Kiyohide Nomura | Last modified date：2020.06.19 |

Graduate School

E-Mail *Since the e-mail address is not displayed in Internet Explorer, please use another web browser:Google Chrome, safari.

Homepage

##### https://kyushu-u.pure.elsevier.com/en/persons/kiyohide-nomura

Reseacher Profiling Tool Kyushu University Pure

##### http://maya.phys.kyushu-u.ac.jp/~knomura/

Phone

092-802-4068

Fax

092-802-4107

Academic Degree

Ph. D

Country of degree conferring institution (Overseas)

No

Field of Specialization

Physics

ORCID(Open Researcher and Contributor ID)

0000-0001-8469-078X

Total Priod of education and research career in the foreign country

00years10months

Research

**Research Interests**

- Anomaly of susceptibility in the quantum spin models

keyword : nonlinear susceptibility, Bethe Amsatz,conformal field theory

2017.04Commensurate-incommensurate change. - Study of the Ashkin-Teller multicritical point

keyword : Ashkin-Teller model, antiperiodic boundary condition,conformal field theory

2016.01Commensurate-incommensurate change. - Extension of Lieb-Schultz-Mattis Theorem

keyword : Lieb-Schultz-Mattis Theorem， U(1) symmetry translational symmetry， frustration, topological aspect

2014.01Commensurate-incommensurate change. - commensurate-incommensurate change

keyword : AKLT, BLBQ, ANNNI,

2003.01Commensurate-incommensurate change. - Application of the level-spectroscopy method to low dimensional systems

keyword : conformal field theory, Berezinskii-Kosterlitz-Thouless(BKT) transition renormalization group one-dimensinal quantum system two-dimensinal classical system

1995.04Low dimensional quantum system.

**Academic Activities**

**Papers**

**Presentations**

1. | Ashkin-Teller multicritical point and twisted boundary conditions. |

2. | Anomaly of a magnetic susceptibility in XXZ model for S=1/2 and comparison with an exact solution. |

3. | 野村 清英, Extension of the Lieb-‐Schultz-‐Mattis and Kolb theorem, STATPHYS26, 2016.07, [URL]. |

4. | Appllication of the LSM theorem to the quantum spin ladder with frustration. |

5. | 野村 清英, Extension of Lieb-Schultz-Mattis Theorem , ICNS 2015 (Changhua) , 2015.09, [URL]. |

6. | Extension of Lieb-Schultz-Mattis Theorem III. |

7. | Extension of Lieb-Schultz-Mattis Theorem II. |

8. | Commensurate-Incommensurate Transition using Complex Analysis. |

9. | Extension of the Lieb-Schultz-Mattis Theorem. |

10. | Extension of the Lieb-Schultz-Mattis Theorem. |

11. | Level Spectroscopy without the Bond-Inversion Symmetry --- In case of an Anisotropic S=1/2 Ladder with Alternating Rung Interactions. |

Unauthorized reprint of the contents of this database is prohibited.