2024/10/02 更新

お知らせ

 

写真a

バ ハクケン
馬 博軒
MA BOXUAN
所属
基幹教育院 自然科学理論系部門 助教
職名
助教
連絡先
メールアドレス
電話番号
0928026016
プロフィール
研究分野は、教育データマイニング、ラーニングアナリティクス、ヒューマンコンピュータインタラクション、レコメンダーシステムです。
ホームページ

研究分野

  • 情報通信 / 学習支援システム

  • 情報通信 / ヒューマンインタフェース、インタラクション

学位

  • 博士(工学)

経歴

  • 九州大学 基干教育院 助教

    2023年4月 - 現在

      詳細を見る

研究テーマ・研究キーワード

  • 研究テーマ:学習支援システム

    研究キーワード:学習支援システム

    研究期間: 2024年

  • 研究テーマ:言語学習支援

    研究キーワード:言語学習支援

    研究期間: 2024年

  • 研究テーマ:知識追跡

    研究キーワード:知識追跡

    研究期間: 2024年

  • 研究テーマ:推薦システム

    研究キーワード:推薦システム

    研究期間: 2024年

  • 研究テーマ:学習診断

    研究キーワード:学習診断

    研究期間: 2024年

  • 研究テーマ:利用者インタフェース

    研究キーワード:利用者インタフェース

    研究期間: 2024年

  • 研究テーマ:ラーニングアナリティクス

    研究キーワード:ラーニングアナリティクス

    研究期間: 2024年

論文

  • Investigating Concept Definition and Skill Modeling for Cognitive Diagnosis in Language Learning 招待 査読

    Ma B., Ando Y., Fukui S., Konomi S.

    Journal of Educational Data Mining   16 ( 1 )   303 - 329   2024年6月

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者   出版者・発行元:Journal of Educational Data Mining  

    Language proficiency diagnosis is essential to extract fine-grained information about the linguistic knowledge states and skill mastery levels of test takers based on their performance on language tests. Different from comprehensive standardized tests, many language learning apps often revolve around word-level questions. Therefore, knowledge concepts and linguistic skills are hard to define, and diagnosis must be well-designed. Traditional approaches are widely applied for modeling knowledge in science or mathematics, where skills or knowledge concepts are easy to associate with each item. However, only a few works focus on defining knowledge concepts and skills using linguistic characteristics for language knowledge proficiency diagnosis. In addressing this, we propose a framework for language proficiency diagnosis based on neural networks. Specifically, we propose a series of methods based on our framework that uses different linguistic features to define skills and knowledge concepts in the context of the language learning task. Experimental results on a real-world second-language learning dataset demonstrate the effectiveness and interpretability of our framework. We also provide empirical evidence with comprehensive experiments and analysis to prove that our knowledge concept and skill definitions are reasonable and critical to the performance of our model.

    DOI: 10.5281/zenodo.10948071

    Scopus

    researchmap

  • Exploring the Effectiveness of Vocabulary Proficiency Diagnosis Using Linguistic Concept and Skill Modeling 査読

    Boxuan Ma, Gayan, Prasad Hettiarachchi, Sora Fukui, Yuji Ando

    Proceedings of the 16th International Conference on Educational Data Mining   149 - 159   2023年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(その他学術会議資料等)  

  • Exploring the Effectiveness of Vocabulary Proficiency Diagnosis Using Linguistic Concept and Skill Modeling 査読

    Boxuan Ma, Gayan, Prasad Hettiarachchi, Sora Fukui, Yuji Ando

    Proceedings of the 16th International Conference on Educational Data Mining   149 - 159   2023年7月

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)  

    researchmap

  • Each Encounter Counts: Modeling Language Learning and Forgetting 査読

    Boxuan Ma, Gayan Prasad Hettiarachchi, Sora Fukui, Yuji Ando

    ACM International Conference Proceeding Series   79 - 88   2023年3月   ISBN:9781450398657

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

    Language learning applications usually estimate the learner's language knowledge over time to provide personalized practice content for each learner at the optimal timing. However, accurately predicting language knowledge or linguistic skills is much more challenging than math or science knowledge, as many language tasks involve memorization and retrieval. Learners must memorize a large number of words and meanings, which are prone to be forgotten without practice. Although a few studies consider forgetting when modeling learners' language knowledge, they tend to apply traditional models, consider only partial information about forgetting, and ignore linguistic features that may significantly influence learning and forgetting. This paper focuses on modeling and predicting learners' knowledge by considering their forgetting behavior and linguistic features in language learning. Specifically, we first explore the existence of forgetting behavior and cross-effects in real-world language learning datasets through empirical studies. Based on these, we propose a model for predicting the probability of recalling a word given a learner's practice history. The model incorporates key information related to forgetting, question formats, and semantic similarities between words using the attention mechanism. Experiments on two real-world datasets show that the proposed model improves performance compared to baselines. Moreover, the results indicate that combining multiple types of forgetting information and item format improves performance. In addition, we find that incorporating semantic features, such as word embeddings, to model similarities between words in a learner's practice history and their effects on memory also improves the model.

    DOI: 10.1145/3576050.3576062

    Scopus

    researchmap

  • Exploring jump back behavior patterns and reasons in e-book system 査読

    Boxuan Ma, Min Lu, Yuta Taniguchi, Shin’ichi Konomi

    SMART LEARNING ENVIRONMENTS   9 ( 1 )   2022年12月   eISSN:2196-7091

     詳細を見る

    記述言語:その他   掲載種別:研究論文(学術雑誌)   出版者・発行元:Smart Learning Environments  

    With the increasing use of digital learning materials in higher education, the accumulated operational log data provide a unique opportunity to analyzing student learning behaviors and their effects on student learning performance to understand how students learn with e-books. Among the students’ reading behaviors interacting with e-book systems, we find that jump-back is a frequent and informative behavior type. In this paper, we aim to understand the student’s intention for a jump-back using user learning log data on the e-book materials of a course in our university. We at first formally define the “jump-back” behaviors that can be detected from the click event stream of slide reading and then systematically study the behaviors from different perspectives on the e-book event stream data. Finally, by sampling 22 learning materials, we identify six reading activity patterns that can explain jump backs. Our analysis provides an approach to enriching the understanding of e-book learning behaviors and informs design implications for e-book systems.

    DOI: 10.1186/s40561-021-00183-6

    Web of Science

    Scopus

    researchmap

  • Investigating course choice motivations in university environments 査読

    Smart Learning Environments   8 ( 1 )   2021年12月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1186/s40561-021-00177-4

  • CourseQ: the impact of visual and interactive course recommendation in university environments 査読

    Research and Practice in Technology Enhanced Learning   16 ( 1 )   2021年12月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1186/s41039-021-00167-7

  • Course Recommendation for University Environment. 査読

    Boxuan Ma, Yuta Taniguchi, Shin'ichi Konomi

    Proceedings of the 13th International Conference on Educational Data Mining(EDM)   2020年7月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

  • Making Course Recommendation Explainable: A Knowledge Entity-Aware Model using Deep Learning 査読

    Tianyuan Yang, Baofeng Ren, Boxuan Ma, Md Akib Zabed Khan, Tianjia He, Shin'Ichi Konomi

    International Conference on Educational Data Mining (EDM 2024), 2024.   2024年7月

     詳細を見る

    記述言語:その他  

  • A Survey on Explainable Course Recommendation Systems 招待 査読

    Boxuan Ma, Tianyuan Yang, Baofeng Ren

    International Conference on Distributed, Ambient, and Pervasive Interactions (DAPI 2024), Held as Part of HCI International 2024, 2024.   2024年7月

     詳細を見る

    記述言語:その他  

  • Enhancing Programming Education with ChatGPT: A Case Study on Student Perceptions and Interactions in a Python Course 査読

    Boxuan Ma, Li Chen, Shin'ichi Konomi

    International Conference on Artificial Intelligence in Education (AIED 2024), 2024   2024年7月

     詳細を見る

    記述言語:その他  

  • How Do Strategies for Using ChatGPT Affect Knowledge Comprehension? 査読

    Li Chen, Gen Li, Boxuan Ma, Cheng Tang, Fumiya Okubo, Atsushi Shimada

    International Conference on Artificial Intelligence in Education (AIED 2024), 2024.   2024年7月

     詳細を見る

    記述言語:その他  

  • Enhancing Programming Education with ChatGPT: A Case Study on Student Perceptions and Interactions in a Python Course 査読

    Boxuan Ma, Li Chen, Shin'ichi Konomi

    International Conference on Artificial Intelligence in Education (AIED 2024), 2024   2024年7月

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者  

    researchmap

  • Making Course Recommendation Explainable: A Knowledge Entity-Aware Model using Deep Learning 査読

    Tianyuan Yang, Baofeng Ren, Boxuan Ma, Md Akib Zabed Khan, Tianjia He, Shin'Ichi Konomi

    International Conference on Educational Data Mining (EDM 2024), 2024.   2024年7月

     詳細を見る

  • How Do Strategies for Using ChatGPT Affect Knowledge Comprehension? 査読

    Li Chen, Gen Li, Boxuan Ma, Cheng Tang, Fumiya Okubo, Atsushi Shimada

    International Conference on Artificial Intelligence in Education (AIED 2024), 2024.   2024年7月

     詳細を見る

  • Investigating Concept Definition and Skill Modeling for Cognitive Diagnosis in Language Learning 招待 査読

    Journal of Educational Data Mining (JEDM)   2024年6月

     詳細を見る

    記述言語:その他  

  • Personalized Navigation Recommendation for E-book Page Jump 査読

    Boxuan Ma, Li Chen, Min Lu

    The 6th Workshop on Predicting Performance Based on the Analysis of Reading Behavior (DC@LAK24), 2024.   2024年3月

     詳細を見る

    記述言語:英語  

  • Personalized Navigation Recommendation for E-book Page Jump 査読

    Boxuan Ma, Li Chen, Min Lu

    The 6th Workshop on Predicting Performance Based on the Analysis of Reading Behavior (DC@LAK24), 2024.   2024年3月

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者  

    researchmap

  • Personalized Navigation Recommendation for E-book Page Jump

    Ma B., Chen L., Lu M.

    CEUR Workshop Proceedings   3667   32 - 41   2024年   ISSN:16130073

     詳細を見る

    出版者・発行元:CEUR Workshop Proceedings  

    As the utilization of digital learning materials continues to rise in higher education, the accumulated operational log data provide a unique opportunity to analyze student reading behaviors. Previous works on reading behaviors for e-books have identified jump-back as frequent student behavior, which refers to students returning to previous pages to reflect on them during the reading. However, the lack of navigation in e-book systems makes finding the right page at once challenging. Students usually need to try several times to find the correct page, which indicates the strong demand for personalized navigation recommendations. This work aims to help the student alleviate this problem by recommending the right page for a jump-back. Specifically, we propose a model for personalized navigation recommendations based on neural networks. A two-phase experiment is conducted to evaluate the proposed model, and the experimental result on real-world datasets validates the feasibility and effectiveness of the proposed method.

    Scopus

  • How Do Strategies for Using ChatGPT Affect Knowledge Comprehension?

    Chen L., Li G., Ma B., Tang C., Okubo F., Shimada A.

    Communications in Computer and Information Science   2150 CCIS   151 - 162   2024年   ISSN:18650929 ISBN:9783031643149

     詳細を見る

    出版者・発行元:Communications in Computer and Information Science  

    This study investigates the effects of generative AI on the knowledge comprehension of university students, focusing on the use of ChatGPT strategies. Data from 81 junior students who used the ChatGPT worksheet were collected and analyzed. Path analysis revealed complex interactions between ChatGPT strategy use, e-book reading behaviors, and students’ prior perceived understanding of concepts. Students’ prior perceived understanding and reading behaviors indirectly affected their final scores, mediated by the ChatGPT strategy use. The mediation effects indicated that reading behaviors significantly influenced final scores through ChatGPT strategies, indicating the importance of the interaction with learning materials. Further regression analysis identified the specific ChatGPT strategy related to verifying and comparing information sources as significantly influenced by reading behaviors and directly affecting students’ final scores. The findings provide implications for practical strategic guidance for integrating ChatGPT in education.

    DOI: 10.1007/978-3-031-64315-6_12

    Scopus

  • Enhancing Programming Education with ChatGPT: A Case Study on Student Perceptions and Interactions in a Python Course

    Ma B., Chen L., Konomi S.

    Communications in Computer and Information Science   2150 CCIS   113 - 126   2024年   ISSN:18650929 ISBN:9783031643149

     詳細を見る

    出版者・発行元:Communications in Computer and Information Science  

    The integration of ChatGPT as a supportive tool in education, notably in programming courses, addresses the unique challenges of programming education by providing assistance with debugging, code generation, and explanations. Despite existing research validating ChatGPT’s effectiveness, its application in university-level programming education and a detailed understanding of student interactions and perspectives remain limited. This paper explores ChatGPT’s impact on learning in a Python programming course tailored for first-year students over eight weeks. By analyzing responses from surveys, open-ended questions, and student-ChatGPT dialog data, we aim to provide a comprehensive view of ChatGPT’s utility and identify both its advantages and limitations as perceived by students. Our study uncovers a generally positive reception toward ChatGPT and offers insights into its role in enhancing the programming education experience. These findings contribute to the broader discourse on AI’s potential in education, suggesting paths for future research and application.

    DOI: 10.1007/978-3-031-64315-6_9

    Scopus

  • A Survey on Explainable Course Recommendation Systems 招待 査読

    Ma, BX; Yang, TY; Ren, BF

    DISTRIBUTED, AMBIENT AND PERVASIVE INTERACTIONS, PT II, DAPI 2024   14719   273 - 287   2024年   ISSN:0302-9743 ISBN:978-3-031-60011-1 eISSN:1611-3349

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者   出版者・発行元:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    An emerging challenge in course recommendation systems is the need to explain clearly to students the rationale behind specific course recommendations. Consequently, recent research has transitioned from focusing primarily on the accuracy of these systems to prioritizing user-centric qualities, such as transparency and justification. This shift has led to an increased emphasis on methods that provide clear, understandable explanations for their recommendations. In response to this trend, our paper introduces an explainable recommendation framework. Utilizing this framework, we analyze existing course recommendation systems and explore the emerging research challenges and future prospects for explainable course recommendation systems.

    DOI: 10.1007/978-3-031-60012-8_17

    Web of Science

    Scopus

    researchmap

  • Format-Aware Item Response Theory for Predicting Vocabulary Proficiency 査読

    Boxuan Ma, Gayan Prasad Hettiarachchi, Yuji Ando

    Proceedings of the 15th International Conference on Educational Data Mining   695 - 700   2022年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(その他学術会議資料等)  

  • Format-Aware Item Response Theory for Predicting Vocabulary Proficiency 査読

    Boxuan Ma, Gayan Prasad Hettiarachchi, Yuji Ando

    Proceedings of the 15th International Conference on Educational Data Mining   695 - 700   2022年7月

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)  

    researchmap

  • UNDERSTANDING STUDENT SLIDE READING PATTERNS DURING THE PANDEMIC 査読

    Boxuan Ma, Min Lu, Shin'ichi Konomi

    18th International Conference on Cognition and Exploratory Learning in Digital Age, CELDA 2021   87 - 94   2021年10月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

  • Exploration and Explanation: An Interactive Course Recommendation System for University Environments 査読

    Boxuan Ma, Min Lu, Yuta Taniguchi, Shin'ichi Konomi

    CEUR Workshop Proceedings   2903   2021年4月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

  • Exploring the Design Space for Explainable Course Recommendation Systems in University Environments 査読

    Companion Proceedings of the 10th International Conference on Learning Analytics & Knowledge (LAK20)   2020年3月

     詳細を見る

    記述言語:その他  

  • Understanding Jump Back Behaviors in E-book System 査読

    Companion Proceedings of the 10th International Conference on Learning Analytics & Knowledge (LAK20)   2020年3月

     詳細を見る

    記述言語:その他  

  • Design of an elective course recommendation system for university environment 査読

    Boxuan Ma

    EDM 2019 - Proceedings of the 12th International Conference on Educational Data Mining   699 - 701   2019年7月

     詳細を見る

    記述言語:その他   掲載種別:研究論文(その他学術会議資料等)  

▼全件表示

講演・口頭発表等

  • Making Course Recommender Systems Interpretable: A Feature-aware Deep Learning-based Approach

    The 86th National Convention of IPSJ, 2024.  2024年3月 

     詳細を見る

    開催年月日: 2024年3月

    記述言語:英語  

    国名:日本国  

  • Design a Course Recommendation System Based on Association Rule for Hybrid Learning Environments

    Hinokuni-Land of Fire Information Processing Symposium  2019年3月 

     詳細を見る

    記述言語:その他  

    国名:その他  

  • Learning path recommendation in university environments based on sequence mining

    The 81st National Convention of IPSJ  2019年2月 

     詳細を見る

    記述言語:その他  

    国名:その他  

  • Comparative Analysis of Adaptive Learning Path Recommendation Algorithms

    Joint Conference of Electrical, Electronics and Information Engineers in Kyushu  2018年9月 

     詳細を見る

    記述言語:その他  

    国名:その他  

MISC

  • Making Course Recommender Systems Interpretable: A Feature-aware Deep Learning-based Approach

    Tianyuan Yang, Baofeng Ren, Boxuan Ma, Shin’ichi Konomi

    The 86th National Convention of IPSJ, 2024.   2024年3月

     詳細を見る

  • Learning path recommendation in university environments based on sequence mining

    2019年2月

     詳細を見る

    記述言語:英語  

  • アダプティブなラーニングバス推薦アルゴリズムに関する比較解析

    馬 博軒, 谷口 雄太, 木實 新一

    電気関係学会九州支部連合大会講演論文集   2018年9月

     詳細を見る

    記述言語:日本語  

    Adaptive learning path recommendation system efficiently guides learners by constructing appropriate learning sequences from a set of recommended learning materials to reach their goals. As a vital role in adaptive learning path, recommendation algorithms could be grouped into three categories: intelligent optimization, data mining and knowledge-based algorithm. This paper summarizes the strategies of relevant algorithms in the learning path recommendation, as well as their strengths and weaknesses. This paper also compares and analyzes their performance to discuss their practical application value in learning path recommendation.

    DOI: 10.11527/jceeek.2018.0_258

所属学協会

  • The Institute of Electrical and Electronics Engineers (IEEE)

    2023年 - 現在

      詳細を見る

  • International Educational Data Mining Society (IEDMS)

    2020年 - 現在

      詳細を見る

  • Association for Computing Machinery (ACM)

    2020年 - 現在

      詳細を見る

  • Society for Learning Analytics Research (SoLAR)

    2020年 - 現在

      詳細を見る

  • Association for Computing Machinery (ACM)

  • International Educational Data Mining Society (IEDMS)

  • Society for Learning Analytics Research (SoLAR)

  • The Institute of Electrical and Electronics Engineers (IEEE)

▼全件表示

学術貢献活動

  • PC member 国際学術貢献

    The 17th International Conference on Educational Data Mining  ( UnitedStatesofAmerica ) 2024年7月

     詳細を見る

    種別:大会・シンポジウム等 

  • The 17th International Conference on Educational Data Mining

    2024年 - 現在

     詳細を見る

    種別:学会・研究会等 

    researchmap

  • Journal of Educational Data Mining (JEDM)

    役割:査読

    2024年 - 現在

     詳細を見る

  • Transactions on Knowledge and Data Engineering (TKDE)

    役割:査読

    2024年 - 現在

     詳細を見る

  • Research and Practice in Technology Enhanced Learning (RPTEL)

    役割:査読

    2023年 - 現在

     詳細を見る

  • 学術論文等の審査

    役割:査読

    2023年

     詳細を見る

    種別:査読等 

    外国語雑誌 査読論文数:6

    国際会議録 査読論文数:4

  • International Journal of Artificial Intelligence in Education (IJAIED)

    役割:査読

    2021年 - 現在

     詳細を見る

    種別:査読等 

    researchmap

▼全件表示

共同研究・競争的資金等の研究課題

  • A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test

    研究課題/領域番号:24K20903  2024年 - 2026年

    日本学術振興会  科学研究費助成事業  若手研究

    馬 博軒

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

    This research aims to develop an adaptive language assessment system through a computerized adaptive test framework. It integrates a cognitive diagnosis model to estimate learners’ ability and an adaptive question selection algorithm that considers the quality and diversity of questions.

    CiNii Research

  • 英語学習支援システムに関する研究

    2023年6月 - 2026年5月

      詳細を見る

    担当区分:研究代表者 

  • 英単語アプリ「ターゲットの友」による英語学習支援システムの研究、開発。

    2023年6月 - 2024年5月

    共同研究

      詳細を見る

    担当区分:研究代表者  資金種別:その他産学連携による資金

  • Exploring Forgetting Behavior From Learning Data for Enhancing Knowledge Tracing

    2023年 - 2024年

      詳細を見る

    担当区分:研究代表者  資金種別:学内資金・基金等

  • 開発途上コミュニティのための分散協調型学習アナリティクス

    研究課題/領域番号:20H00622  2020年4月 - 2025年3月

    科学研究費助成事業  基盤研究(A)

    木實 新一, 瀬崎 薫, 畑埜 晃平, 馬 博軒, 西山 勇毅

      詳細を見る

    資金種別:科研費

    先進国においてはビッグデータやAI技術を活用した高度な学習支援システムが急速に発展しつつありますが、開発途上地域では状況が異なります。本研究では、申請者らのグループが開発した学習アナリティクス、クラウドソーシング、DTN(バケツリレー式のデータ転送方式)の技術を拡張・統合し、様々な学習空間において効率良く学習データを収集・転送し、有用フィードバックを提供できる分散協調型の学習アナリティクスプラットフォームの研究開発を行います。アフリカの教育機関と連携してユーザ中心の手法でデザイン・開発を行い、開発途上地域におけるエビデンスに基づく教育改善に貢献することを目指します。

    CiNii Research

教育活動概要

  • 2023年 - 現在 基幹教育セミナー (English)
    2024年 - 現在 国際コース (IUPE) 情報処理演習
    2024年 - 現在 実データ解析技法
    2023年 - 現在 基幹教育セミナー
    2023年 - 現在 プログラミング演習(Python)

担当授業科目

  • プログラミング演習

    2023年12月 - 2024年2月   冬学期

  • 基幹教育セミナー

    2023年6月 - 2023年8月   夏学期

  • プログラミング演習

    2023年6月 - 2023年8月   夏学期

  • プログラミング演習

    2023年4月 - 2023年9月   前期

FD参加状況

  • 2023年4月   役割:参加   名称:令和5年度 第1回全学FD(新任教員の研修)The 1st All-University FD (training for new faculty members) in FY2023

    主催組織:全学