九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
末廣 純也(すえひろ じゆんや) データ更新日:2023.06.26

教授 /  システム情報科学研究院 電気システム工学部門 エネルギー応用システム工学


主な研究テーマ
静電配向カーボンナノチューブをフィラーに用いたナノコンポジット材料の大面積化
キーワード:カーボンナノチューブ、ナノコンポジット、静電配向
2010.04.
パルスパワーとプラズマによるナノマテリアル改質と創成
キーワード:マイクロプラズマ、パルスパワー、ラジカル、カーボンナノチューブ、水溶化
2003.01~2010.12.
誘電泳動によるナノマテリアルの集積とセンサ応用
キーワード:誘電泳動、電気泳動、カーボンナノチューブ、電子デバイス、ガスセンサ
2003.01.
誘電泳動インピーダンス計測法による細菌、ウイルス、遺伝子検出技術
キーワード:誘電泳動、MEMS、μ-TAS、細菌センサ、PCR、インピーダンス計測
1990.01.
カーボンナノチューブガスセンサを用いた電力機器の設備診断
キーワード:カーボンナノチューブガスセンサ、SF6ガス絶縁、GIS、設備診断
2003.03.
超伝導電力機器の電気絶縁
キーワード:超伝導電力機器、電気絶縁、極低温液体、絶縁破壊
1989.01~2009.03.
従事しているプロジェクト研究
誘電泳動による遺伝子検出チップを用いた迅速で簡便なオン・サイト遺伝子検査システムの開発
2014.10~2015.10, 代表者:平塚 哉, Biocosm株式会社
医療費の増大対策として、治療から予防、さらに先制医療への医療のシフトが推進されており、そこで個別化医療や感染症の早期診断が求められている。このニーズに応えるために、Biocosm(株)の保有する遺伝子抽出・増幅技術と九州大学の誘電泳動インピーダンス計測法を融合することで、熟練技術が不要で全工程が30分以内の、オン・サイト(その場)で使用することができる高感度な遺伝子検出システムを開発する。.
歯科におけるQOL向上に向けた機器の研究開発
2011.10~2014.03, パナソニックヘルスケア.
食品衛生管理用自動細菌数迅速計測システムの開発
2008.09~2010.03, 代表者:佐倉 克彦 , 日鉄環境エンジニアリング株式会社, 経済産業省地域イノベーション創出研究開発事業
近年、食品の安全・安心を取り巻く環境は非常に厳しくなっており、消費者は安全な食品を求める傾向が強くなり、食品製造および流通過程では厳格な食品衛生管理が必要となっている。しかし、食品衛生管理の一つである出荷前の製品の細菌検査は、結果が判明するまでに数日~1週間掛かる培養法が公定法として用いられており、迅速・簡便な検査技術が未だ開発されていない。
このような状況の中、九州大学が開発した「誘電泳動インピーダンス(DEPIM)法」を基盤技術とし、これに日鉄環境エンジニアリング(株)が開発した前処理技術を組み合わせた新しいコンセプトを持った細菌検出システムの実用化を目指したプロジェクトが(財)福岡県産業・科学技術振興財団を管理法人として開始される。
本プロジェクトは、平成20年度より新たに開始された経済産業省の委託事業「地域イノベーション創出研究開発事業」に採択されたもので、2年後の実用化を目指す。.
誘電泳動インピーダンス計測法(DEPIM)を用いた小型細菌数迅速測定装置の開発
2006.09~2007.12, 代表者:佐倉 克彦 , 日鉄環境エンジニアリング株式会社, 財団法人福岡県産業・科学技術振興財団 産学官共同研究開発事業 
菌体数の測定は培養法が主流だが、食品衛生、医薬品開発のための実験施設の細菌制御、入浴施設・冷却塔のレジオネラ症の防止等の分野において、迅速かつ簡易な測定法と対策が求められている。そこで、DEPIMによる細菌数迅速測定技術の確立し、衛生管理システムとして使用できる小型迅速測定装置を開発する。.
ナノ構造体を用いた高感度水素ガスセンサの開発
2006.08~2007.03, 代表者:岡田 龍雄, 九州大学, 福岡水素エネルギー戦略会議 研究開発支援事業 
水素漏洩による爆発事故を防止するため、水素ガスセンサに対するニーズが高まりつつある。本研究では、申請者らが独自の手法で創製・加工・集積したナノ構造体を用いた高速応答 (1秒以内),高感度(0.01 %以下)かつ小型の水素ガスセンサを開発し、その動作特性を従来の精密ガス分析法との比較によって検証する。.
研究業績
主要著書
1. 末廣 純也, カーボンナノチューブ・グラフェンハンドブック, コロナ社, 2011.09, 本ハンドブックでは,カーボンナノチューブの基本的事項を解説しながら,エレクトロニクスへの応用,近赤外発光と吸収によるナノチューブの評価と光通信への応用の可能性を概観。最近嘱目のグラフェンやナノリスクについても触れた。.
2. 末廣 純也, 西嶋 喜代人, 電気エネルギー工学概論, 朝倉書店, 2008.08.
主要原著論文
1. Shota Nakahara, Takahiro Morita, Haruka Omachi, Masafumi Inaba, Michihiko Nakano, Junya Suehiro, Comparison between modulations of contact and channel potential in nitrogen dioxide gas response of ambipolar carbon nanotube field-effect transistors, AIP Advances, 10.1063/5.0124891, 12, 12, 125302-1-125302-6, 2022.12, Carbon nanotubes (CNTs) are promising materials for gas sensing because of their large specific area and high sensitivity to charge differentiation. In CNT-based field-effect transistors (FETs) for gas sensing, both CNT potential modulation in the channels and Schottky barrier height modulation at the CNT/metal electrode contact influence the current properties. However, researchers have not used Schottky barrier height modulation for gas detection. To investigate and compare the effects of Schottky barrier height modulation and CNT channel potential modulation on NO2 gas exposure, we fabricated ambipolar CNT FETs by the dielectrophoretic assembly. We exposed CNT FET gas sensors to N2 gas containing 100-ppb NO2 and observed two different responses in the electric properties: a steady current shift in the positive direction in the hole-conduction region because of the channel potential modulation, and an abrupt decrease in transconductance in the electron-conduction region because of the Schottky barrier modulation. The CNT channels and CNT/metal contact both contributed to the sensor response, and the modulation rate of the Schottky barrier was higher than that of the CNT potential shift in the channel..
2. 宮内 肇, 末廣 純也, 小迫 雅裕, 西田 貴司, 井上 昌睦, 大学間連携討論型オンライン授業の実施, 工学教育, https://doi.org/10.4307/jsee.70.4_160, 70, 4, 4_160-4_164, 2022.07, Five universities in northern Kyushu collaborate to hold a debate class in the training camp style. The debate class has been carried out as a part of “Program for Promoting Inter-University Collaborative Education” supported by MEXT until 2016. After this program, we continue to carry out the debate class every year. It is planned and operated by eight graduate students as secretaries, from selection of debate themes to operation on the day. Thus, students can cultivate the ability of planning, design, collaboration, and communication. However, due to the pandemic of COVID-19, we must switch the debate class from the training camp style to the online style. In this report, we mention the outline of debate class and comparison between these two styles..
3. Hao Chen, Tsubasa Yamakawa, Masafumi Inaba, Michihiko Nakano, Junya Suehiro, Characterization of Extra-Cellular Vesicle Dielectrophoresis and Estimation of Its Electric Properties, Sensors, 10.3390/s22093279, 22, 9, 3279, 2022.04.
4. M. Inaba, T. Oda, M. Kono, N. Phansiri, T. Morita, S. Nakahara, M. Nakano, J. Suehiro, Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly, Sensors and Actuators, B: Chemical, 10.1016/j.snb.2021.130257, 344, 130257-1-130257-9, 2021.10, We fabricated nitrogen dioxide (NO2) gas sensors with p-type carbon nanotubes (CNTs) / n-type tin dioxide (SnO2) nanoparticle heterojunctions using one-step dielectrophoretic assembly and investigated the effect of CNT/SnO2 ratio on their NO2 gas detection properties. CNTs and SnO2 nanoparticles were mixed in various ratios, suspended in deionized water, and assembled by dielectrophoresis. The normalized response of fabricated CNT/SnO2 heterojunction gas sensors against 1 ppm NO2 was ∼80 in an N2 atmosphere and ∼20 in artificial air, where UV irradiation was used only for initialization. To reduce the effect of oxygen (O2), we also conducted continuous UV irradiation with various intensities during the initialization and gas detection. The CNT/SnO2 pn heterojunction gas sensor had a maximum normalized response of 19 for 1 ppm NO2 in artificial air, while that of the SnO2 sensor was 3. Furthermore, plotting the gas sensor response as a function of NO2 concentration reveals that the sensor detected an NO2 gas concentration as low as 20 ppb in artificial air. .
5. Michihiko Nakano, Masafumi Inaba, Junya Suehiro, Detection of SARS-CoV-2 Gene by Microbeads Dielectrophoresis-based DNA Detection Method, IEEJ Transactions on Sensors and Micromachines, 10.1541/ieejsmas.141.233, 141, 7, 233-236, 2021.07, Nucleic amplification tests (NATs) are sensitive and specific methods to diagnose infectious diseases. Real-time polymerase chain reaction (PCR) is the gold standard, but it requires expensive apparatus and regents because of fluorescent detection. This study performed a combination of a conventional PCR and microbeads dielectrophoresis (DEP)-based DNA detection method to detect the SARS-CoV-2 gene quantitatively. SARS-CoV-2 is a virus causing COVID-19 and has caused the pandemic worldwide. In the microbeads DEP-based DNA detection method, the amplified DNA, amplicon, is attached to microbeads, the amplicon-labeled microbeads are detected by dielectrophoretic impedance measurement. As a result, the technique demonstrated that same sensitivity as that of real-time PCR. Our method enables the cheap diagnosis of infectious disease instead of expensive real-time PCR.
.
6. R. Nakane, H. Kojima, J. Suehiro, H. Okubo, N. Hayakawa, Time Transition of Conductivity Distribution in Air by DC Partial Discharge for Air-solid Composite Insulation Systems, 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 10.1109/CEIDP49254.2020.9437492, 55-58, 2020.10.
7. Zhenhao Ding, Michihiko Nakano, Junya Suehiro, DNA detection method based on the microbead velocity under traveling wave dielectrophoresis, Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, 10.5220/0007341800210025, 1, 21-25, 2019.02.
8. Michihiko Nakano, Zhenhao Ding, Junya Suehiro, Frequency-dependent conductance change of dielectrhophoretic-trapped DNA-labeled microbeads and its application in DNA size determinations, Microfluidics and Nanofluidics, 10.1007/s10404-018-2051-7, 22, 26, 2018.03.
9. M. Nakano, Z. Ding, J. Suehiro, Frequency-dependent conductance change of dielectrhophoretic-trapped DNA-labeled microbeads and its application in DNA size determinations, Microfluidics and Nanofluidics, 10.1007/s10404-018-2051-7, 22, 26, 2018.03.
10. 屋地 康平, 足立 和郎, 末廣 純也, 人工雪を用いた着雪がいしの絶縁特性の評価, 電気学会論文誌A, 137, 10, 590-597,

, 2017.10, This paper provides electrical and dielectric properties of artificial snow produced at a defined condition in a climatic chamber. Complex impedance of the artificial snow block was measured varying its Liquid Water Content (LWC). An equivalent circuit of the electrode system was also discussed. It was revealed that the complex impedance of artificial snow decreased with increasing LWC. Moreover, it was suggested that the change in LWC would provide a change in dielectric properties of artificial snow depending on the source frequency..
11. Michihiko Nakano, Zhenhao Ding, Junya Suehiro, Comparison of Sensitivity and Quantitation between Microbead Dielectrophoresis-Based DNA Detection and Real-Time PCR, Biosensors, 10.3390/bios7040044, 7, 4, 44, 2017.09.
12. Michihiko Nakano, Zhenhao Ding, Junya Suehiro, Comparison of Sensitivity and Quantitation between Microbead Dielectrophoresis-Based DNA Detection and Real-Time PCR, Biosensors, 10.3390/bios7040044, 7, 4, 44, 2017.09.
13. Zhenhao Ding, Hiromichi Kasahara, Michihiko Nakano, Junya Suehiro, Bacterial detection based on polymerase chain reaction and microbead dielectrophoresis characteristics, IET NANOBIOTECHNOLOGY, 10.1049/iet-nbt.2016.0186, 11, 5, 562-567, 2017.08.
14. 山崎 達郎, 丁 震昊, 中野 道彦, 末廣 純也, 微粒子誘電泳動を用いたDNA検出法による豚DNAの選択的検出, 静電気学会誌, 41, 3, 2017.06.
15. Yoshihiko Obana, Michihiko Nakano, Junya Suehiro, Breakup of carbon nanotube aggregates under high electric field and its application to nanocomposite film, IEEE TENCON 2016, 10.1109/TENCON.2016.7848606, 3045-3048, 2017.02.
16. Hiroki Hayashi, Michihiko Nakano, Junya Suehiro, Detection of acetylene dissolved in insulation oil using pt-decorated ZnO gas sensor, IEEE TENCON 2016, DOI: 10.1109/TENCON.2016.7848262, 1485-1488, 2017.02.
17. Shota Inoue, Michihiko Nakano, Junya Suehiro, Dielectrophoretic modification of carbon nanotube with ZnO nanoparticles for NO2 gas sensing, IEEE TENCON 2016, 10.1109/TENCON.2016.7848608, 3054-3057, 2017.02.
18. Zhenhao Ding, Hiromichi Kasahara, Michihiko Nakano, Junya Suehiro, Bacterial detection based on polymerase chain reaction and microbead dielectrophoresis characteristics, IET Nanobiotechnology, 10.1049/iet-nbt.2016.0186, 2016.11.
19. 井上祐樹, 中野 道彦, 末廣 純也, 負の誘電泳動力による細菌濃縮を利用した誘電泳動インピーダンス計測法の高感度化, 電気学会論文誌E, 136, 5, 148-152, 2016.05.
20. 中野 道彦, 笠原 弘道, 丁 震昊, 末廣 純也, DNA結合に伴う誘電体微粒子の誘電泳動特性変化の測定, 静電気学会誌, 40, 1, 20-25, 2016.02.
21. Yuki Inoue, Ryoji Obara, Michihiko Nakano, Junya Suehiro, Concentration of bacteria in high conductive medium using negative dielectrophoresis, 2015 IEEE International Conference on Industrial Technology, ICIT 2015, 10.1109/ICIT.2015.7125592, 2015-June, June, 16 June 2015, 3336-3340, Article number 7125592, 2015.06, Rapid and sensitive detection of pathogenic bacteria has been an important concern in various fields such as bioscience research, medical diagnosis and hazard analysis in the food industry. The requirement for highly efficient bacterial detection has pointed to the need for new and innovative sample concentration technologies. In this study, a new microfluidic device was demonstrated to enable concentration of bacteria by using negative dielectrophoresis (n-DEP) in high conductive medium. A special design of the electrode system, which was covered with patterned dielectric films, was tested in order to control the electric field distribution in the device so that n-DEP force could drive cells to a point for concentration as well as Joule heating of the suspension medium could be suppressed to avoid heat-induced cell damage. The electrode design was optimized using numerical calculation results of cell motion trajectories and the suspension medium temperature in the device. It was experimentally proved that proposed microfluidic device could concentrate E. coli cells in a continuous flow of cell suspension..
22. Hiromichi Kasahara, Zhenhao Ding, Michihiko Nakano, Junya Suehiro, Effect of DNA length on dielectrophoretic characteristics of DNA-labeled microbeads, 2015 IEEE International Conference on Industrial Technology, ICIT 2015, 10.1109/ICIT.2015.7125593, 2015-June, June, 16 June 2015, 3341-3346, Article number 7125593, 2015.06, Polymerase chain reaction (PCR) is a powerful tool for diagnostic procedures in bacterial and viral infections. We have developed a new electrical technique for rapid detection of DNA amplified by PCR using dielectrophoresis (DEP) of microbeads that are chemically labeled with the amplicons. The DNA immobilization on the microbeads alters their DEP behavior in such a way that they are trapped on a microelectrode under the action of positive DEP, whereas pristine microbeads are not. Combining the dramatic alteration in DEP characteristics with impedance measurement leads to rapid and quantitative detection of amplicons. The method is based on the surface conductivity dependence of microbeads DEP characteristics. It was expected that the surface conductivity would depend on the length of DNA fragments immobilized on a microbeads. In this study, it was found that the crossover frequency was dependent on the length of DNA..
23. Yuki Kawabe, Li Li, Michihiko Nakano, Suehiro Junya, Dielectrophoretic fabrication and chacterization of ZnO nanowire-based acetylene gas sensor, 2015 IEEE International Conference on Industrial Technology, ICIT 2015, 10.1109/ICIT.2015.7125298, 2015-June, June, 16 June 2015, 1433-1437, Article number 7125298, 2015.06, Wide-gap semiconductors with nanostructures such as nanoparticles, nanorods, nanowires are promising as a new type of gas sensor. Recently, ZnO (zinc oxide) nano-structures have been extensively investigated for acetylene (C2H2) gas sensing device applications. In this paper, a new fabrication method of a C2H2 gas sensor based on ZnO nanowires using dielectrophoresis is demonstrated. Dielectrophoresis (DEP) is the electrokinetic motion of dielectrically polarized materials in nonuniform electric fields. ZnO nanowires were trapped in the microelectrode gap where the electric field became higher. The trapped ZnO nanowires were aligned along the electric field line and bridged the electrode gap. Upon exposure to C2H2 gas, the conductance of the DEP-trapped ZnO nanowires increased. The ZnO nanowire gas sensor response to C2H2 gas was dependent on the temperature and the maximum response was obtained at 250 °C. It was confirmed that the sensor response was considerably improved by electrochemically decorating the ZnO nanowires with platinum nanoparticles..
24. Zhenhao Ding, Hiromichi Kasahara, Michihiko Nakano, Junya Suehiro, Dielectrophoretic characteristics of microbeads labeled with DNA of various lengths, 8th International Conference on Biomedical Electronics and Devices, BIODEVICES 2015, 185-89, 2015.01, Polymerase chain reaction (PCR) is one of the most sensitive and specific detection methods of bacterial and viral infections. The authors proposed a new electrical technique for rapid detection of DNA amplified by PCR using dielectrophoresis (DEP) of microbeads. The method is based on dramatic alteration of DEP characteristics of microbeads caused by DNA labelling. DNA labeled microbeads are trapped on a microelectrode under the action of positive DEP, whereas pristine microbeads are not. DEP-trapped microbeads can be measured impedimetrically to realize rapid and quantitative detection of the amplified DNA. In this study, it was aimed to reveal how DNA length affects DEP characteristic of DNA-labeled microbeads. Dielectrophoretic crossover from the negative to the positive was measured for microbeads labeled with DNA length in 204 bp, 391 bp and 796 bp. After theoretical fitting of DEP crossover data, it was revealed that the surface conductance increased when the length of labeled DNA increased..
25. Michihiko Nakano, Ding Zhenhao, Hiromichi Kasahara, Junya Suehiro, DNA Detection using Microbeads-based Dielectrophoretic Impedance Measurement, Proceedings of the International Conference on Sensing Technology, ICST, 10.1109/ICSENS.2014.6985174, 2014-December, December, 12 December 2014, 1010-1013, Article number 6985174, 2014.12, A new electrical technique for rapid detection of DNA amplified by polymerase chain reaction (PCR) using dielectrophoresis (DEP) of microbeads was demonstrated. The amplicons were chemically immobilized on the microbeads. The DNA immobilization on the microbeads alters their DEP behavior in such a way that they are trapped on a microelectrode under the action of positive DEP, whereas pristine microbeads are not. Combining the dramatic alteration in DEP characteristics with impedance measurement leads to rapid and quantitative detection of the amplicon in a few seconds. The proposed microbead-based assay could be applicable for rapid, quantitative, and automated detection of virus infection..
26. Michihiko Nakano, Zhenhao Ding, Hiromichi Kasahara, Junya Suehiro, Rapid microbead-based DNA detection using dielectrophoresis and impedance measurement, EPL, 10.1209/0295-5075/108/28003, 108, 2, Article number 28003 (5 pages), 2014.10, Polymerase chain reaction (PCR) is a powerful tool for diagnostic procedures in bacterial and viral infections. The authors propose a new electrical technique for rapid detection of DNA amplified by PCR using dielectrophoresis (DEP) of microbeads. The method is based on dramatic alteration of DEP characteristics of microbeads caused by DNA labeling. DNA-labeled microbeads are trapped on a microelectrode under the action of positive DEP, whereas pristine ones are not. DEP-trapped microbeads are measured impedimetrically to realize rapid and quantitative detection of the amplified DNA. The validity of the proposed method was demonstrated by detection of PCR-amplified DNA of viruses..
27. Michihiko Nakano, Ryoji Obara, Ding Zhenhao, Junya Suehiro, Detection of norovirus and rotavirus by dielectrophoretic impedance measurement, Proceedings of the International Conference on Sensing Technology, ICST, 374-378, Article number 6727678, 2013.12.
28. Ryoji Obara, Ding Zhenhao, Kenta Shinzato, Michihiko Nakano, Junya Suehiro, Higher throughput of optical detection of bacteria concentrated by negative dielectrophoresis, Proceedings of the International Conference on Sensing Technology, ICST, 275-278, Article number 6727658, 2013.12.
29. Hamada Ryo, Takayama Hiroyuki, Shonishi Yasuhiko, Mao Leina, Suehiro Junya, A rapid bacteria detection technique utilizing impedance measurement combined with positive and negative dielectrophoresis, Sensors and Actuators, B: Chemical, 10.1016/j.snb.2013.02.030, 181, 439-445, 2013.05, In this study, a bacterial detection technique and device that utilizes advantages of both positive and negative dielectrophoresis (DEP) has been proposed and demonstrated. The device has two microelectrodes, which serve as a bacteria concentrator using negative DEP (n-DEP) and as a bacteria detector using positive DEP (p-DEP), respectively. Bacteria flowing into the device are repelled under action of n-DEP force exerted by the first microelectrode, and are pushed toward the second microelectrode situated at the downstream. Then concentrated bacteria are finally captured by p-DEP on the second microelectrode and detected by dielectrophoretic impedance measurement (DEPIM) method. The numerical simulations and experiments proved that n-DEP concentrator could make DEPIM sensitivity two times higher than that without n-DEP as a result of increased number of bacteria trapped on the p-DEP microelectrode..
30. Ryuta Shou, Takuya Tsutsumi, Nakano Michihiko, Suehiro Junya, Response of a carbon nanotube gas sensor to impulse discharges in SF6 gas, 電気学会, 10.1541/ieejfms.132.978, 132, 11, 978-979, 2012.11.
31. Yu Kitamura, Shinya Hasegawa, Hiroaki Tone, Nakano Michihiko, Suehiro Junya, Electrical conductivity enhancement of a large-scale composite film containing electrically aligned carbon nanotubes, 電気学会, 10.1541/ieejfms.132.980, 132, 11, 980-981, 2012.11.
32. Nakano Michihiko, Hisajima Takafumi, Mao Leina, Suehiro Junya, Electrical detection of norovirus capsid using dielectrophoretic impedance measurement method, Proceedings of IEEE Sensors, 10.1109/ICSENS.2012.6411163, 2012.10, In this work, we demonstrated an electrical detection technique of norovirus capsid in liquid by using dielectrophoretic impedance measurement (DEPIM). DEPIM is a method composing of capturing target particles by dielectrophoresis (DEP) in the gap of microelectrodes and measuring the impedance change of the microelectrodes caused by the captured particles. DEPIM has been successfully applied to bacteria detection by the present authors. This is the first report to extend scope of DEPIM inspection from bacteria to norovirus. Recombinant norovirus capsid was employed as target particles in experiments due to safety concerns. First, we showed virus capturing by DEP using fluorescent labeled norovirus capsid. Then, DEPIM of the capsid was carried out. As the result, DEPIM detected 2.5 ng/ml of the norovirus capsid in 300 sec. This implies that DEPIM has comparable sensitivity but shorter detection time than immunochromatography. .
33. M. Nakano, R. Hamada, H. Takayama, Y. Shonishi, T. Hisajima, L. Mao, J. Suehiro, Pretreatment of cell membranes for improved electropermeabilization-assisted dielectrophoretic impedance measurement, Sensors and Actuators B: Chemical, , 10.1016/j.snb.2012.07.078, 2012.08, [URL], We improved our previously reported highly sensitive bacteria detection method called
electropermeabilization-assisted dielectrophoretic impedance measurement (EPA-DEPIM), which
counts the number of bacteria by measuring changes in impedance. EPA-DEPIM involves two processes:
collection of bacteria by dielectrophoresis (DEP), followed by electropermeabilization (EP) of the
cell membranes. In DEP, bacterial cells in aqueous solution are collected on microelectrodes by the
dielectrophoretic force. In EP, a pulse-like rectangular wave is applied to the collected cells to disrupt
their membranes. This increases the signal sensitivity because the disrupted membranes release
intracellular ions that increase the change in impedance. However, the pulse-like EP wave creates a
strong electric field that causes metal ions to be released from the microelectrodes, increasing the blank
signal to levels comparable to that for a low-concentration Escherichia coli suspension (102 cells/ml). To
address this problem, we demonstrated the efficacy of two types of pretreatment applied before the EP
wave: chemical pretreatment by exposure to hydrogen peroxide, and physical pretreatment by a small
pulse-like voltage. Both pretreatments successfully intensified the change in impedance even at a lower
EP voltage..
34. Y. Martin, Z. Li, T. Tsutsumi, R. Shou, M. Nakano, J. Suehiro and S. Ohtsuka, Detection of SF6 decomposition products generated by DC corona discharge using a carbon nanotube gas sensor, IEEE Transactions on Dielectrics and Electrical Insulation, 10.1109/TDEI.2012.6180262, 19, 2, 671-676, 2012.04.
35. M. Nakano, M. Fujioka, K. Mai, H. Watanabe, Y. Martin and J. Suehiro, Dielectrophoretic Assembly of Semiconducting Carbon Nanotubes Separated and Enriched by Spin Column Chromatography and Its Application to Gas Sensing, Jpn. J. Appl. Phys., 10.1143/JJAP.51.045102, 51, 045102 (6 pages), 2012.03.
36. R. Hamada, H. Takayama, Y. Shonishi, T. Hisajima, L. Mao, M. Nakano and J. Suehiro, Improvement of dielectrophoretic impedance measurement method by bacterial concentration utilizing negative dielectrophoresis, Journal of Physics: Conference Series, 307, 1, Art. no. 012031, 2011.12.
37. W. Sun, H. Tomita, S. Hasegawa, Y. Kitamura, M. Nakano and J. Suehiro, An array of interdigitated parallel wire electrodes for preparing a large-scale nanocomposite film with aligned carbon nanotubes, J. Phys. D: Appl. Phys., 44, 9, Article number 445303, 2011.11.
38. R. Hamada, J. Suehiro, M. Nakano, T. Kikutani, K. Konishi, Development of rapid oral bacteria detection apparatus based on dielectrophoretic impedance measurement method, IET Nanobiotechnology, 10.1049/iet-nbt.2010.0011, 5, 2, 25-31, 2011.06, In this study, a bacteria detection apparatus based on dielectrophoretic impedance measurement (DEPIM) method was
demonstrated for rapid evaluation of oral hygiene. The authors integrated a micro electrode chip on which bacteria were captured
by dielectrophoresis (DEP), an AC voltage source to induce DEP force, and an impedance measurement circuit to a portable
instrument that enables rapid and automated oral bacterial inspection in hospitals and clinics. Special considerations have
been made on effects of high electrical conductivity of oral samples on DEP force and DEPIM results. It was shown
experimentally and theoretically that using a higher electric field frequency for the DEP bacteria trap and the impedance
measurement could realise DEPIM application to bacteria inspection from oral samples with higher conductivity. Based on
these investigations, the authors optimised the frequency condition of the DEPIM suitable for inspecting an oral sample along
with the design and development of a portable DEPIM apparatus for on-site inspection of oral bacteria. Under the optimised
frequency condition, DEPIM results were in good agreement with the conventional culture method showing significant
applicability of the DEPIM apparatus for practical rapid oral bacteria inspection..
39. R. Hamada and J. Suehiro, Optimization of electric field frequency on dielectrophoretic impedance measurement method for oral bacteria detection, Proceedings of the International Conference on Biomedical Electronics and Devices (Biodevices 2011), 125-129, 2011.01.
40. K. Imasaka, W. Sun, H. Tomita, Y. Kato, U. Khaled and J. Suehiro, Enhancement and stabilization of pulsed streamer discharge in water by adding carbon nanotubes, Jpn. J. Appl. Phys., 10.1143/JJAP.49.086203, 49, 086203, 2010.08.
41. J. Suehiro, Fabrication and characterization of nanomaterial-based sensors using dielectrophoresis, Biomicrofluidics, 10.1063/1.3430535, 4, 3430535, 2010.06, Dielectrophoresis DEP is an electrokinetic motion of dielectrically polarized materials in nonuniform electric fields. DEP has been successfully applied to manipulation of nanomaterials including carbon nanotubes CNTs, metallic nanoparticles, and semiconducting nanowires. Under positive DEP force, which attracts nano materials toward the higher field region, nanomaterials are trapped in the electrode gap and automatically establish good electrical connections between them and the external measuring circuit. This feature allows us a fast, simple, and low-cost fabrication of nanomaterial-based sensors based on a bottom-up approach. This paper first presents a theoretical background of DEP phenomena and then reviews recent works of the present author, which were aimed to develop nanomaterial-based sensors, such as a CNT gas sensor and a ZnO nanowire photosensor, using DEP fabrication technique. It is also demonstrated that DEP technique enables self-formation of interfaces between various nano materials, which can be also applicable as novel sensing transducers..
42. W. Sun, U. Khaled, H. Tomita, Z. Li, K. Imasaka and J. Suehiro, Solubilization of single-walled carbon nanotubes using ozone generated by dielectric barrier discharge, Jpn. J. Appl. Phys., 10.1143/JJAP.49.055002, 49, article No. 055002, 2010.05.
43. W. Sun, U. Khaled, H. Tomita, Z. Li, K. Imasaka and J. Suehiro, Solubilization of single-walled carbon nanotubes using ozone generated by dielectric barrier discharge, Jpn. J. Appl. Phys., 10.1143/JJAP.49.055002, 49, 055002, 2010.05.
44. W. Sun, U. Khaled, H. Tomita, Z. Li, K. Imasaka and J. Suehiro, Solubilization of single-walled carbon nanotubes using ozone generated by dielectric barrier discharge, Jpn. J. Appl. Phys., 10.1143/JJAP.49.055002, 49, 055002, 2010.05.
45. U. Khaled, K. Imasaka and J. Suehiro, Enhancement of microplasma generated in water by adding carbon nanotubes, Journal of Plasma and Fusion Research Series, Volume 8, Pages 603-607, 2009.10, [URL].
46. 末廣 純也, 誘電泳動を利用した細胞操作と検出技術, 静電気学会誌, 33, 4, 132-136, 2009.10.
47. Wei Sun and Usama Khaled and Hironari Tomita and Kiminobu Imasaka and Junya Suehiro, Effects of ozone generated by dielectric barrier discharge on water-solubility of single-walled carbon nanotubes
author="Wei Sun and Usama Khaled and Hironari Tomita and Kiminobu Imasaka and Junya Suehiro",
booktitle="Proc. of 19th Int. Sympo. on Plasma Chemistry",
pages="P1.8.51",
month="7",
year="2009", Proc. of 19th Int. Sympo. on Plasma Chemistry, P1.8.51, 2009.07.
48. Wei Sun and Usama Khaled and Hironari Tomita and Kiminobu Imasaka and Junya Suehiro, Effects of ozone generated by dielectric barrier discharge on water-solubility of single-walled carbon nanotubes, Proc. of 19th Int. Sympo. on Plasma Chemistry, P1.8.51, 2009.07.
49. Kiminobu Imasaka and Usama Khaled and Wei Sun and Junya Suehiro, pH dependence of water-solubility of single-walled carbon nanotubes treated by microplasma in aqueous solution, Proc. of 19th Int. Sympo. on Plasma Chemistry, P2.15.08, 2009.07.
50. 末廣 純也, 誘電泳動によるナノマテリアル操作技術とデバイス応用, 電気学会論文誌A, 129, 7, 435-438 , 2009.07.
51. J. Suehiro, N. Ikeda, A. Ohtsubo and K. Imasaka, Bacterial detection using a carbon nanotube gas sensor coupled with a microheater for ammonia synthesis by aerobic oxidization of organic components, IET Nanobiotechnology, Volume 3, Issue 2, pp.15-22, 2009.06, [URL].
52. K. Imasaka, Y. Kato, U. Khaled and J. Suehiro, Effects of pH on water-solubilization of carbon nanotube using microplasma in aqueous solution, Jpn. J. Appl. Phys., Volume 48, No.6, Paper No.065004, 2009.06, [URL].
53. J. Suehiro, N. Ikeda, A. Ohtsubo and K. Imasaka, Fabrication of bio/nano interfaces between biological cells and carbon nanotubes using dielectrophoresis, Microfluidics and Nanofluidics, Volume 5, Number 6, Pages 741-747, 2008.12, [URL].
54. K. Imasaka, Y. Kato and J. Suehiro, Effects of gas bubbling on water-solubilization of carbon nanotube using microplasma generated in water, Surface & Coatings Technology, Volume 202, Issues 22-23, Pages 5271-5274, 2008.08, [URL].
55. J. Suehiro, K. Imasaka, M. Hara, Optical observations of partial discharge-induced bubbles generated in subcooled liquid nitrogen at atmospheric pressure, IEEE Trans. on Dielectrics and Electrical Insulation, Vol.15, No.3, pp.620-625, 2008.06, [URL].
56. J. Suehiro, S. Hidaka, S. Yamane, K. Imasaka, Fabrication of interfaces between carbon nanotubes and catalytic palladium using dielectrophoresis and its application to hydrogen gas sensor, Sensors and Actuators B: Chemical, , Vol.127, No.2, pp.505–511, 2007.11, [URL].
57. J. Suehiro, S. Yamane and K. Imasaka, Carbon nanotube-based hydrogen gas sensor electrochemically functionalized with palladium
Proceedings of IEEE Sensors 2007, , Proceedings of IEEE Sensors 2007, art. no. 4388458, pp. 554-557, 2007.10, [URL].
58. K. Imasaka, Y. Kato, J. Suehiro, Enhancement of microplasma-based water-solubilization of single-walled carbon nanotubes using gas bubbling in water, Nanotechnology, Vol.18, 335602 (7pp), 2007.08, [URL].
59. T. Okada, J. Suehiro, Synthesis of nano-structured materials by laser-ablation and their application to sensors, Applied Surface Science, Vol. 253, No. 19, pp. 7840-7847, 2007.07, [URL].
60. J. Suehiro, K. Imasaka, Solubilization of carbon nanotubes using microplasma generated in water, Transactions of the Materials Research Society of Japan, Vol. 32, No. 2, pp. 517-522, 2007.06.
61. W. Ding, K. Ochi, J. Suehiro, K. Imasaka, R. Hayashi, M. Hara, Factors affecting PD detection in GIS using a carbon nanotube gas sensor, IEEE Trans. on Dielectrics and Electrical Insulation, Vol.14, No.3, pp.718-725, 2007.06, [URL].
62. W. Ding, R. Hayashi, K. Ochi, J. Suehiro, K. Imasaka, M. Hara, N. Sano, E. Nagao, T. Minagawa, Analysis of PD-generated SF6 decomposition gases adsorbed on carbon nanotubes, IEEE Trans. on Dielectrics and Electrical Insulation, Vol.13, No.6, pp.1200-1207, 2006.12, [URL].
63. J. Suehiro, A. Ohtsubo, T. Hatano, M. Hara, Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip, Sensors and Actuators B, Chemical, Vol.119, pp.319-326, 2006.11, [URL].
64. K. Imasaka, J. Suehiro, Y. Kanatake, Y. Kato, M. Hara, Preparation of water-soluble carbon nanotubes using pulsed streamer discharge in water, Nanotechnology, Vol.17, pp.3421-3427, 2006.07, [URL].
65. J. Suehiro, N. Sano, G. Zhou, H. Imakiire, K. Imasaka, M. Hara, Application of dielectrophoresis to fabrication of carbon nanohorn gas sensor, J. Electrostatics, Vol.64, pp.408-415, 2006.06, [URL].
66. J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, M. Hara, Dielectrophoretic fabrication and characterization of ZnO nanowire-based UV photosensor, Nanotechnology, Vol.17, pp.2567?2573, 2006.05, [URL].
67. K. Imasaka, Y. Kanatake, Y. Ohshiro, J. Suehiro, M. Hara, Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water, Thin Solid Films, Vol.506/507, pp.250-254, 2006.05, [URL].
68. W. Ding, R. Hayashi, J. Suehiro, G. Zhou, K. Imasaka, M. Hara, Calibration methods of carbon nanotube gas sensor for partial discharge detection in SF6, IEEE Trans. on Dielectrics and Electrical Insulation, Vol.13, No.2, pp.353-361, 2006.04, [URL].
69. J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis, Sensors and Actuators B, Chemical, Vol.114, pp.943?949, 2006.04, [URL].
70. J. Suehiro, G. Zhou, H. Imakiire, W. Ding, M. Hara, Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement, Sensors and Actuators B, Chemical, 10.1016/j.snb.2004.09.048, 108, 1-2, 398-403, Vol.108, pp.398-403, 2005.07, [URL].
71. J. Suehiro, T. Hatano, M. Shutou and M. Hara, Improvement of electric pulse shape for electropermeabilization-assisted dielectrophoretic impedance measurement for high sensitive bacteria detection, Sensors and Actuators B, Chemical, 10.1016/j.snb.2004.12.048, 109, 2, 209-215, Vol.109, pp.209-215, 2005.01, [URL].
72. J. Suehiro, G. Zhou, M. Hara, Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor, Sensors and Actuators B, Chemical, 10.1016/j.snb.2004.05.050, 105, 2, 164-169, Vol.105, pp.164-169, 2004.07, [URL].
73. J. Suehiro, K. Imasaka, Y. Ohshiro, G. Zhou, M. Hara, N. Sano, Production of carbon nanoparticles using pulsed arc discharge triggered by dielectric breakdown in water
, Jpn. J. Appl. Phys., 10.1143/JJAP.42.L1483, 42, 12A, L1483-L1485, Vol.42, pp.L1483-L1485, 2003.12, [URL].
74. J. Suehiro, M. Shutou, T. Hatano, M. Hara, High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization, Sensors and Actuators B: Chemical, 10.1016/S0925-4005(03)00517-3, 96, 1-2, 144-151, Vol.96, No.1/2, pp.144-151, 2003.11, [URL].
75. J. Suehiro, G. Zhou, M .Hara, Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy, Journal of Physics D: Applied Physics, 10.1088/0022-3727/36/21/L01, 36, 21, L109-L114, Vol.36, No.21, pp.L109-L114, 2003.11, [URL].
76. J. Suehiro, G. Zhou, M. Imamura, M. Hara, Dielectrophoretic filter for separation and recovery of biological cells in water, IEEE Trans. on Industry Applications, 10.1109/TIA.2003.816535, 39, 5, 1514-1521, Vol.39, No.5, pp.1514-1521, 2003.09, [URL].
77. J. Suehiro, D. Noutomi, M. Shutou, M. Hara, Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with antigen-antibody reaction, J. Electrostatics, 10.1016/S0304-3886(03)00062-7, 58, 3-4, 229-246, Vol.58, No.3/4, pp.229-246, 2003.06, [URL].
78. J. Suehiro , R. Hamada, D. Noutomi, M. Shutou, M. Hara, Selective etection of viable bacteria using dielectrophoretic impedance measurement method, J. Electrostatics, Vol.57, No.2, pp.157-168, 2003.02, [URL].
79. M. Hara, H. Nakagawa, T. Shinohara, J. Suehiro, Generation, Growth and Collapse of Bubbles on Collision of Particle with Electride in DC Electrically Stressed Liquid Helium, IEEE Trans. on Dielectrics and Electrical Insulation, 10.1109/TDEI.2002.1115484, 9, 6, 910-921, Vol.9, No.6, pp.910-921, 2002.12.
80. K. Sakai, Y. Khan, Q. Zhang, J. Suehiro, M. Hara, Importance of the Consideration of Electrical Gradient Force Acting on Foreign Conducting Particle in the Insulation Design of GIS, Proc. of the 14th Conf. of the Electric Power Supply Industry, pp.7-12, 2002.11.
81. T. Kurihara, T. Nishioka, J. Suehiro, N. Hayashi, M. Hara, Experimental Study of PD Characteristics around a Triple Junction in Atmospheric Air, Proc. of 2002 Joint Conf. of ACED and K-J Sympo. on ED and HVE, pp.495-498, 2002.11.
82. M. Hara, T. Kurihara, S. Kozuru, J. Suehiro, N. Hayashi, Estimation of partial Discharge Characteristics in Gases around Triple Junction, Proc. of the 14th Conf. of the Electric Power Supply Industry, pp.19-24, 2002.11.
83. G. Zhou, M. Imamura, J. Suehiro, M. Hara, Elimination of Fine particles Suspended in Liquid Using Dielectrophoresis, Proc. of 2002 Joint Conf. of ACED and K-J Sympo. on ED and HVE, pp.27-30, 2002.11.
84. Y. Khan, A. Oda, Q. Zhang, J. Suehiro, M. Hara, S. Okabe, Effect of Voltage Wavwform on Particle-triggered Pre-breakdown Phenomena in Diverging Air Gap with Simple Shaped Spacer, Proc. of 2002 Joint Conf. of ACED and K-J Sympo. on ED and HVE, pp.366-369, 2002.11.
85. Y. Khan, K. Sakai, E. Lee, J. Suehiro, M. Hara, A Basic Study of Deactivation Methods of Free Conducting Particles around Spacers between Non-parallel Plane Electrodes under DC Voltage, Proc. of the 14th Conf. of the Electric Power Supply Industry, pp.13-18, 2002.11.
86. Y. Khan, K. Sakai, S. Okabe, J. Suehiro, M. Hara, Importance of the Consideration of Electrical Gradient Force in the Deactivation of Free Conducting Particle under DC Voltage, Proc. of the IEEE/PES Transmission and Distribution Conf, 904-908, pp.904-908, 2002.10.
87. G. Zhou, M. Imamura, J. Suehiro, M. Hara, A Dielectrophoretic Filter for Separation and Collection of Fine Particles Suspended in Liquid, Conf. Records of the 2002 IEEE Industry Applications Conf., 37th IAS Annual Meeting, 1404-1411, pp.1404-1411, 2002.10.
88. K. Sakai, D. L. Abella, J. Suehiro, M. Hara, Charging and Behavior of a Spherically Conducting Particle on a Dielectrically Coated Electrode in the Presence of Electrical Gradient Force in Atmospheric Air, IEEE Trans. on Dielectrics and Electrical Insulation, 10.1109/TDEI.2002.1024436, 9, 4, 577-588, Vol.9, No.4, pp.577-588, 2002.08.
89. M. Hara, H. Nakagawa, J. Suehiro, T. Shinohara, Electrical Breakdown Triggered by Free Conducting Spherical Particle in Saturated Liquid HeI and HeII under Uniform Dc Field, Proc. of 14th Int. Conf. on Dielectric Liquids, 10.1109/ICDL.2002.1022703, 99-102, pp.99-102, 2002.07.
90. M. Hara, J. Suehiro, H. Maeda, H. Nakashima, PD Per-Breakdown Phenomena and Breakdown Characteristics in the Presence of Conducting Particles in Liquid Nitrogen, IEEE Trans. on Dielectrics and Electrical Insulation, Vol.9, No.1, pp.23-30, 2002.02.
91. B. Y. Seok, H. Komatsu, M. Kushinaga, J. Suehiro, M. Hara, Pressurizing and Sub-cooling Effects on Electrical Breakdown of LN$_{2}$ in Modeled HTS Coils, IEEE Trans. on Dielectrics and Electrical Insulation, 10.1109/94.971460, 8, 6, 1016-1024, Vol.8, No.6, pp.1016-1024, 2001.12.
92. T. Kurihara, S. Kozuru, J. Suehiro, M. Hara, H. Okamoto, Partial Discharge Inception in an Air-filled Void at Cryogenic Temperatures under Superimposed Sinusoidal Voltage, Proc. of 2001 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.25-28, 2001.11.
93. M. Hara, T. Kurihara, S. Kozuru, J. Suehiro, N. Hayashi, PD Onset Characteristics around a Triple Junction in Atmospheric Air at Room Temperature, Proc. of 2001 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.57-60, 2001.11.
94. K. Takahashi, K. Imasaka, J. Suehiro, M. Hara, Effects of the Voltage Polarity on the Gas-Puff Z-Pinch Characteristics in an IPP System, Proc. of 2001 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.273-276, 2001.11.
95. K. Sakai, Q. Zhang, Y. Khan, E. Lee, A. Oda, J. Suehiro, M. Hara, Dependence of Particle-Triggered Breakdown Voltage on N$_{2}$ and SF$_{6}$ Gas Pressure in DC Field between Non-Parallel Plane Electrodes, Proc. of 2001 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.269-272, 2001.11.
96. Y. Khan, E. Lee, A. Oda, K. Sakai, Q. Zhang, J. Suehiro, M. Hara, Characteristics of Corona and Surface Flashover Triggered by Free Conducting Particle around Simple Shaped Spacer under DC Voltage in Atmospheric Air, Proc. of 2001 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.101-104, 2001.11.
97. Y. Khan, K. Sakai, E. Lee, J. Suehiro, M. Hara, Free-Conducting Spherical Particle Motion around Different Shaped Spacers under DC Voltage, Proc. of 12th Int. Sympo. on High Voltage Engineering, pp.294-297, 2001.08.
98. T. Kurihara, S. Kozuru, J. Suehiro, M. Hara, Effect of Superimposed Sinusoidal Voltage on Partial Discharge Characteristics in an Artificial Air-Filled Void, Proc. of 12th Int. Sympo. on High Voltage Engineering, pp.1035-1038, 2001.08.
99. K. Sakai, Y. Khan, E. Lee, J. Suehiro, M. Hara, Effect of Microdischarge Occurrences on Spherical Conducting Particle Motion between Non-Parallel Plane Electrodes, Proc. of 12th Int. Sympo. on High Voltage Engineering, pp.302-305, 2001.08.
100. K. Imasaka, K. Takahashi, J. Suehiro, M. Hara, Polarity Effect on the Behavior of Gas-Puff Z-Pinch Plasma Produced by IPP System, Proc. of 28th IEEE Int. Conf. on Plasma Science and 13th IEEE Int. Pulsed Power Conf., 757-760, pp., 2001.06.
101. T. Kurihara, S. Kozuru, K. Imasaka, J. Suehiro, M. Hara, PD Characteristics in an Air-filled Void at Room Temperature under Superimposed Sinusoidal Voltages, IEEE Trans. on Dielectrics and Electrical Insulation, 10.1109/94.919953, 8, 2, 269-275, Vol.8, No.2, pp.269-275, 2001.04.
102. K. Funaki, M. Iwakuma, K. Kajikawa, M. Hara, J. Suehiro, T. Ito, Y. Takata, T. Bohno, S. Nose, M. Konno, Y. Yagi, H. Maruyama, T. Ogata, S. Yoshida, K. Ohashi, H. Kimura, K. Tsutsumi, Development of a 22kV/6.9kV Single-Phase Model for a 3MVA HTS Power Transformer, IEEE Trans. Appl. Supercond., 10.1109/77.920079, 11, 1, 1578-1581, Vol.11, No.1, pp.1578-1581, 2001.03.
103. K. Imasaka, K. Kawazoe, Y. Kawauchi, S. Hara, J. Suehiro, M. Hara, Reduction of the Source Size of Gas-Puff Z-Pinch Plasmas Using an Inductive Pulsed Power System, Rev of Sci. Instrum, 10.1063/1.1322576, 71, 12, 4438-4444, Vol.71, No.12, pp.4438-4444, 2000.12.
104. M. G. Danikas, S. Tsuru, M. Nakamura, T. Mine, J. Suehiro, M. Hara, PD Characteristics and Mechanisms in Artificial Air-Filled Voids at Room and Liquid Nitogen Temperatures, IEEE Trans. on. Dielectrics and Electrical Insulation, Vol.7, No.6, pp.875-876, 2000.12.
105. H. Lee, J. Suehiro, D. Lee, M. So, M. Hara, Energy Efficiency Improvement of Electrical Sterilization Using Oscillatory Waveforms from a RLC Discharging Circuit, IEEE Trans. on. Dielectrics and Electrical Insulation, 7, 6, 872-874, Vol.7, No.6, pp.872-874, 2000.12.
106. K. Imasaka, T. Masaki, K. Kawazoe, J. Suehiro, M. Hara, Spatial Distribution of Hot Spots Produced by Gas-Puff Z-Pinch Using Inductive Pulsed Power Generator, Proc. of 10th Asian Conf. on Electrical Discharge, pp.227-230, 2000.11.
107. T. Kurihara, S. Tsuru, J. Suehiro, M. Hara, Simulation of Partial Discharge in an Artificial Air-Filled Void under Superimposed Sinusoidal Voltages, Proc. of 10th Asian Conf. on Electrical Discharge, pp.123-126, 2000.11.
108. J. Maruyama, F. Shimokawa, G. B. Zhou, J. Suehiro, M. Hara, AC Electrical Tree Initiation and Growth Characteristics in XLPE under UV Irradiation, Proc. of 10th Asian Conf. on Electrical Discharge, pp.127-130, 2000.11.
109. M. Hara, T. Kurihara, S. Kozuru, J. Suehiro, N. Hayashi, New Estimation Method of Partial Discharge Characteristics in Gas around a Triple Junction, Proc. of 2000 Korea-Japan Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.504-1 - 504-4, 2000.10.
110. K. Sakai, D. L. Abella, J. Suehiro, M. Hara, Mode of Free-Conducting Particle Motion and Particle-Triggered Breakdown Mechanism in Non-uniform Field Gaps, Proc. of 2000 IEEE Conference on Electrical Insulation and Dielectric Phenomena, 389-392, pp.389-392, 2000.10.
111. K. Sakai, E. Lee, Y. Khan, J. Suehiro, M. Hara, Effect of Spacers on Free Conducting Particle Motion within Diverging Air Gap, Proc. of 2000 Korea-Japan Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.601-1 - 601-4, 2000.10.
112. R. Hamada, D. Noutomi, J. Suehiro, R. Yatsunami, M. Hara, Selective Detection of Viable and Non-viable Bacteria by Using Dielectrophoretic Impedance Measurement Method, Proc. of Int. Conf. on Electrical Engineering 2000, pp.1081-1084, 2000.07.
113. K. Sakai, D. L. Abella, J. Suehiro, M. Hara, Lateral Motion of Wire Particles toward Decreasing Electrode Gap Regions in Atmospheric Air, Proc. of the 6th Int. Conf. on Properties and Applications of Dielectric Materials, 817-820, pp.817-820, 2000.06.
114. H. Lee, J. Suehiro, M. Hara, D. Lee, M. So, Optimal Condition of Waveforms for Electrical Sterilization of {?it Escherichia coli?/} by HV Impulse, 静電気学会誌, Vol.24, No.4, pp.213-217, 2000.04.
115. B. Y. Seok, H. Komatsu, J. Suehiro, M. Hara, Partial and Complete Electrical Breakdown in Simulated High Temperature Superconducting Coils, IEEE Trans. on Dielectrics and Electrical Insulation, 10.1109/94.839344, 7, 1, 78-86, Vol.7, No.1, pp.78-86, 2000.02.
116. J. Suehiro, R. Yatsunami, R. hamada, M. Hara, Quantitive Estimation of Biological Cell Concentration Suspended in Aqueous Medium by Using Dielectrophoretic Impedance Measurement Method, J.Phys. D: Appl. Phys., Vol.32, pp.2814-2820, 1999.11, [URL].
117. S. Tsuru, T. Kurihara, J. Suehiro, M. Hara, PD Characteristics in Air-Filled Void at Room Temperature under the Condition of Simulated Inverter Surges, Proc. of 1999 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.208-211, 1999.10.
118. D. L. Abella, K. Sakai, P. Attaviriyanupap, J. Suehiro, M. Hara, Free Conducting Particle Charging and Behavior in the Gap between Non-Parallel Bare and Coated Electrodes, Proc. of 1999 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.45-48, 1999.10.
119. H. K. Lee, J. Suehiro, M. Hara, M. H. So, D. C. Lee, Effect of Sterilization of Soya by HV Impulse Waveform, Proc. of 1999 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.204-207, 1999.10.
120. K. Sakai, D. L. Abella, P. Attaviriyanupap, J. Suehiro, M. Hara, Breakdown Triggered by Migration of Free Conducting Particles from Low to High Electric Field Regions, Proc. of 1999 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.239-242, 1999.10.
121. K. Imasaka, T. Masaki, J. Suehiro, M. Hara, Behavior of the Gas-Puff Z-Pinch Plasma Produced by Inductive Pulsed Power Generator and its Characteristics, Proc. of 1999 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.200-203, 1999.10.
122. B. Y. Seok, H. Komatsu, M. Kushinaga, J. Suehiro, M. Hara, A Study of PBD Phenomena Triggered by Induced Bubble in the Simulated Electrode System of Superconducting Coils, Proc. of 1999 Japan-Korea Joint Sympo. on Electrical Discharge and High Voltage Engineering, pp.301-304, 1999.10.
123. S. Tsuru, T. Mine, J. Suehiro, M. Hara, Partial Discharge Degradation of Solid Insulators with an Air-Filled Void at Liquid Nitrogen Temperature, Proc. of 11th Int. Sympo. on High-Voltage Engineering, pp.369-372, 1999.08.
124. J. Suehiro, K. Tsutsumi, D. Tsuji, S. Ohtsuka, K. Imasaka, M. Hara, Fast Quench of Superconducting Wire by Pulsed Current and its Application to Pulsed Power Generation, Proc. of 11th Int. Sympo. on High-Voltage Engineering, pp.390-393, 1999.08.
125. B. Y. Seok, H. Komatsu, J. Suehiro, M. Hara, Bubble Behavior and PBD Characteristics in the Simulated Electrode System of High Temperature Superconducting Coils, Proc. of 11th Int. Sympo. on High-Voltage Engineering, pp.372-375, 1999.08.
126. M. Hara, J. Suehiro, H. Maeda, H. Nakashima, DC Pre-Breakdown Phenomena and Breakdown Characteristics in the Presence of Metallic Particle in Liquid Nitrogen, Proc. of 1999 IEEE 13th Int. Conf. on Dielectric Liquids, pp.457-461, 1999.07.
127. J. Suehiro, D. Tsuji, K. Tsutsumi, S. Ohtsuka, M. Hara, Quench Time Lag and its Statistical Characteristics of NbTi Mechanical PCS Measured with Pulsed Current, IEEE Trans. on Applied Superconductivity, 10.1109/77.783496, 9, 2, 1125-1128, Vol.9, No.2, pp.1125-1128, 1999.06.
128. S. Ohtsuka, T. Nakamura, D. Tsuji, J. Suehiro, M. Hara, Quench Characteristics of Parallel Circuit of Two Mechanical PCS's, IEEE Trans. on Applied Superconductivity, 10.1109/77.783486, 9, 2, 1085-1088, Vol.9, No.2, pp.1085-1088, 1999.06.
129. S. Tsuru, M. Nakamura, T. Mine, J. Suehiro, M. Hara, PD Characteristics and Mechanisms in Artificial Air-Filled Voids at Room and Liquid Nitrogen Temperatures, IEEE Trans. on Dielectrics and Electrical Insulation, 10.1109/94.752008, 6, 1, 43-50, Vol.6, No.1, pp.43-50, 1999.02.
130. S. Ohtsuka, D. Tsuji, K. Tsutsumi, J. Suehiro, M. Hara, Effect of Quench Time Lag on the Succeeding Quench in the Parallel Mechanical PCS Circuit, Proc. of 11th Int. Sympo. on Superconductivity, pp.SAP-28, 1998.11.
131. S. Ohtsuka, T. Nakamura, D. Tsuji, J. Suehiro, M. Hara, Quench Current Characteristics of Parallel Mechanical PCSs, Proc. of 15th Int. Conf. on Magnet Technology, pp.551-554, 1998.10.
132. T. Mine, S. Tsuru, J. Suehiro, M. Hara, PD Degradation of Solid Insulators with an Artificial Air-Filled Voids at Room and Liquid Nitrogen Temperatures, Proc. of 1998 Korea-Japan Joint Symp. on ED and HVE, pp.65-68, 1998.10.
133. H. K. Lee, J. Suehiro, M. Hara, D. C. Lee, Measurement of optima HV impulse Waveshape for electrical sterlization of Escherichia coli, Proc. of 1998 Korea-Japan Joint Symp. on ED and HVE, pp.179-182, 1998.10.
134. K. Kawazoe, T. Masaki, K. Imasaka, J. Suehiro, M. Hara, Gap Length Dependence of Soft X-ray Emission from Gas-Puff Z-Pinch Plasma Produced by Inductive Pulsed Power Generator, Proc. of 1998 Korea-Japan Joint Symp. on ED and HVE, pp.175-178, 1998.10.
135. M. Hisao, N. Hideki, J. Suehiro, M. Hara, D.c.Pre-Breakdown Phenomena and Breakdown Voltage Characteristics of a Parallel Plane Gap in the Presence of Free Conducting Particles in Liquid Nitrogen, Proc. of 1998 Korea-Japan Joint Symp. on ED and HVE, pp.111-114, 1998.10.
136. S. Ohtsuka, H. Ohtsubo, T. Nakamura, J. Suehiro, M. Hara, Characteristics of NbTi Mechanical Persistent Current Switch and Mechanism of Superconducting Connection at Contact, Cryogenics, 10.1016/S0011-2275(98)00079-4, 38, 9, 893-902, Vol.38, No.9, pp.893-902, 1998.09.
137. J. Suehiro, P. Pethig, The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system, J. Phys. D:Appl. Phys., 10.1088/0022-3727/31/22/019, 31, 22, 3298-3305, Vol.31, No.22, pp.3298-3305, 1998.06, [URL].
138. S. Tsuru, M. Nakamura, T. Mine, J. Suehiro, M. Hara, Partial Discharge Inception Characteristics in Artificial Air-Filled Voids at Room and Liquid Nitrogen Temperatures, Conf. Record of the IEEE Int. Sympo. on Electrical Insulation, 153-156, pp.153-156, 1998.06.
139. K. Imasaka, Y. Kawauchi, K. Kawazoe, J. Suehiro, M. Hara, Numerical and Experimental Study of Behavior of Gas-Puff Z-Pinch Plasma Produced by Indutive Pulsed Power Generator, Proc. of the 15th Int. Conf. on High-Power Particle Beams, pp.printing, 1998.06.
140. K. Funaki, M. Iwakuma, K. Kajikawa, M. Takeo, J. Suehiro, M. Hara, K. Yamafuji, M. Konno, Y. Kasagawa, K. Okubo, Y. Yasukawa, S. Nose, M. Ueyama, K. Hayashi, K. Sato, Development of a 500 kVA-class oxide-supercon- ducting power transformer operated at liquid-nitrogen temperature, Cryogenics, 10.1016/S0011-2275(97)00134-3, 38, 2, 211-220, Vol.38, No.2, pp.211-220, 1998.02.
141. S. Ohtsuka, T. Nakamura, D. Tsuji, J. Suehiro, M. Hara, Quench Current Characteristics of Parallel Mechanical PCS, Proc. of 15th Int. Conf. on Magnet Technology, pp.PB-13, 1997.10.
142. S. Tsuru, M. Nakamura, T. Mine, K. Sakai, J. Suehiro, M. Hara, Partial Discharge Mode and Mechanism in Artificial Air-Filled Voids at Room Temperature, Proc. of 1997 Japan-Korea Joint Sympo. on ED and HVE, pp.39-42, 1997.10.
143. H. K. Lee, M. H. So, J. Suehiro, M. Hara, D. C. Lee, Optimal RLC Condition to Electrical Sterilization of Escherichia coli by HV Impulse, Proc. of 1997 Japan-Korea Joint Sympo. on ED and HVE, pp.121-124, 1997.10.
144. S. Ohtsuka, T. Nakamura, D. Tsuji, J. Suehiro, M. Hara, Arc Discharge Characteristics Generated by Opening a NbTi Mechanical PCS, Proc. of 1997 Japan-Korea Joint Sympo. on ED and HVE, pp.141-144, 1997.10.
145. Y. Kawauchi, K. Kawazoe, K. Imasaka, J. Suehiro, M. Hara, Analysis of Pinching Process of Gas-Puff Z-Pinch Plasma Produced by Inductive Pulsed Power Generator, Proc. of 1997 Japan-Korea Joint Sympo. on ED and HVE, pp.129-132, 1997.10.
146. S. Ohtsuka, H. Ohtsubo, T. Nakamura, D. Tsuji, J. Suehiro, M. Hara, Feasibility Study on a Mechanical Persistent Current Switch in SMES, Proc. of Int. Conf. on Electrical Engineering, pp.102-105, 1997.07.
147. K. Funaki, M. Iwakuma, M. Takeo, K. Yamafuji, J. Suehiro, M. Hara, M. Konno, Y. Kasagawa, I. Itoh, S. Nose, M. Ueyama, K. Hayashi, K. Sato, Preliminary Tests of A 500 kVA-Class Oxide Superconducting Transformer Cooled by Subcooled Nitrogen, IEEE Trans. on Appl. Supercond., 10.1109/77.614630, 7, 2, 824-827, Vol.7, No.2, pp.824-827, 1997.07.
148. K. Funaki, K. Iwakuma, M. Takeo, K. Yamafuji, J. Suehiro, M. Hara, M. Konno, Y. Kasagawa, I. Itoh, S. Nose, M. Ueyama, K. Hayashi, K. Sato, Preliminary Tests of a 500kVA-Class Oxide Superconducting Transformer Cooled by Subcooled Nitrogen, IEEE Trans. on Applied Superconductivity, 10.1109/77.614630, 7, 2, 824-827, Vol.7, No.2, pp.824-827, 1997.06.
149. K. Imasaka, S. Hara, Y. Kawauchi, K. Kawazoe, J. Suehiro, M. Hara, Soft X-ray Emission from the Gas-puff Z-pinch Plasma Produced by an Inductive Pulsed Power Generator, Proc. of IEEE Int. Conf. on Pulsed Power, 845-850, pp.p1-59, 1997.06.
150. S. Tsuru, M. Nakamura, K. Funaki, M. Iwakuma, J. Suehiro, M. Hara, Partial Discharge Characteristics in Artificial Air-Filled Voids Immersed in Liquid Nitrogen, Proc. of the 5th ICPADM, 228-231, pp.228-231, 1997.05.
151. H. K. Lee, J. Suehiro, M. H. So, M. Hara, D. C. Lee, Measurement of Excellent Condition to RLC Parameter for Electrical Sterilization on Escherichia coli, Proc. of the 5th ICPADM, pp.1136-1139, 1997.05.
152. K. Funaki, M. Iwakuma, M. Takeo, K. Yamafuji, J. Suehiro, M. Hara, M. Konno, Y. Kasagawa, K. Okubo, Y. Yasukawa, S. Nose, M. Ueyama, K. Hayashi, K. Sato, Design and Construction of a 500 kVA-Class Oxide Superconducting Power Transformer Cooled by Liquid Nitrogen, Proc. of 16th Int. Cryo. Eng. Conf. / Int. Cryo. Mat. Conf., pp.1009-1012, 1997.03.
153. K. Funaki, M. Iwakuma, M. Takeo, K. Yamafuji, J. Suehiro, M. Hara, M. Konno, Y. Kasagawa, K. Ohkubo, Y. Yasukawa, S. Nose, M. Ueyama, K. Hayashi, K. Sato, Design and Construction of A 500kVA-Class Oxide Superconducting Power Transformer Cooled by Liquid Nitrogen, Proc. ICEC16/ICMC, pp.1009-1012, 1997.02.
154. M. Miyama, T. Takahashi, K. Ohno, J. Suehiro, M. Hara, Size Effects and Breakdown Mechanism in Superfluid Helium, Proc. of 8th ACED, pp.203-1-203-4, 1996.10.
155. K. Imasaka, S. Hara, Y. Kawauchi, J. Suehiro, M. Hara, Gas-puff Z-pinch driven by a Fast Bank, Proc. of 8th ACED, pp.406-1-406-4, 1996.10.
156. S. Ohtsuka, H. Ohtsubo, T. Nakamura, J. Suehiro, M. Hara, Contact Resistance Characteristics of Mechanical Switch Made of NbTi, Proc. of 8th ACED, pp.711-1-711-4, 1996.10.
157. J. Suehiro, K. Ohno, T. Takahashi, M. Miyama, M. Hara, Size Effect and Statistical Characteristics of DC and Pulsed Breakdown of Liquid Helium, IEEE Trans. on DEI, 10.1109/94.536729, 3, 4, 507-514, Vol.3, No.4, pp.507-514, 1996.08.
158. J. Suehiro, K. Ohno, T. Takahashi, M. Miyama, M. Hara, Statistical Characteristics of Electrical Breakdown in Saturated Superfluid Helium, Proc. of 12th ICDL, 320-323, pp.320-323, 1996.07.
159. H. K. Lee, J. Suehiro, M. H. So, M. Hara, D. C. Lee, Electrical Sterlization of Escherichia coli by HV Impulse and Effect of Voltage Waveforms, Proc. of Korea-Japan Sympo. on Electrical Discharge and High Voltage Engineering, pp.59-62, 1996.05.
160. K. Imasaka, S. Hara, H. Tokutomi, T. Akine, I. Nakamura, J. Suehiro, M. Hara, Compact Pulsed Power Generator and its Applications to Electrical Insulation Test, Proc. of Korea-Japan Sympo. on Electrical Discharge and High Voltage Engineering, pp.245-249, 1996.05.
主要総説, 論評, 解説, 書評, 報告書等
1. 末廣 純也, アレイ電極系によるCNT静電配向と大面積CNT複合フィルムの作製, ナノカーボン・ナノセルロースの分散・配向制御技術, 2021.10.
2. 末廣 純也, 静電配向カーボンナノチューブ/エポキシ樹脂複合フィルムの大面積化, フィラーの配向制御技術, ISBN 978-4-907002-31-, 2013.12.
主要学会発表等
1. 中野 道彦、稲葉 優⽂、末廣 純也, 微粒⼦誘電泳動DNA検出法による新型コロナウイルス遺伝⼦の検出, 第37回「センサ・マイクロマシンと応用システム」シンポジウム, 2020.10, 微粒子の誘電泳動特性がDNA修飾によって負から正に変化する現象を応用し、これをPCRと独自技術である誘電泳動インピーダンス計測法と組み合わせて新型コロナウイルス遺伝⼦を迅速簡便に検出する技術を開発した。.
特許出願・取得
特許出願件数  5件
特許登録件数  11件
学会活動
所属学会名
電気学会
静電気学会
低温工学協会
応用物理学会
学協会役員等への就任
2020.05~2022.05, 電気学会, 理事.
2011.11~2012.12, 電気学会, 放電技術委員会委員.
2009.01~2015.12, 静電気学会, 評議員.
2009.01~2010.12, 静電気学会, 評議員.
2005.01~2005.12, 静電気学会, 評議員.
2001.05~2003.05, 電気学会, 九州支部 総務幹事.
学会大会・会議・シンポジウム等における役割
2020.10.26~2020.10.28, 電気学会 第37回「センサ・マイクロマシンと応用システム」シンポジウム, 論文委員会委員.
2021.11.09~2021.11.11, 電気学会 第38回「センサ・マイクロマシンと応用システム」シンポジウム, 論文委員会委員.
2019.03.18~2019.03.18, キックオフシンポジウム「エネルギー⼤変⾰時代を切り拓く博⼠⼈材」, パネルディスカッション パネラー.
2018.03.14~2018.03.16, 平成30年 電気学会全国大会, 現地実行委員会 委員.
2018.10.30~2018.11.01, 電気学会 第35回「センサ・マイクロマシンと応用システム」シンポジウム, 論文委員会委員.
2017.10.31~2017.11.02, 電気学会 第34回「センサ・マイクロマシンと応用システム」シンポジウム, 論文委員会委員.
2016.10.24~2016.10.26, 電気学会 第33回「センサ・マイクロマシンと応用システム」シンポジウム, 論文委員会委員.
2017.01.26~2017.01.27, 放電/誘電・絶縁材料/高電圧合同研究会, 座長(Chairmanship).
2015.01.29~2015.01.30, 放電/誘電・絶縁材料/高電圧合同研究会, 座長(Chairmanship).
2014.09.18~2014.09.19, 第67回度電気関係学会九州支部連合会, 座長(Chairmanship).
2014.07.14~2014.07.16, Dielectrophoresis 2014, 座長(Chairmanship).
2013.09.24~2013.09.25, 第66回度電気関係学会九州支部連合会, 座長(Chairmanship).
2007.09~2007.09, 6th Asian-European Int. Conf. on Plasma Surface Engineering (AEPSE 2007), 座長(Chairmanship).
2004.09~2004.09, 第57回度電気関係学会九州支部連合会, 座長(Chairmanship).
2004.11~2004.11, 12th Asian Conference on Electrical Discharge, 座長(Chairmanship).
2018.10.24~2018.10.26, 電気学会「センサ・マイクロマシンと応用システム」シンポジウム, 論文委員会委員.
2018.09.07~2018.09.09, 電気学会 平成28年電力・エネルギー部門大会, 実行委員会委員.
2015.10.28~2015.10.30, 電気学会「センサ・マイクロマシンと応用システム」シンポジウム, 論文委員会委員.
2010.11.21~2010.11.24, IEEE TENCON2010, Track Chair.
2010.09.01~2010.09.03, 電気学会 平成22年電力・エネルギー部門大会, 実行委員会幹事.
2000.09~2000.09, International Conference on Electrical Engineering, 実行委員会委員.
2005.09~2006.05.20, 第58回電気関係学会九州支部連合大会, プログラム編集委員会 副委員長.
学会誌・雑誌・著書の編集への参加状況
2006.11, Nanobiotechnology journal, IET (The Institution of Engineering and Technology), 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2021年度 17 
2020年度 10  23 
2019年度 16 
2018年度 10  19 
2017年度 13 
2016年度
2013年度
2012年度
2011年度
2010年度 15  21 
2009年度 10 
2008年度
2007年度
2006年度
2005年度
2004年度
2003年度
2002年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
University of Wales, UnitedKingdom, 1997.03~1998.03.
外国人研究者等の受入れ状況
2015.08~2015.09, 1ヶ月以上, ニューヨーク大学アブダビ校, India, .
2012.05~2012.11, 1ヶ月以上, Mahidol University, Thailand, 外国政府・外国研究機関・国際機関.
2008.07~2008.07, 2週間以上1ヶ月未満, Technical University Iasi, Romania, 外国政府・外国研究機関・国際機関.
2007.07~2008.06, 1ヶ月以上, High Institute for Energy, South Valley University, Egypy, Egypt, 外国政府・外国研究機関・国際機関.
受賞
電気学会センサ・マイクロマシン部門 部門大会 第37回「センサ・マイクロマシンと応用システム」シンポジウム 速報特別賞, 電気学会, 2020.11.
CMD 2020 (8th International Conference on Condition Monitoring and Diagnosis) Best Paper Award, CMD 2020, 2020.10.
静電気学会 論文賞, 静電気学会, 2018.09.
電気学会 電気学術振興賞(論文賞), 電気学会, 2018.05.
静電気学会 進歩賞, 静電気学会, 2016.09.
IET Nanobiotechnology Premium Award, The Institution of Engineering and Technology - The IET, 2012.11.
静電気学会 論文賞, 静電気学会, 2003.09.
低温工学協会 論文賞, 低温工学協会, 2002.05.
電気学会 論文賞, 電気学会, 1995.05.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2023年度~2025年度, 基盤研究(B), 代表, 両極性カーボンナノチューブFETを用いたDNA検出とウイルス検査への応用.
2020年度~2022年度, 基盤研究(B), 代表, 誘電泳動集積法によるカーボンナノチューブ両極性FETの作製とセンサ応用.
2017年度~2019年度, 基盤研究(B), 代表, 進行波誘電泳動を用いたDNA診断装置の開発.
2016年度~2017年度, 挑戦的萌芽研究, 代表, 誘電泳動を利用したPCRフリーDNA診断技術の開発.
2014年度~2014年度, 挑戦的萌芽研究, 代表, 電界を用いた凝集体からのカーボンナノチューブ伸長とナノ複合材料作製への応用.
2014年度~2016年度, 基盤研究(B), 代表, 誘電泳動インピーダンス計測法を用いたDNA診断装置の開発.
2011年度~2013年度, 基盤研究(B), 代表, ゲル分離と誘電泳動を利用した半導体カーボンナノチューブの選択的集積とセンサー応用.
2010年度~2011年度, 新学術領域研究, 代表, 誘電泳動集積ナノ電極を用いたナノ界面バイオプラズマ生成デバイスの開発.
2009年度~2010年度, 挑戦的萌芽研究, 代表, カーボンナノチューブガスセンサを用いた高感度細菌検出デバイスの開発.
2008年度~2010年度, 基盤研究(B), 代表, 誘電泳動を利用した異種ナノ材料間界面の構築とセンシングデバイスへの応用.
2006年度~2007年度, 基盤研究(B), 代表, 誘電泳動を利用したナノセンシングデバイス作製技術の開発と応用.
2004年度~2005年度, 基盤研究(B), 代表, 誘電泳動と細胞膜電気破壊を利用した高感度細菌センサの開発.
2002年度~2003年度, 基盤研究(C), 代表, 誘電泳動インピーダンス計測法と抗原抗体反応を組み合わせた選択的細菌検出法.
競争的資金(受託研究を含む)の採択状況
2008年度~2009年度, 経済産業省 地域イノベーション創出研究開発事業, 分担, 食品衛生管理用自動細菌数迅速計測システムの開発.
2006年度~2007年度, 福岡県産業・科学技術振興財団 産学官共同研究開発事業, 分担, 誘電泳動インピーダンス計測法(DEPIM)を用いた小型細菌数迅速測定装置の開発.
共同研究、受託研究(競争的資金を除く)の受入状況
2022.04~2023.03, 代表, ガス絶縁機器の内部状態推定に係る基礎研究.
2022.10~2023.03, 代表, 細菌数測定装置のEPA-DEPIMを中心とした精度向上に関する技術の検証.
2021.04~2022.03, 代表, ガス絶縁機器の内部状態推定に係る基礎研究.
2021.04~2022.03, 代表, 細菌数測定装置のEPA-DEPIMを中心とした精度向上に関する技術の検証.
2020.04~2021.03, 代表, 細菌数測定装置のEPA-DEPIMを中心とした精度向上に関する技術の検証.
2020.04~2021.03, 代表, ガス絶縁機器の内部状態推定に係る基礎研究.
2019.04~2020.03, 代表, ガス絶縁機器の内部状態推定に係る共同研究.
2019.04~2020.03, 分担, 誘電泳動を用いた植物の病害診断に関する研究.
2018.04~2019.03, 代表, ガス絶縁機器の内部状態推定に係る共同研究.
2018.04~2019.03, 分担, 誘電泳動を用いた植物の病害診断に関する研究.
2018.04~2019.03, 代表, 電場配向に関する共同研究.
2017.04~2018.03, 代表, 電場配向に関する共同研究.
2016.05~2017.03, 代表, 電場配向に関する共同研究.
2015.01~2015.06, 代表, DNA検出に関する研究.
2013.04~2014.02, 代表, 抗体DEPIM法の方式開発および抗体固定化・非特異抑制技術開発.
2012.04~2013.02, 代表, 抗体DEPIM法の方式開発および抗体固定化・非特異抑制技術開発、測定機器・電極チップの開発
.
2011.12~2012.11, 代表, 誘電泳動法の水中の細菌検出への応用.
2011.12~2012.11, 代表, 誘電泳動法の水中の細菌検出への適用.
2011.10~2012.03, 代表, 抗体DEPIM法の方式開発と試作電極でのDEPIM測定評価.
2011.06~2011.10, 代表, 誘電泳動現象を利用した細菌検出に関する研究.
2010.06~2011.05, 代表, 誘電泳動現象を利用した細菌検出の高感度化に関する研究.
2009.12~2010.03, 代表, 誘電泳動に最適化された人造粒子の研究.
2009.08~2010.03, 代表, 誘電泳動現象を利用した細菌検出の高感度化に関する研究.
2008.11~2009.03, 代表, パワーアカデミー調査研究「絶縁技術・材料」研究の将来像およびその実現に向けた研究課題の調査.
2008.08~2009.03, 代表, 誘電泳動現象を利用した細菌検出の高感度化に関する研究.
2008.07~2008.09, 代表, カーボンナノチューブの表面処理.
2007.09~2008.03, 代表, 誘電泳動現象を利用した細菌検出モデルに関する研究.
2006.11~2007.03, 代表, 誘電泳動現象を利用した細菌安定検出方法の研究.
2005.09~2006.03, 代表, カーボンナノチューブを用いたSF6分解ガスセンサの研究.
2004.10~2005.03, 代表, 誘電泳動インピーダンス計測法を用いたレジオネラ属菌検出法の開発.
寄附金の受入状況
2025年度, 東レ, 大学院システム情報科学研究院研究資金.
2006年度, 村田学術振興財団, システム情報科学研究院研究資金.
2006年度, セコム科学技術振興財団, システム情報科学研究院研究資金.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。