。現実世界で生成される多様な情報をサイ バー空間内で処理し、実世界にフィードバックするサイバーフィジカルシステム(CPS)の実現には、 ヒト・モノ・位置情報などのデータ間の関連や依存関係を表現可能で、かつ強力なデータ操作・解析 能力を有するグラフデータ構造が最重要データ基盤になると考えられる。現在もサプライチェーンを はじめ、交通網や電力供給網など、様々な実社会データを扱うためにグラフデータベースが利用され ている他、スマート社会のための CPS 応用例として、地理空間上の各点をノード、経路をノード間 リンクに対応させたグラフ構造でヒトやモノの動きを表現し、その追跡をリアルタイムで行いながら 行動予測や避難誘導計画の策定等に結び付ける CPS モビリティ最適化の試みも実施されている。
    従来のグラフ解析は、クラウド上にデータを集約して大規模なサーバ計算機上で処理するクラウド 指向型であったが、頻繁なデータ更新が発生し、またリアルタイム処理中心のエッジ応用を考えると、 クラウド指向のグラフ解析では性能面、また最適化手法のミスマッチによる非効率性などの点で限界 があると予想される。そこで、エッジ側で高効率にグラフ処理を行う計算基盤の創出が、今後のスマ ート社会実現に向けた最重要課題の一つになると考えられる。
    本応募研究の目的はエッジ側での高効率なグラフ処理の実現であり、特にヒト・モノのモビリティ 最適化の実応用を例としつつ、ハードウェアとソフトウェアの両面から将来あるべきエッジ指向のグ ラフ処理基盤について研究開発を実施する。エッジ側でのグラフ処理の主要な課題は、広範囲のメモ リ空間にランダムにアクセスされるという特徴からメモリアクセスがボトルネックになり易く、性 能・電力的面でスケールしない点と、従来型のノイマン型計算機による厳密なグラフ処理ではリアル タイムな最適化と実世界へのフィードバックを実現できないことである。この課題の解決のため本応 募研究では、以下のアプローチをとる。
    1. 低遅延・低電力なリアルタイム指向グラフ処理専用アクセラレータの開発
    2. グラフ処理と人工知能・アニーリング計算技術の融合
    3. Society5.0 に資する実グラフアプリケーションを題材としたコデザインの推進
    アプローチ 1.では、ランダムなメモリアクセスに強い 3 次元積層メモリ技術と、専用回路によるア ドレス生成、データ圧縮による実効データバンド幅向上とオンメモリ計算など、メモリアクセスの効 率化に着目してアクセラレータ・アーキテクチャの検討や SoC 設計、ソフトウェア環境の開発を行 う。また、近閾値電圧回路やデータ圧縮と協調した近似計算技術を利用し電力効率を向上させる。

  • 肌角層細胞を用いたライフログ予測モデルの研究

    2018.4 - 2020.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • QA(量子アニーリング)計算機:組合せ最適化問題に対する性能評価

    2018.4

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • JST CREST Society5.0 を支える革新的コンピューティング技術, 68,000 千円, 2018 年 10 月~2024 年 3 月, (研究課題名: エッジでの高効率なデータ解析を実現するグラフ計算基盤

    2018 - 2024

    JST Strategic Basic Research Program (Ministry of Education, Culture, Sports, Science and Technology)

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • エッジでの高効率なデータ解析を実現するグラフ計算基盤

    2018 - 2023

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • CPS (Cyber Physical System)人流・物流追跡システム機器室の整備

    2018

    九州大学 若手研究者研究環境整備経費

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • Webアクセスデータを用いた潜在的ユーザクラスタリングによるWebサイトの評価指標の提案 & シェアサイクルの再配置問題に関する研究

    2017.12 - 2020.11

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • 工場製品の画像を用いた自動検品 & 車載ネットワークの自動設計 & 生産スケジューリング最適化

    2017.4 - 2021.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • ハイブリッド車の最適制御に関する研究

    2017.4 - 2020.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • プローブデータからの経路予測アルゴリズム開発

    2017.4 - 2018.3

    Research commissions

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • CPS(サイバーフィジカルシステム)での実証実験(深層距離学習による人物再同定&最適なスケジューリング・人員配置案の提案)

    2017.4

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • スマートシティ実現のための多階層型データ解析及び最適化システムの開発と評価

    Grant number:16H01707  2016 - 2020

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • スマートシティ実現のための多階層型データ解析及び最適化システムの開発と評価

    Grant number:16H01707  2016 - 2020

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • スマートシティ実現のための多階層型データ解析及び最適化システムの開発と評価

    2016 - 2019

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • ポストぺタスケールシステムにおける超大規模グラフ最適化基盤

    2014 - 2016

    JST Strategic Basic Research Program (Ministry of Education, Culture, Sports, Science and Technology)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • スパースデータの多階層メモリへの配置及び高速かつ省電力計算手法の開発と検証

    Grant number:26120530  2014 - 2015

    Japan Society for the Promotion of Science・Ministry of Education, Culture, Sports, Science and Technology  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • スパースデータの多階層メモリへの配置及び高速かつ省電力計算手法の開発と検証

    Grant number:26120530  2014 - 2015

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 建築・都市分野における離散数理基盤の構築と大規模最適化への展開

    Grant number:25240004  2013 - 2016

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 建築・都市分野における離散数理基盤の構築と大規模最適化への展開

    Grant number:25240004  2013 - 2015

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • ポストペタスケールシステムにおける 超大規模グラフ最適化基盤

    2011.10 - 2017.3

    JST 

      More details

    Authorship:Principal investigator 

    We present our ongoing research project that is supported by the Japan Science and Technology Agency (JST), the Core Research of Evolutionary Science and Technology (CREST). The objective of this project is to develop an ad- vanced computing and optimization infrastructure for extremely large-scale graphs on post peta-scale supercomputers. We explain our challenge to Graph 500 and Green Graph 500 benchmarks that are designed to measure the performance of a computer system for applications that require irregular memory and network access patterns. Following its announcement in June 2010, the Graph500 list was released in November 2010. The list has been updated biannually ever since. The Graph500 benchmark mea- sures the performance of any supercomputer performing a BFS (Breadth-First Search) in terms of traversed edges per second (TEPS). We have implemented world ’s first GPU-based BFS on the TSUBAME 2.0 supercomputer at Tokyo Institute of Tech- nology in 2012. The Green Graph 500 list collects TEPS-per-watt metrics. In ISC14, our project team was a winner of the 8th Graph500 benchmark and 3rd Green Graph 500 benchmark. We also present our parallel implementation for large-scale SDP (SemiDefinite Programming) problem. We solved the largest SDP problem (which has over 2.33 million constraints), thereby creating a new world record. Our im- plementation also achieved 1.713 PFlops in double precision for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs on the TSUBAME 2.5 supercomputer.

  • ポストペタスケールシステムにおける超大規模グラフ最適化基盤

    2011 - 2016

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 錐最適化における新たなパラダイム:二重非負値行列錐上の最適化とソフトウェアの開発

    Grant number:23310099  2011 - 2014

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 大規模なセンサネットワーク位置推定問題の数値解法に関する研究

    Grant number:22310089  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 自動設定機能を備えた最適化問題用オンライン・ソルバーの構築と公開

    Grant number:20510143  2008 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 超大規模半正定値計画への挑戦-疎性の活用,並列計算と多項式最適化問題への応用

    Grant number:19310096  2007 - 2009

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 統合金融リスク管理技術の研究:市場リスクと信用リスクの統合分析

    Grant number:18310109  2006 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 非線形半正定値計画問題に対する数値的に安定した主双対内点法の開発

    Grant number:18560052  2006 - 2007

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 歴史的な直下型地震による伝統的な社寺建築の構造被害に関する耐震工学的な研究

    Grant number:16656188  2004 - 2006

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 多項式計画問題に対する大域的最適解法とその並列計算

    Grant number:16016234  2004 - 2005

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 多項式計画問題に対する大域的最適解法とその並列計算

    Grant number:15017235  2003

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 震源域の伝統木造建築への衝撃的な波動の入力伝播特性と被害軽減に関する研究

    Grant number:15656149  2003

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 逐次凸緩波アルゴリズムの並列実行とその組合せ最適化問題への応用

    Grant number:14019038  2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 建築分野における幾何的最適化及び幾何的データ分析アルゴリズムの開発

    Grant number:13680412  2001 - 2003

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 多変数多項式方程式系の全ての実根および複素根を計算する多面体的ホモトピー法の開発

    Grant number:13650444  2001 - 2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 遂次凸緩和アルゴリズムの並列実行とその組合せ最適化問題への応用

    Grant number:13224037  2001 - 2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 入力地震動の空間変動を考慮した建築構造物の構造設計法

    Grant number:12650569  2000 - 2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 並列最適化問題解決のための超広域高性能クラスタ計算機の構築

    Grant number:12480068  2000 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 大規模最適化問題に対する並列実行ソフトウェアの開発と実証実験

    Grant number:12780215  2000 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 非凸型最適化問題に対する逐次半正定値計画緩和法

    Grant number:11680441  1999 - 2000

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 建築計画・建築構造における幾何学的アルゴリズムの開発

    Grant number:10205214  1998 - 2000

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 幾何学的構造を有するデータの最適分割アルゴリズムの開発

    Grant number:10680353  1998 - 1999

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

▼display all

Educational Activities

  • Classes and education activities in the Graduate School of Mathematics, the Faculty of Mathematics
    Classes activities in the Faculty of Engineering

Class subject

  • 複素関数論

    2023.4 - 2023.9   First semester

  • 複素関数論

    2023.4 - 2023.9   First semester

  • 情報数学・演習

    2023.4 - 2023.9   First semester

  • 数理科学特別講義Ⅰ

    2022.10 - 2023.3   Second semester

  • 数理科学特論1

    2022.10 - 2023.3   Second semester

  • 複素関数論

    2022.10 - 2023.3   Second semester

  • 複素関数論

    2022.10 - 2023.3   Second semester

  • 複素関数論

    2022.10 - 2023.3   Second semester

  • 複素関数論

    2022.10 - 2023.3   Second semester

  • 複素関数論

    2022.10 - 2023.3   Second semester

  • 数理科学特別講義Ⅰ

    2022.10 - 2023.3   Second semester

  • 数理科学特論1

    2022.10 - 2023.3   Second semester

  • Topics in Mathematical Sciences II

    2022.4 - 2022.9   First semester

  • 数理科学Ⅱ

    2022.4 - 2022.9   First semester

  • 数理科学Ⅱ

    2022.4 - 2022.9   First semester

  • 応用数学D

    2022.4 - 2022.9   First semester

  • 情報数学・演習

    2022.4 - 2022.9   First semester

  • Topics in Mathematical Sciences II

    2022.4 - 2022.9   First semester

  • 数理科学Ⅱ

    2022.4 - 2022.9   First semester

  • 数理科学Ⅱ

    2022.4 - 2022.9   First semester

  • 応用数学D

    2022.4 - 2022.9   First semester

  • 情報数学・演習

    2022.4 - 2022.9   First semester

  • 情報数学特論1

    2021.10 - 2022.3   Second semester

  • 複素関数論

    2021.10 - 2022.3   Second semester

  • 複素関数論

    2021.10 - 2022.3   Second semester

  • 数学ⅠB

    2021.10 - 2022.3   Second semester

  • 数学ⅠB

    2020.10 - 2021.3   Second semester

  • 複素関数論

    2020.10 - 2021.3   Second semester

  • MMA講究B

    2020.10 - 2021.3   Second semester

  • 情報数学特論1

    2020.10 - 2021.3   Second semester

  • 複素関数論

    2020.4 - 2020.9   First semester

  • 情報数学特論I

    2020.4 - 2020.9   First semester

  • 数理科学II

    2020.4 - 2020.9   First semester

  • 応用数学D

    2020.4 - 2020.9   First semester

  • 数理科学Ⅱ

    2020.4 - 2020.9   First semester

  • 数理科学Ⅱ

    2020.4 - 2020.9   First semester

  • 応用数学D

    2020.4 - 2020.9   First semester

  • 数理モデル概論

    2019.10 - 2020.3   Second semester

  • 複素関数論

    2019.10 - 2020.3   Second semester

  • 数学ⅠB(Aクラス)

    2019.10 - 2020.3   Second semester

  • 複素関数論(Aクラス)

    2019.10 - 2020.3   Second semester

  • 数理モデル概論

    2019.10 - 2020.3   Second semester

  • 情報数学特論1

    2019.10 - 2020.3   Second semester

  • 情報数学特論 I

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅱ

    2019.4 - 2019.9   First semester

  • 数理科学特論2

    2019.4 - 2019.9   First semester

  • 数学展望

    2019.4 - 2019.9   First semester

  • 数学展望

    2019.4 - 2019.9   First semester

  • 数学ⅠC

    2018.10 - 2019.3   Second semester

  • 数学ⅠB

    2018.10 - 2019.3   Second semester

  • 複素関数論

    2018.10 - 2019.3   Second semester

  • 数理モデル概論

    2018.10 - 2019.3   Second semester

  • 情報数学特論1

    2018.10 - 2019.3   Second semester

  • 数理モデル概論

    2018.10 - 2019.3   Second semester

  • 情報数学特論1

    2018.10 - 2019.3   Second semester

  • 数学展望

    2018.4 - 2018.9   First semester

  • 数学展望

    2018.4 - 2018.9   First semester

  • 数学ⅠC

    2017.10 - 2018.3   Second semester

  • 数学ⅠB

    2017.10 - 2018.3   Second semester

  • 複素関数論

    2017.10 - 2018.3   Second semester

  • 複素関数論

    2017.10 - 2018.3   Second semester

  • 機能数理学概論Ⅰ

    2017.4 - 2017.9   First semester

  • 情報数学・演習

    2017.4 - 2017.9   First semester

  • 機能数理学概論I

    2017.4 - 2017.9   First semester

  • 情報数学・演習

    2017.4 - 2017.9   First semester

  • 機能数理学概論I

    2016.4 - 2016.9   First semester

  • 複素関数論

    2015.10 - 2016.3   Second semester

  • 情報数学・演習

    2015.4 - 2015.9   First semester

  • 数学 IB

    2014.10 - 2015.3   Second semester

▼display all

FD Participation

  • 2022.4   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.7   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.3   Role:Other   Title:学習支援システム(M2B)講習会(オンライン開催)◇初級編・中・上級編◇13:00~15:00

    Organizer:University-wide

  • 2021.3   Role:Other   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2014.4   Title:第1回全学FD

    Organizer:University-wide

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2022  産業技術総合研究所 臨海副都心センター 別館 国立研究開発法人 産業技術総合研究所 デジタルアーキテクチャ研究センター クロスアポイントメントフェロー  Classification:Part-time faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:クロスアポイントメント20%

  • 2021  産業技術総合研究所 臨海副都心センター 別館 国立研究開発法人 産業技術総合研究所 デジタルアーキテクチャ研究センター クロスアポイントメントフェロー  Classification:Part-time faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:クロスアポイントメント 20%

  • 2020  産業技術総合研究所 臨海副都心センター 別館 国立研究開発法人 産業技術総合研究所 人工知能研究センター クロスアポイントメントフェロー  Classification:Part-time faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:クロスアポイント20%

  • 2019  国立研究開発法人 産業技術総合研究所 人工知能研究センター クロスアポイントメントフェロー 情報・人間工学領域 研究戦略部 実社会ビッグデータ活用オープンイノベーションラボラトリ 副ラボ長  Classification:Part-time faculty  Domestic/International Classification:Japan 

  • 2019  産業技術総合研究所 臨海副都心センター 別館 国立研究開発法人 産業技術総合研究所 人工知能研究センター クロスアポイントメントフェロー  Classification:Part-time faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:クロスアポイント20%

  • 2018  大学共同利用機関法人 情報・システム研究機構 統計数理研究所 客員教授  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2018  国立大学法人 東京工業大学学術国際情報センター 特定教授  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2018  特定国立研究開発法人 産業技術総合研究所 情報・人間工学領域 情報・人間工学領域研究戦略部 クロスアポイントメントフェロー & 産総研-東工大 実社会ビッグデータ活用オープンイノベーションラボラトリ ラボ長  Classification:Part-time faculty  Domestic/International Classification:Japan 

  • 2017  特定国立研究開発法人 産業技術総合研究所 人工知能研究センター 招聘研究員  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2017  大学共同利用機関法人 情報・システム研究機構 統計数理研究所 客員教授  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2017  国立大学法人 東京工業大学学術国際情報センター 特定教授  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2016  大学共同利用機関法人 情報・システム研究機構 統計数理研究所 客員教授  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2014  理化学研究所 情報基盤センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

▼display all

Outline of Social Contribution and International Cooperation activities

  • Research collaboration with ZIB (Zuse Institute Berlin, the German State Institute of Berlin). We hold personnel exchanges and international workshops every year.

Social Activities

  • 都市での生活を快適あるいは安全なものにするために都市 OS(オペレーティングシステム)の開発が開始されている.都市OSでは大量のセンサーデータやオープンデータなどを用いて都市における交通網の設計を行ったり,異常事態の発生時における避難誘導を行ったりするための機能を持つことが想定されている.都市OSにおける革新的な新基軸としては数学的な手法(数理最適化問題やグラフ解析さらにネットワークフローによる分析)と計算技術(計算量とデータ移動量の考慮と最適化による高速かつ省電力計算)にあり、これらの技術を用いて現在、先進的な都市 OS の開発を推進している 

    福岡市及び産業界(交通、インフラ、サービス業など)  主に福岡市  2014.10

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

    都市での生活を快適あるいは安全なものにするために都市 OS(オペレーティングシステム)の開発が開始されている.都市OSでは大量のセンサーデータやオープンデータなどを用いて都市における交通網の設計を行ったり,異常事態の発生時における避難誘導を行ったりするための機能を持つことが想定されている.都市OSにおける革新的な新基軸としては数学的な手法(数理最適化問題やグラフ解析さらにネットワークフローによる分析)と計算技術(計算量とデータ移動量の考慮と最適化による高速かつ省電力計算)にあり、これらの技術を用いて現在、先進的な都市 OS の開発を推進している.

Media Coverage

  • ソフトバンクと九州大学、LPガス容器の配送最適化の共同研究 Newspaper, magazine

    ケータイWatch インプレス  2021.9

     More details

    ソフトバンクと九州大学、LPガス容器の配送最適化の共同研究

  • AIを活用しデータ品質を格付け-ソフトバンクら3者が共同研究を開始 Newspaper, magazine

    マイナビニュース  2020.11

     More details

    AIを活用しデータ品質を格付け-ソフトバンクら3者が共同研究を開始

  • いま、あなたは何をするべきか 5分後の未来も丸ごと予測できる数学を駆使したビッグデータ解析 Newspaper, magazine

    産経新聞  2015.12

     More details

    いま、あなたは何をするべきか 5分後の未来も丸ごと予測できる数学を駆使したビッグデータ解析

  • ISC 2015 - どのようにして京コンピュータがGraph500の1位を奪還したのか Newspaper, magazine

    マイナビニュース  2015.9

     More details

    ISC 2015 - どのようにして京コンピュータがGraph500の1位を奪還したのか

  • BS歴史館 江戸のスーパー日本人(1)関孝和 世界水準の“和算”を創り出した男に出演 TV or radio program

    NHK BS  2013.6

     More details

    BS歴史館 江戸のスーパー日本人(1)関孝和 世界水準の“和算”を創り出した男に出演

Activities contributing to policy formation, academic promotion, etc.

  • 2022.4 - 2023.3   ロート製薬株式会社, 九州大学マス・フォア・インダストリ研究所 藤澤研究室, ファーストループテクノロジー株式会社

    ロート製薬株式会社(本社:大阪市、社長:杉本雅史、以下、ロート製薬)と九州大学マス・フォア・インダストリ研究所 藤澤研究室(福岡市、教授:藤澤克樹、以下、九大)及びファーストループテクノロジー株式会社(本社:東京都、社長:福永哲雄、以下、FLT)の3社は、2022年6月よりサイバーフィジカルシステム:Cyber Physical System(以下、CPS)を実装するロート製薬グループ全体のスマート工場化の取り組みを開始しました。CPSとは、フィジカル空間(現実空間)にある多様なデータをセンサーネットワーク等で収集し、サイバー空間(仮想空間)で大規模データ処理技術等を駆使して分析/知識化を行い、そこで創出した情報/価値によって、産業の活性化や社会問題の解決を図っていく仕組みです。

  • 2021.9 - 2022.4   国立大学法人九州大学、ソフトバンク株式会社

    ソフトバンクと九州大学が、
    LPガス容器の配送最適化の共同研究を実施
    ~9月20日からフィールドテストを実施、AIやIoTの活用でLPガス業界のDXを推進~

    ソフトバンク株式会社と国立大学法人九州大学は、LPガス業界のDX(デジタルトランスフォーメーション)に向けて、AI(人工知能)やIoTを活用したLPガス容器の配送最適化に関するフィールドテストを、LPガス販売事業などを手掛けるアイエスジー株式会社の協力の下、2021年9月20日から実施している。このフィールドテストに先立ち、ソフトバンクと九州大学は、2020年5月からLPガス容器の配送最適化に関する共同研究を続けてきた。先端的な数理モデルを用いてAIを進化させる研究を行っている、九州大学マス・フォア・インダストリ研究所の数理計算インテリジェント社会実装推進部門が二つのAIモデル(ガスの残量予測モデル、配送計画・ルート策定モデル)を作成し、ソフトバンクがこれらのAIモデルを活用したLPガス容器の配送最適化を可能にするシステムを開発して、検証を行っている。今回のフィールドテストは、これまでの共同研究の結果を実際の配送現場で検証することを目的に実施するものです。ソフトバンクは、フィールドテストを含む共同研究の結果を基にシステムの改善を行い、来春をめどにLPガス容器の配送最適化サービスとして実用化を目指す。

  • 2020.11 - Present   国立大学法人九州大学、ソフトバンク株式会社、株式会社豆蔵

    企業や自治体、教育・研究機関などで蓄積されているさまざまなデジタルデータ(以下「データ」)について、データの品質を数学的な理論を用いて客観的に判定し、格付けとして明示する「データ格付け」の実現に向けた共同研究を、2020年11月から開始している。3者は、「データ格付け」により産官学が保有するデータの品質を明確化することで、データの相互利用の促進や、データ流通市場の活性化を目指す。

  • 2017.9 - 2020.3   BEAM-ME Project(Germany) http://www.beam-me-projekt.de/beam-me/EN/Home/home_node.html

    BEAM-ME Project(Germany), International Advisory Board : ドイツの国プロ BEAM-ME の国際評価委員 ( International Advisory Board)