Updated on 2025/04/30

写真a

 
FUJII SUSUMU
 
Organization
Faculty of Engineering Department of Materials Science and Engineering Associate Professor
Title
Associate Professor

Research Areas

  • Nanotechnology/Materials / Inorganic materials and properties

  • Nanotechnology/Materials / Structural materials and functional materials

Degree

  • 博士(工学) ( 2018.3 )

  • 修士(工学) ( 2015.3 )

  • 学士(工学) ( 2013.3 )

Research History

  • Kyushu University Department of Materials, Faculty of Engineering Associate Professor 

    2024.6 - Present

      More details

  • Osaka University Division of Materials and Manufucturing Science, Graduate School of Engineering Assistant Professor 

    2021.4 - 2024.3

      More details

  • Japan Fine Ceramics Center Nanostructures Research Laboratory Researcher 

    2019.4 - 2021.3

      More details

  • Osaka University Department of Adaptive Machine Systems, Graduate School of Engineering Specially Appointed Researcher 

    2018.4 - 2019.3

      More details

  • CRISMAT, CNRS, France  Visiting Researcher 

    2016.11 - 2017.2

      More details

▼display all

Education

  • Osaka University   Graduate School of Engineering   Doctral Course, Department of Adaptive Machine Systems

    2015.4 - 2018.3

      More details

  • Osaka University   Graduate School of Engineering   Master Course, Department of Adaptive Machine Systems

    2013.4 - 2015.3

      More details

  • Osaka University   School of Engineering   Division of Materials and Manufacturing Science

    2009.4 - 2013.3

      More details

Research Interests・Research Keywords

  • Research theme: Exploration and analysis of proton-conducting solid electrolytes

    Keyword: Fuel Cell; Defect Chemistry; First-Principles Calculations; Machine Learning

    Research period: 2024.4 - Present

  • Research theme: Lattice Defect Informatics in Thermoelectrics

    Keyword: Thermal Conductivity; Molecular Dynamics; Point Defects; Grain Boundaries

    Research period: 2024.4 - Present

  • Research theme: First-principles study on hydrogen ceramics

    Keyword: Hydrogen; Materials Exploration; First-Principles Calculations

    Research period: 2024.4 - Present

Awards

  • Award for Encouragement of Research

    2022.12   The 32nd Annual Meeting of MRS-J   Interpreting intrinsic nature of proton-conducting oxides for solid oxide fuel cells using high-throughput computation and machine learning

    Susumu Fujii

     More details

  • Young Researcher Award

    2022.9   The Japan Institute of Metals and Materials   ボトムアップ型材料設計のための格子欠陥構造-機能相関の解明と新物質探索

    Susumu Fujii

     More details

  • 若手奨励賞

    2021.11   物性科学領域横断研究会   計算科学と情報科学による粒界原子構造ー熱伝導相関の解明

    藤井進

     More details

  • 増本賞(金賞)

    2016.7   新学術領域研究「ナノ構造情報のフロンティア開拓ー材料科学の新展開」第4回若手の会  

    藤井 進

     More details

  • Research Encouragement Award

    2016.3   The Japan Society of Applied Physics  

    Susumu FUJII

     More details

▼display all

Papers

  • Impact of non-stoichiometry on lattice thermal conduction at SrTiO3 grain boundaries Reviewed

    Susumu Fujii, Hiroki Isobe, Wataru Sekimoto, Masato Yoshiya

    Scripta Materialia   258 ( 15 )   116524   2025.3

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.scriptamat.2024.116524

    researchmap

  • Emerging computational and machine learning methodologies for proton-conducting oxides: materials discovery and fundamental understanding Reviewed

    Susumu Fujii*, Junji Hyodo*, Kazuki Shitara, Akihide Kuwabara, Shusuke Kasamatsu, Yoshihiro Yamazaki

    Science and Technology of Advanced Materials   2024.12

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1080/14686996.2024.2416383

    researchmap

  • Empirical interatomic potentials for ZrO2 and YSZ polymorphs: Application to a tetragonal ZrO2 grain boundary Reviewed

    Susumu Fujii, Katsuhiko Shimazaki, Akihide Kuwabara

    Acta Materialia   262   119460   2024.1

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.actamat.2023.119460

    researchmap

  • Discovery of Unconventional Proton‐Conducting Inorganic Solids via Defect‐Chemistry‐Trained, Interpretable Machine Learning Reviewed

    Susumu Fujii, Yuta Shimizu, Junji Hyodo, Akihide Kuwabara, Yoshihiro Yamazaki

    Advanced Energy Materials   13 ( 39 )   2301892   2023.9   ISSN:1614-6832 eISSN:1614-6840

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Abstract

    High‐throughput computational screening and machine learning hold significant potential for exploring diverse chemical compositions and discovering novel inorganic solids. However, the complexity of point defects, which occur in all inorganic solids and are often crucial to their functionality and synthesizability, presents significant challenges. Here, this study presents a defect‐chemistry‐trained, interpretable machine learning approach, designed to accelerate the exploration and discovery of unconventional proton‐conducting inorganic solid electrolytes. By considering dopant dissolution and hydration reactions, the machine learning models provide quantitative predictions and physical interpretations for synthesizable host–dopant combinations with hydration capabilities across various structures. Utilizing these insights, two unconventional proton conductors, Pb‐doped Bi<sub>12</sub>SiO<sub>20</sub> sillenite and eulytite‐type Sr‐doped Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub>, are discovered in the first two synthesis trials. Notably, the Pb‐doped Bi<sub>12</sub>SiO<sub>20</sub> represents an unprecedented class of proton‐conducting electrolyte composed solely of groups 14 and 15 cations and featuring a sillenite structure. It exhibits unique and fast 3D proton conduction along a loosely bonded BiO<sub>5</sub> network. This study demonstrates an efficient approach for exploring novel inorganic materials.

    DOI: 10.1002/aenm.202301892

    researchmap

  • Structure and lattice thermal conductivity of grain boundaries in silicon by using machine learning potential and molecular dynamics Reviewed

    Susumu Fujii, Atsuto Seko

    Computational Materials Science   204   111137 - 111137   2022.3

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)   Publisher:Elsevier {BV}  

    DOI: 10.1016/j.commatsci.2021.111137

    researchmap

▼display all

Books

  • 計算科学を活用した熱電変換材料の研究開発動向

    森 孝雄, 塩見 淳一郎, 臼井 秀知, 黒木 和彦, 宮田 全展, 松浦 弘泰, 小形 正男, 山本 貴博, 只野 央将, 吉矢 真人, 下野 昌人, 堀 琢磨, 大西 正人, 黒川 裕之, 當眞 友太, 渡辺 真也, 渡辺 友梨奈, 大堀 剛史, 大串 哲朗, 飯田 努, 藤井 進(Role:Joint author結晶粒界における格子熱伝導機構と情報科学的手法による予測・理解)

    株式会社シーエムシー・リサーチ  2022.4    ISBN:9784910581187

     More details

Presentations

  • 大規模欠陥計算と機械学習によるプロトン伝導性酸化物の探索 Invited

    藤井 進

    物性研究所スパコン共同利用・CCMS合同研究会「機械学習と計算物性科学の未来」  2025.4 

     More details

    Event date: 2025.4

    researchmap

  • Discovery of unconventional proton-conducting oxides: computational screening and interpretable machine learning based on defect chemistry Invited International conference

    Susumu Fujii, Yuta Shimizu, Kota Tsujikawa, Junji Hyodo, Akihide Kuwabara, Yoshihiro Yamazaki

    The Fourteenth International Conference on the Science and Technology for Advanced Ceramics (STAC14)  2024.10 

     More details

    Event date: 2024.10

    Language:English   Presentation type:Oral presentation (invited, special)  

    researchmap

  • 熱電材料における格子欠陥のインフォマティクス Invited

    藤井 進

    日本熱電学会第29回研究会  2024.5 

     More details

    Event date: 2024.5

    Presentation type:Oral presentation (invited, special)  

    researchmap

  • Synthesizable discovery of unconventional proton-conducting oxides by computation and machine learning for defect chemistry (Keynote) Invited

    Susumu Fujii, Yuta Shimizu, Junji Hyodo, Akihide Kuwabara, Yoshihiro Yamazaki

    The 15th Pacific Rim Conference of Ceramic Societies (PACRIM15) and The 13th International Conference on High-Performance Ceramics (CICC-13)  2023.11 

     More details

    Event date: 2023.11

    researchmap

  • Exploration for non-perovskite proton-conducting oxides using high-throughput computation and machine learning Invited

    S. Fujii, Y. Shimizu, J. Hyodo, A. Kuwabara, Y. Yamazaki

    6th International Symposium on Frontiers in Materials Science (FMS2022)  2022.11 

     More details

    Event date: 2022.11

    researchmap

▼display all

MISC

  • Mechanisms of thermal conduction at grain boundaries and in nanocrystalline materials by computational and machine learning techniques Invited Reviewed

    Susumu Fujii

    Oyo Buturi   91 ( 5 )   276 - 279   2022.5

     More details

    Authorship:Lead author, Last author, Corresponding author   Publishing type:Article, review, commentary, editorial, etc. (other)  

    DOI: 10.11470/oubutsu.91.5_276

    researchmap

  • ソフトな陰イオンを有する逆ペロブスカイト中の高速Li+/Na+伝導 Invited

    藤井進, 高勝寒, タッセル セドリック, 桑原彰秀, 陰山洋

    セラミックス   56 ( 9 )   561 - 565   2021

     More details

  • Constructing a Prediction Model for Grain Boundary Thermal Conductivities based on Systematic Calculations and Machine Learning Invited

    Susumu Fujii

    セラミックス   55 ( 9 )   652 - 655   2020.9

     More details

    Authorship:Lead author, Corresponding author  

    researchmap

  • Frontiers of Novel Functionality at Dislocation Cores

    Masato Yoshiya, Atsutomo Nakamura, Susumu Fujii, Yu Oshima, Tatsuya Yokoi, Katsuyuki Matsunaga

    Materia Japan   61 ( 10 )   629 - 633   2022.10   ISSN:1340-2625 eISSN:1884-5843

     More details

    Publisher:Japan Institute of Metals  

    DOI: 10.2320/materia.61.629

    researchmap

  • ナノスケールでの粒界熱伝導度の予測モデル構築と物理的解釈 Invited Reviewed

    藤井 進

    材料の科学と工学(日本材料科学会誌)   58 ( 6 )   216 - 219   2021.12

     More details

    Authorship:Lead author, Corresponding author  

    researchmap

▼display all

Professional Memberships

  • THE JAPAN INSTITUTE OF METALS AND MATERIALS

      More details

  • The Thermoelectrics Society of Japan

      More details

  • 日本固体イオニクス学会

      More details

  • The Ceramic Society of Japan

      More details

Committee Memberships

  • 日本熱電学会   広報委員  

    2022.9 - Present   

      More details

    Committee type:Academic society

    researchmap

  • The 5th International Union of Materials Research Societies International Conference of Young Researchers on Advanced Materials (IUMRS-ICYRAM2022)   Organizing Committee  

    2022.1 - 2022.8   

      More details

    Committee type:Academic society

    researchmap

  • 日本金属学会   まてりあ編集委員  

    2021.4 - Present   

      More details

    Committee type:Academic society

    researchmap

  • 日本熱電学会   学会誌編集委員  

    2019.11 - Present   

      More details

    Committee type:Academic society

    researchmap

Academic Activities

  • 国際学術雑誌の査読 International contribution

    Role(s): Review, evaluation, Peer review

    2024.4 - 2025.3

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

Research Projects

  • 格子欠陥のインフォマティクスによる熱電特性制御

    Grant number:JPMJFR235X  2024.10 - 2032.3

    Japan Science and Technology Agency  Fusion oriented research for disruptive science and technology 

    Susumu Fujii

      More details

    Authorship:Principal investigator  Grant type:Competitive funding other than Grants-in-Aid for Scientific Research

    無機固体材料の中には、ナノスケールの格子欠陥が含まれている。この格子欠陥は、通常現れる規則的な原子配列とは異なる構造を持つために、様々な材料機能に影響を与える。本研究では、計算科学とデータ科学により、多様な形態の格子欠陥と材料機能を定量的に結びつけ、ミクロな情報から巨視的な材料機能を予測する基盤技術の構築を目指す。これにより、熱電変換材料等のエネルギー問題解決に役立つ材料の開発に貢献する。

  • 超低温動作プロトン伝導性酸化物電解質の加速的開発

    Grant number:JPMJGX23H0  2024.4 - 2027.3

    Japan Science and Technology Agency  Green technology of excellence 

    Yoshihiro Yamazaki; Junji Hyodo; Susumu Fujii; Kota Tsujikawa

      More details

    Authorship:Research collaborator  Grant type:Competitive funding other than Grants-in-Aid for Scientific Research

    2040年頃のHDVに用いられる次世代燃料電池システム実現のために第一世代の燃料電池を根本から見直し、アカデミアの力を結集して燃料電池の主要材料である触媒、電解質膜、アイオノマーに用いられる革新的材料を開発し、それらを用いてHDV用途に利用可能な燃料電池システムを開発することを目的とする。  本研究開発では、(1)プロトン伝導膜を用いた燃料電池(PEMFC)グループ、(2) アニオン交換膜を用いる燃料電池(AEMFC)グループ、(3) 高温プロトン伝導体を用いる燃料電池(PCFC)グループに分かれ、これら3つの燃料電池システムを対象として開発を進めるとともに、 (4)セル評価、システムデザインを担当するシステム化グループ、(5)先端解析、計算的手法、データ科学を駆使する先端計測・データ科学グループの2つの横串グループで各システム開発をサポートする。

  • フォノンモードに着目した固体電解質中の高速イオン伝導機構の解明

    Grant number:23K13544  2023.4 - 2026.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Early-Career Scientists

    藤井 進

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    電池の大型化、高エネルギー密度化、安全性の向上を目指し、全固体電池の開発が進められている。その実用化における課題の一つが、高いイオン伝導度を示す固体電解質の探索である。本研究では、新物質や既知の高イオン伝導体を対象に原子・電子レベル計算を行い、特定のイオン振動によって促進される高速イオン伝導機構の存在を明らかにする。得られた知見を元に、物質中のイオンの振動状態を指標とした、新たな固体電解質の探索指針の提案を試みる。

  • Hydrogen ion ceramics

    Grant number:22H04914  2022.4 - 2027.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Specially Promoted Research

    陰山 洋, 高津 浩, タッセル セドリック, 加藤 大地, 高村 仁, 猪熊 泰英, 内田 さやか, 藤井 進, 小林 俊介, Li Haobo

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

    クリーンな元素である水素を軸とした水素社会実現のためには、安定なセラミックス材料は産業応用上かかせない。本研究では、まず、プロトン含有酸化物クラスターを軸にした酸触媒の開発や、固体結晶におけるプロトンを媒介とする新規反応を開拓する。また、ヒドリド含有セラミックスのボトムアップ合成や、分極率が大きいなどのヒドリドの特長を利用してイオン伝導など機能開拓する。さらに、ヒドリド・プロトンの共存・変換を利用した機能開発も目指す。これらの研究を通じ、「水素イオンセラミックス」という新分野の確立とイノベーションの創出を目指す。

  • Predicting Grain Boundary Thermal Conductivitites from Local Atomic Environments

    Grant number:20K15034  2020.4 - 2023.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Early-Career Scientists

    Fujii Susumu

      More details

    Grant type:Scientific research funding

    Grain boundaries (GBs), that are ubiquitously formed between crystal grains of inorganic compounds, have a decisive effect on a variety of material properties. Here, we aimed to reveal the relationship between GB atomic structure and thermal conductivity and its underlying mechanisms. Systematic GB calculations showed that the dominant factor in GB thermal conductivity is the excess volume near the GBs in ionic MgO and SrTiO3, and the variance in bond angles in covalent Si. Using machine learning to the obtained computational data, a model was constructed to accurately predict GB thermal conductivity from the MgO GB structure. As a result, it was found that a small structural distortion effectively reduces GB thermal conductivity. This is a material design guideline to improve the performance of thermoelectric materials and thermal barrier coatings.

▼display all

Educational Activities

  • 計算科学および機械学習を用いた材料研究の指導を実施している。
    その内容には、エネルギー材料に関する材料科学の教育のみならず、第一原理計算等の理論計算、スーパコンピュータの活用、およびプログラミングに関する技術指導が含まれる。
    また、物質・材料科学に関する授業科目(基幹教育ならびに学部教育)を担当している。

Class subject

  • 材料工学実験第一

    2025.4 - Present   Spring quarter

  • 無機物質化学I

    2025.4 - Present   Spring quarter

FD Participation

  • 2024.4   Role:Participation   Title:令和6年度 第1回全学FD(新任教員の研修)

    Organizer:University-wide