Updated on 2025/06/09

写真a

 
TANIGUCHI YUTA
 
Organization
Research Institute for Information Technology Associate Professor
Graduate School of Integrated Frontier Sciences Department of Library Science(Concurrent)
Joint Graduate School of Digital Humanities (Concurrent)
Title
Associate Professor
Profile
・プログラミング学習支援 プログラミング演習授業における学習者の学習活動ログデータを利用して、学習者および教師へのサポートを行う。 ・構成的学習支援環境 容易に組み合わせ可能な学習支援環境のデザインにより、柔軟な学習環境の構成と一貫性ある学習ログの記録を実現する。

Research Areas

  • Informatics / Learning support system

Degree

  • Ph. D

Research History

  • 九州大学 情報基盤研究開発センター   准教授

    2023.4 - Present

      More details

  • 九州大学 情報基盤研究開発センター   助教

    2020.12 - 2023.3

      More details

  • The University of Tokushima   

Education

  • Kyushu University    

    2011.4 - 2014.3

Research Interests・Research Keywords

  • Research theme: Learning Analytics

    Keyword: Learning Analytics

    Research period: 2024

  • Research theme: data mining

    Keyword: data mining

    Research period: 2024

  • Research theme: Learning Analytics

    Keyword: Learning Analytics

    Research period: 2016.5

Awards

  • 2022 年度 山下記念研究賞

    2023.3   情報処理学会   谷口雄太, 峰松翼, 大久保文哉, 島田敬士, “プログラミング演習の軌跡:学生のコーディング過程理解のための教師支援”

  • Best Paper Award

    2019.11   The 16th International Conference on Cognition and Exploratory Learn- ing in Digital Age (CELDA2019)   K-Tips: Knowledge Extension Based on Tailor-made Information Provision System

  • 優秀デモンストレーション賞

    2013.6   日本情報科教育学会第6回全国大会   iPad を用いた「デジたま講座」教材・教具の開発

Papers

  • Exploring Behavioral and Strategic Factors Affecting Secondary Students' Learning Performance in Collaborative Problem Solving-Based STEM Lessons

    Chen, L; Taniguchi, Y; Shimada, A; Yamada, M

    SAGE OPEN   14 ( 2 )   2024.4   ISSN:2158-2440

     More details

    Publisher:SAGE Open  

    Despite the growing emphasis on integrating collaborative problem-solving (CPS) into science, technology, engineering, and mathematics (STEM) education, a comprehensive understanding of the critical factors that affect the effectiveness of this educational approach remains a challenge. This study aims to identify effective strategic and behavioral factors in course design and assess how these factors contribute to students’ learning performance. This study collected data from 106 students enrolled in seventh-grade science classes by using a mixed-method approach. First, the t-test results indicate that students’ learning performance was improved through CPS-based STEM learning. A path analysis shows that CPS awareness and several behavioral factors had direct effects, while several strategic factors had indirect effects on the improvement of learning performance. Finally, a dialog analysis indicates that students’ integrative use of CPS skills, especially task regulation skills used along with other skills, helped improve learning performance. This study not only bridges the gap in understanding the effectiveness of CPS in STEM education but also provides specific suggestions for improving instructional design.

    DOI: 10.1177/21582440241251641

    Web of Science

    Scopus

  • Visual Analytics of Learning Behavior Based on the Dendritic Neuron Model

    Tang, C; Chen, L; Li, G; Minematsu, T; Okubo, F; Taniguchi, Y; Shimada, A

    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2024   14885   192 - 203   2024   ISSN:2945-9133 ISBN:978-981-97-5494-6 eISSN:1611-3349

     More details

    Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    Learning analytics, blending education theory, psychology, statistics, and computer science, utilizes data about learners and their environments to enhance education. Artificial Intelligence advances this field by personalizing learning and providing predictive insights. However, the opaque ’black box’ nature of AI decision-making poses challenges to trust and understanding within educational settings. This paper presents a novel visual analytics method to predict whether a student is at risk of failing a course. The proposed method is based on a dendritic neuron model (DNM), which not only performs excellently in prediction, but also provides an intuitive visual presentation of the importance of learning behaviors. It is worth emphasizing that the proposed DNM has a better performance than recurrent neural network (RNN), long short term memory network (LSTM), gated recurrent unit (GRU), bidirectional long short term memory network (BiLSTM) and bidirectional gated recurrent unit (BiGRU). The powerful prediction performance can assist instructors in identifying students at risk of failing and performing early interventions. The importance analysis of learning behaviors can guide students in the development of learning plans.

    DOI: 10.1007/978-981-97-5495-3_14

    Web of Science

    Scopus

  • QA-Knowledge Attention for Exam Performance Prediction

    Ren Y., Tang C., Taniguchi Y., Okubo F., Shimada A.

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   15159 LNCS   375 - 389   2024   ISSN:03029743 ISBN:9783031723148 eISSN:1611-3349

     More details

    Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    In actual university education, students’ performance prediction is important for assessing their mastery of specific knowledge areas and providing feedback. To address the limitations of existing grade or at-risk predictions that fail to take students’ knowledge mastery into account, we propose a model, question&answer knowledge attention for exam performance prediction (QAKAP) and focus on predicting students’ performance on each final exam question (binary prediction). This model consists of three key modules: a Topic-Aware Attention Module, a Knowledge Mastery Estimation Module, and a Prediction Module. By integrating natural language processing (NLP) methods and the attention mechanism, our model can capture the relevance of questions from question text data and then generate the student embeddings to predict student performance on each final exam question. The primary contribution of this work is the development of a general prediction model for real university education, applicable to students’ exam performance predictions. We collected a dataset from 494 students across four undergraduate courses, including the question text data and students’ performance on these exam questions. The results show that QAKAP outperforms other machine-learning methods, demonstrating its effectiveness in predicting students’ exam performance.

    DOI: 10.1007/978-3-031-72315-5_26

    Web of Science

    Scopus

  • Attention-Based Artificial Neural Network for Student Performance Prediction Based on Learning Activities

    Leelaluk, S; Tang, C; Minematsu, T; Taniguchi, Y; Okubo, F; Yamashita, T; Shimada, A

    IEEE ACCESS   12   100659 - 100675   2024   ISSN:2169-3536

     More details

    Publisher:IEEE Access  

    Student performance prediction was deployed to predict learning performance to identify at-risk students and provide interventions for them. However, prediction models should also consider external factors along with learning activities, such as course duration. Thus, we aim to distinguish the difference factor between the time dimension (duration of the course) and the feature dimension (students' learning activities) by attention weights to provide helpful information and improve predictions of student performance. In this study, we introduce Attention-Based Artificial Neural Network (Attn-ANN), a novel model in educational data mining. The Attn-ANN combines attention weighting on the time and feature dimensions to examine the significance of lectures and learning activities and makes predictions by visualizing attention weight. We found that the Attn-ANN had a better area under the curve scores than conventional algorithms, and the attention mechanism allowed models to focus on input selectively. Incorporating the attention weighting of both the time and feature dimensions improved the prediction performance in an ablation study. Finally, we investigated and analyzed the model's decision, finding that the Attn-ANN may be able to create synergy in real-world scenarios between the Attn-ANN's predictions and instructors' expertise, which underscores a novel contribution to engineering applications for interventions for at-risk students.

    DOI: 10.1109/ACCESS.2024.3429554

    Web of Science

    Scopus

  • Automated Recommendations for Revising Lecture Slides Using Reading Activity Data

    Lopez, ED; Tang, C; Taniguchi, Y; Okubo, F; Shimada, A

    32ND INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION CONFERENCE PROCEEDINGS, ICCE 2024, VOL I   246 - 255   2024   ISSN:3078-4360 ISBN:978-626-968-904-0

     More details

▼display all

Presentations

  • Investigating Programming Performance Predictability from Embedding Vectors of Coding Behaviors International conference

    Ikkei Igawa, Yuta Taniguchi, Tsubasa Minematsu, Fumiya Okubo, and Atsushi Shimada

    ICCE2023  2023.12 

     More details

    Event date: 2023.12

    Language:English  

    Country:Japan  

  • Contrastive Learning for Reading Behavior Embedding in E-book System International conference

    Tsubasa Minematsu, Yuta Taniguchi, and Atsushi Shimada

    AIED2023  2023.7 

     More details

    Event date: 2023.7

    Language:English  

    Country:Japan  

  • データが可能にするプログラミング学習プロセス理解への新しい視点

    谷口雄太

    情報処理学会 IPSJ-ONE 2023  2023.3 

     More details

    Event date: 2023.3

    Language:Japanese  

    Country:Japan  

  • Topic-Based Representation of Learning Activities for New Learning Pattern Analytics International conference

    Jinghao Wang, Tsubasa Minematsu, Yuta Taniguchi, Fumiya Okubo, Atsushi Shimada

    ICCE2022  2022.12 

     More details

    Event date: 2022.12

    Language:English  

    Country:Japan  

  • Detection of At-Risk Students in Programming Courses International conference

    Ikkei Igawa, Yuta Taniguchi, Tsubasa Minematsu, Fumiya Okubo, Atsushi Shimada

    ICCE2022  2022.12 

     More details

    Event date: 2022.12

    Language:English  

    Country:Japan  

▼display all

MISC

  • Students’ Performance Prediction based on Similarity between Online Textbooks and Questions

    REN Yongle, TANG Cheng, TANIGUCHI Yuta, MINEMATSU Tsubasa, OKUBO Fumiya, SHIMADA Atsushi

    情報処理学会研究報告(Web)   2024 ( CLE-42 )   2024

  • Attention機構を用いた背景変動に頑健な変化検出手法の分析

    濱田龍之介, 峰松翼, 谷口雄太, 大久保文哉, 島田敬士

    画像センシングシンポジウム講演資料集(Web)   29th   2023

  • 視線情報による高解像度な学習ログの生成システムの開発

    後藤健, 峰松翼, 谷口雄太, 大久保文哉, 島田敬士

    情報処理学会研究報告(Web)   2023 ( CLE-40 )   2023

  • 教育データの分散表現生成手法の提案とAt-risk学生検知への応用

    宮崎佑馬, 峰松翼, 谷口雄太, 大久保文哉, 島田敬士

    情報処理学会研究報告(Web)   2023 ( CLE-40 )   2023

  • 学習状況に応じた学習記事検索手法の開発

    岡井成遊, 峰松翼, 大久保文哉, 谷口雄太, 島田敬士

    情報処理学会研究報告(Web)   2023 ( CLE-39 )   2023

▼display all

Industrial property rights

Patent   Number of applications: 0   Number of registrations: 0
Utility model   Number of applications: 0   Number of registrations: 0
Design   Number of applications: 0   Number of registrations: 0
Trademark   Number of applications: 0   Number of registrations: 0

Professional Memberships

  • 情報処理学会

Academic Activities

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:12

  • 座長

    2018年度電気・情報関係学会九州支部連合大会  ( Japan ) 2021.9

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    TALE2020  ( Japan ) 2020.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    LAK2020  ( Japan ) 2020.3

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    LAK2020 Data Challenge Workshop  ( Japan ) 2020.3

     More details

    Type:Competition, symposium, etc. 

▼display all

Research Projects

  • 学習者を理解し導くことができる学習支援アルゴリズムの開発

    Grant number:24K15209  2024.4 - 2028.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    谷口 雄太

      More details

    Grant type:Scientific research funding

    学習者の活動から学習者の理解度やスキル、解答の意図などを推定する技術の開発と、推定結果をもとに学習者の理解や解答をより良いものへと導くためのフィードバック手法の開発を行う。また、実際の授業を通じて枠組みの有効性を評価する。

    CiNii Research

  • Construction and Evaluation of a High-Density Learning Analytics Infrastructure for Data-Driven Education

    Grant number:22H00551  2022.4 - 2026.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    島田 敬士, 峰松 翼, 谷口 雄太, 大久保 文哉, 山下 隆義

      More details

    Grant type:Scientific research funding

    本研究は,学習者の学習状況を学習トピック単位で理解することで個別最適な情報推薦を行うデータ駆動型教育を実現する.①教育学習を学習トピック単位で記録する密センシング手法,②教育学習活動の文脈を把握する深層的活動分析手法,③行動変容を促す説得性を持ったフィードバック手法について研究を進める.大学教育の実践の場でデータ駆動PDCAサイクルの実証実験を実施し,研究成果の有用性と有効性を検証するとともに,成果を国内外に広く展開する.

    CiNii Research

  • Development and Evaluation of Learning Analytics Platform based on Learning Improvement Model

    Grant number:22H00552  2022.4 - 2026.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    山田 政寛, 合田 美子, 谷口 雄太, 大久保 文哉, Lu Min

      More details

    Grant type:Scientific research funding

    本研究は学習行動の改善を目的に, 学習効果を高めることを実証した教育・学習理論に基づいて、学習行動を連続性のある行動として捉え、学習行動の改善モデルの構築を行う。 そのモデルに従い、学習分析基盤の開発・評価を行う。この評価結果を踏まえて、学習行動の改善を促進させるための学習データ分析基盤のデザインモデルの構築を行う。

    CiNii Research

  • 学習状況に応じて動的に最適化される仮想的学習環境の構築

    2021.4 - 2024.3

      More details

    Authorship:Principal investigator 

  • Developing a virtual learning environment dynamically optimized for students' circumstances

    Grant number:21K17863  2021 - 2023

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Early-Career Scientists

    谷口 雄太

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    本研究は学習者間の情報交換の活性化を目的とした研究開発を行います。演習授業での学生同士のやりとりは、先生からの説明を補う効果があります。しかし、初心者が自身の陥った状況をちゃんと把握して他の人にうまく質問することは難しいことが多くあります。これではそれぞれの学習者の失敗体験が埋もれてしまいます。そこで、学習者同士がうまく情報交換をできるような学習のための空間をシステムとして構築することを考えます。3年間で状況分析の方法と情報交換のための場の設計と開発を行って、実際の授業での評価を行います。

    CiNii Research

▼display all

Educational Activities

  • 学部および大学院の教育を行っている。

Class subject

  • ライブラリーサイエンスPTLⅠ

    2024.10 - 2025.3   Second semester

  • 電子資料開発論

    2024.10 - 2025.3   Second semester

  • プログラミング演習(P)

    2024.6 - 2024.8   Summer quarter

  • 特別研究Ⅰ

    2024.4 - 2025.3   Full year

  • ライブラリーサイエンス特別演習

    2024.4 - 2025.3   Full year

▼display all

FD Participation

  • 2023.6   Role:Participation   Title:統合新領域学府 FD ライブラリーサイエンス 木土博成

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2023.5   Role:Participation   Title:統合新領域学府 FD 担当:廣田 正樹 学府長

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.10   Role:Participation   Title:2020年度 ユニバーシティ・デザイン・ワークショップの報告

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.9   Role:Participation   Title:電気情報工学科総合型選抜(AO入試)について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.10   Role:Participation   Title:電子ジャーナルの現状と今後の動向に関する説明会

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all