


Kiyohide Nomura | Last modified date:2023.06.12 |

Graduate School
E-Mail *Since the e-mail address is not displayed in Internet Explorer, please use another web browser:Google Chrome, safari.
Homepage
https://kyushu-u.pure.elsevier.com/en/persons/kiyohide-nomura
Reseacher Profiling Tool Kyushu University Pure
http://maya.phys.kyushu-u.ac.jp/~knomura/
Phone
092-802-4068
Fax
092-802-4107
Academic Degree
Ph. D
Country of degree conferring institution (Overseas)
No
Field of Specialization
Condensed matter physics
ORCID(Open Researcher and Contributor ID)
0000-0001-8469-078X
Total Priod of education and research career in the foreign country
00years10months
Research
Research Interests
- Multicritical point of the S=1 XXZ chain withe single ion anisotropy
keyword : conformal field theory, renormalization
2021.04Commensurate-incommensurate change. - Research on SU(3) quantum spin chain
keyword : SU(3), conformal field theory, renormalization
2019.04Commensurate-incommensurate change. - Anomaly of susceptibility in the quantum spin models
keyword : nonlinear susceptibility, Bethe Amsatz, conformal field theory, renormalization
2017.04Commensurate-incommensurate change. - Study of the Ashkin-Teller multicritical point
keyword : Ashkin-Teller model, antiperiodic boundary condition, conformal field theory, duality
2016.01Commensurate-incommensurate change. - Extension of Lieb-Schultz-Mattis Theorem
keyword : Lieb-Schultz-Mattis Theorem, U(1) symmetry translational symmetry, frustration, topological aspect
2014.01Commensurate-incommensurate change. - commensurate-incommensurate change
keyword : AKLT, BLBQ, ANNNI,
2003.01Commensurate-incommensurate change. - Application of the level-spectroscopy method to low dimensional systems
keyword : conformal field theory, Berezinskii-Kosterlitz-Thouless(BKT) transition renormalization group one-dimensinal quantum system two-dimensinal classical system
1995.04Low dimensional quantum system.
Papers
Presentations
1. | 野村 清英, Multicritical point, conformal field theory and duality, 統計力学セミナー StatPhys Seminar @ UTokyo Hongo, 2020.09, Critical phenomena are one of the important subjects in condensed matter physics. Many developments about critical phenomena, such as renormalization group, numerical methods etc. have been done. But, when the model has a multicritical point, the scaling behaviors become difficult due to the interference of multiple critical lines. So, conventional numerical methods are not useful near a multicritical point. We have studied several multicritical phenomena combining with the conformal field theory and numerical methods (level spectroscopy etc) [1,2]. And we discuss the relation with the duality, such as the Kramers-Wannier duality and the Ashkin-Teller self-duality [2]. [1] A.Kitazawa and K.N.: Phys. Rev. B 59, 11358 [2] S. Moriya and K. N: J. Phys. Soc. Jpn. 89, 093001 (2020). |
2. | Ashkin-Teller multicritical point and twisted boundary conditions. |
3. | Anomaly of a magnetic susceptibility in XXZ model for S=1/2 and comparison with an exact solution. |
4. | 野村 清英, Extension of the Lieb-‐Schultz-‐Mattis and Kolb theorem, STATPHYS26, 2016.07, [URL]. |
5. | Appllication of the LSM theorem to the quantum spin ladder with frustration. |
6. | 野村 清英, Extension of Lieb-Schultz-Mattis Theorem , ICNS 2015 (Changhua) , 2015.09, [URL]. |
7. | Extension of Lieb-Schultz-Mattis Theorem III. |
8. | Extension of Lieb-Schultz-Mattis Theorem II. |
9. | Commensurate-Incommensurate Transition using Complex Analysis. |
10. | Extension of the Lieb-Schultz-Mattis Theorem. |
11. | Extension of the Lieb-Schultz-Mattis Theorem. |
12. | Level Spectroscopy without the Bond-Inversion Symmetry --- In case of an Anisotropic S=1/2 Ladder with Alternating Rung Interactions. |


Unauthorized reprint of the contents of this database is prohibited.
