九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
吉川 顕正(よしかわ あきまさ) データ更新日:2023.11.27

教授 /  理学研究院 地球惑星科学部門 流体圏・宇宙圏科学


主な研究テーマ
移動性局所性電離層対流による電離圏起源のオーロラ爆発現象の研究
キーワード:多圏間結合、数理科学
2016.04~2020.03.
極域から磁気赤道域を連結する全球Cowlingチャンネルの実証的研究
キーワード:多圏間結合、数理科学
2012.04~2017.05.
数理多圏間結合科学
キーワード:多圏間結合、数理科学
2010.03~2014.05.
3次元Cowlingシステムの研究
キーワード:三次元電流系、Hall電流発散、Sq、オーロラジェット電流
2007.05~2010.04.
グローバル磁気圏電離圏結合シミュレータによるサブトームの再現と、発現機構の解明
キーワード:磁気圏電離圏結合、サブストーム、シミュレーション、数理物理学
2008.05~2013.04.
磁気嵐シミュレータの開発
キーワード:磁気嵐、グローバルシミュレーション、多圏間結合
2005.03~2007.03.
ジオ・スペースにおける3次元電流系の解明
キーワード:ジオスペース,宇宙天気,3次元電流系,グローバル,CPMN, MAGDAS
2002.04~2010.03.
非一様-複合系の物理学具現の場としての惑星間空間電磁結合系の研究
キーワード:複合系,階層間結合,磁気圏電離圏結合
2000.04~2011.03.
FM-CWレーダと磁場ネットワークデータの比較解析研究
キーワード:HFドップラー,電離層電場,磁気嵐,電離層電流,電離圏物理学
2000.04~2010.03.
多種イオン・電子プラズマ系における磁気圏物理学の展開
キーワード:水星磁気圏,,惑星磁気圏,磁気圏電離圏結合,比較惑星学,宇宙探査
2002.04~2011.03.
磁気流体波動と電離層の相互作用の研究
キーワード:Hall効果,磁気圏電離圏結合,エネルギー収支,沿磁力線電流,誘導結合
2000.04~2011.03.
従事しているプロジェクト研究
MAGDAS/CPMN多点ネットワーク観測による全球結合系に於けるエネルギー・物質輸送の解明
2013.06~2022.03, 代表者:吉川顕正, 九州大学 理学研究院地球惑星科学部門, 九州大学(日本)
地球規模の磁場・電場多点観測網を整備する事により、ジオスペースにおける様々な擾乱現象の解明を行う.
超高層大気長期変動の全球地上ネットワーク観測・研究(IUGONET)
2009.04~2022.03, 代表者:家森俊彦(議長), 京都大学, 東北大学(日本)
国立極研究所(日本)
名古屋大学(日本)
京都大学(日本)
九州大学(日本)
IUGONETは超高層大気を取得している5研究機関が連携して、観測データからメタデータを抽出するための、システム、ソフトウエアを開発しするとともに、全球規模で起こる超高層大気諸現象の解明に貢献する研究推進基盤の構築と共に、分野横断的な研究の促進を目指します。.
太陽地球結合系解明の研究基盤形成(マスタープラン重点課題採択)
2014.04~2024.03, 代表者:津田 敏隆, 京都大学・生存圏研究所, 京都大学・生存圏研究所(日本)
極域、赤道域に大型レーダを配備し、地球規模の磁場・電場多点観測網を整備する事により、極域から赤道域にわたるエネルギー・物質輸送のプロセスを理解する。.
全球Cowlingチャンネルの実証的研究
2012.04~2022.03, 代表者:吉川顕正, 九州大学, 九州大学(日本)
太陽活動現象と同期して発現する、極域から磁気赤道域を連結する全球Cowling電流系の存在を理論・数値実験・データ解析のそれぞれの立場から実証的に検証するプロジェクトである。
吉川は理論研究と観測ネットワークのコーディネーションを主担として、本プロジェクトを統括する。.
木星探査プロジェクト
2008.05~2013.05, 代表者:笠羽康正, 東北大学, JAXA/ISAS(日本)
JAXA/ESA共同で打ち上げる予定の木星探査衛星に於ける科学的探査についてのプロジェクトチームである。.
水星探査プロジェクト共同研究
2002.05~2013.05, 代表者:藤本正樹, JAXA/ISAS, JAXA/ISAS(日本)
JAXA/ESA共同で打ち上げる予定の水星探査衛星「BeppiColombo」に於ける科学的探査についてのプロジェクトチームである。.
スイス国際宇宙科学研究所「国際科学者チーム」:Study for Inductive-3D Ionosphere
2007.04~2008.03, 代表者:共同代表: Olaf Amm, A.Yoshikawa, FInishi meteorological Insitute, Kyushu University, Switzerland
宇宙科学に携わる、新進気鋭の研究者10名が、2005-2006年度にかけて、スイス宇宙科学研究所に終結し、各年度2週間ずつの集中meetingを行い、未だ未知領域である電離圏三次元構造の誘導的な振る舞いを調べる為の研究方策を策定し、その成果を文献としてまとめ将来の方向性を世に問う為のプロジェクトである。2007年度はこの成果報告作成の為の編集会議を行った。.
リアルタイム宇宙天気シミュレータの開発
2004.04~2010.03, 代表者:田中高史, 九州大学理学研究院, 九州大学(日本)
太陽監視衛星によって取得された、太陽風データを入力値として、地球磁気圏の擾乱現象をリアルタイムで再現する宇宙天気シミュレータを開発する.
MAGDAS/CPMN多点ネットワーク観測による地球磁気圏の研究
1996.04~2022.05, 代表者:湯元清文, 九州大学宙空環境研究センター, 九州大学(日本)
地球規模の磁場・電場多点観測網を整備する事により、ジオスペースにおける様々な擾乱現象の解明を行う.
研究業績
主要著書
1. Akimasa Yoshikawa, Ryoichi Fujii, Earth's ionosphere Theory and phenomenology of cowling channels, wiley, 10.1002/9781119324522.ch25, 2018.04, [URL], The Cowling channel is a generic name of a current system forming inside a high conductivity band in which a secondary polarization electric field modifies the current flow. The polarization field is excited when a divergent part of Hall current driven by the primary electric field is prevented from flowing out to the magnetosphere as the field-aligned current. The purpose of this chapter is to review the recent development of the Cowling channel model. Recent work provides an extension of the theoretical description of the classical Cowling channel with respect to the following aspects: (1) taking into account the 3D nature of the ionosphere by introducing two current layers at different altitudes, and (2) considering finite length of the Cowling channel by introducing a conductance boundary not only at the meridional borders of the Cowling channel, but also at its zonal boundaries. Using this improved model, we discuss current closure and the energy principle for evolution of the Cowling channel. Energy flow inside the Cowling channel and impact of the polarization effect on Joule dissipation in the more general M-I coupling scheme are also provided. We also clarify how shear Alfvén waves interact to the Cowling channel and their application to the global magnetosphere- ionosphere coupling simulations..
2. Yoshikawa A. and R. Fujii, Earth’s Ionosphere: Theory and Phenomenology of Cowling Channels, in Electric Currents in Geospace and Beyond, John Wiley & Sons, Inc, Hoboken, N.J., 10.1002/9781119324522.ch25, 2018.04, The Cowling channel is a generic name of a current system forming inside a high conductivity band, in which a secondary polarization electric field modifies the current flow. The polarization field is excited when a divergent part of Hall current driven by the primary electric field is prevented from flowing out to the magnetosphere as the field-aligned current (FAC).
The Cowling effect is now well known as enhancement of current flow in the direction of the primary electric field by the secondary Hall current [Chapman, 1956]. The Cowling effect was first investigated by Cowling [1932] in connection with the solar atmosphere. The generation mechanism [Cowling and Boreger, 1948] was adopted to account for equatorial electrojet [Hirono, 1950, Untied, 1967] and auroral electrojet [Boström, 1964]. The Cowling effect has been investigated theoretically and observationally [e.g., Baujohann, 1983; Yasuhara et al., 1985; Haerendel, 2008, Amm et al., [2008]; Amm and Fujii, 2008; Marghitu et al., 2011].
Figure 1 shows traditional picture of two-dimensional Cowling channel model elongated along east-west direction [e.g., Baumjohann, 1983], in which ionospheric Hall and Pedersen conductivity are height-integrated. The primary westward electric field (E1) drives northward Hall current and westward Pedersen current. The southward secondary field (E2) is generated so that the Pedersen current closes the primary Hall current between the conductivity gradients. The secondary Hall current flows in the same direction as the primary Pedersen current and forms the electrojet system.
Generally, it is difficult to specify polarization effects in the ionosphere from ground-based data alone. These data only allow to infer the resultant total electrodynamic fields, but cannot track back the chain of cause and consequence that led to the physical situation which then causes these observed total fields. Thus, using ground-based data alone in most cases we can only state whether an observed situation is consistent or not with the expectations from an “active” polarization effect.
To quantify the Cowling effect, we need to know the relative strength of the polarization electric field to total electric field and to what extent it cancels (closes) the primary Hall current. This problem is complementary to the question: How much curl-free Hall current flows out to the magnetosphere as FAC?
In order to reply to this problem provided by Amm et al., [2008], modeling of Cowling channel has been further developed.
To describe the Cowling channel, Amm et al., [2011] and Fujii et al., [2011] introduce a parameter called the Cowling efficiency. It is defined as a ratio how much of Hall current is confined inside the ionosphere by the secondary Pedersen current excited by the polarization electric field. Definition of Cowling efficiency is practically important. It provides a general way to calculate quantitatively the polarization electric field, if the Cowling efficiency, the conductance, and either primary or the total electric fields are known [Amm et al., 2013].
It has been suggested that to identify the Cowling efficiency for specific phenomenon, one needs to know the impedance of the magnetospheric circuit, which completes the current circuit in the M-I system via FAC [e.g., Fujii et al., 2011]. However, it is questionable to assign a magnetospheric impedance for steady state because the M-I system is always changing dynamically.
The M-I coupling process via shear Alfven waves has been used to investigate the nonstationary FAC closure by ionospheric conducting current [e.g., Scholer, 1970]. Assuming specific electric field configurations of an incident wave, Glaβmeier [1983] and Itonaga and Kitamura [1988] have shown that a secondary polarization field due to gradients of Hall conductance can appear in the reflected wave. Actually, the Alfven wave approach can be used to describe not only local and dynamical phenomena but also more generally global quasi-static M-I coupling processes [Yoshikawa et al., 2010]. Therefore it is very important to understand the how the shear Alfven wave interacts with the Cowling channel.
Yoshikawa et al., [2011a] give a general theory about M-I coupling, independent of specific geometries or specific situations. This theory, based on the Alfven waves used in a way of a basis function for the M-I coupling process, is later applied in Yoshikawa et al., [2013a] and Yoshikawa et al., [2013b] specifically to a Cowling channel situation, but can be applied for any general case.
Most of Cowling channel models introduced so far rely on a thin-sheet ionosphere [e.g., Baujohann, 1983]. However, in a realistic ionospheric E-layer, a vertical distribution of the Pedersen conductivity and Hall conductivity has maximum peak around 125 km altitude and around 110 km altitude, respectively [e.g., Richmond and Thayer, 2000]. In order properly consider the ionospheric current closure, one also takes into account the ionospheric thickness [Amm et al., 2008]. One step in this direction is to assume that the Pedersen and Hall current flow thin layers at different altitudes [Fujii et al., 2011; Amm et al., 2011; Yoshikawa et al., 2011].
The classical picture illustrated in Figure 1 describes divergence-free approximation of auroral electrojet. However, a longitudinal boarder of Cowling channel is also important for considering finite aurora arc formation and Harang reversal region [Harang, 1947; Heppner, 1972; Marghitu et al., 2011], where the auroral electrojet is diverging.
Amm et al., [2008] give a review of the work available in the literature until 2008 regarding following aspects of ionospheric electrodynamics and Magnetosphere-Ionosphere (M-I) coupling:
-Polarization effect in the ionosphere (often referred to as “Cowling effect)”
-Inductive effect in the ionosphere
-The effect of the three-dimensional (3D) nature of the ionosphere for ionospheric electrodynamics
-The consequences of the above mentioned aspects to M-I coupling.
Marghitu, [2012] provides an excellent review for auroral arc electrodynamics, by considering the 1D thin uniform arc, the 2D thick uniform arc, and the non-uniform arc. The various arc features are assembled together in a tentative 3D arc model.
The purpose of this chapter is to review the recent development of Cowling channel model after Amm et al., [2008] and Marghitu, [2012]. Recent work provide an extension of theoretical description of the classical Cowling channel with respect to the following aspects: 1) Taking into account the 3D nature of ionosphere by introducing two current layers at different altitudes, and 2) considering finite length of the Cowling channel by introducing a conductance boundary not only at the meridional borders of Cowling channel, but also at its zonal boundaries. Using this improved model, schematically illustrated in Figure 2 with Cowling efficiency description, we discuss current closure and their energy principle for evolution of Cowling channel. Energy flow inside the Cowling channel and impact of polarization effect on Joule dissipation in more general M-I coupling scheme are also provided. In addition, we also clarify how shear Alfven wave interacts to the Cowling channel and their application to the global magnetosphere-ionosphere coupling simulations..
3. Lysak, R. L. and A. Yoshikawa, Resonant Cavities and Waveguides in the Ionosphere and Atmosphere, Magnetospheric ULF Waves: Synthesis and New Directions, AGU, Washington, D. C., 2006.12.
主要原著論文
1. Y. Yamazaki, Y. Miyoshi, C. Xiong, C. Stolle, G. Soares, @A. Yoshikawa, Whole Atmosphere Model Simulations of Ultrafast Kelvin Wave Effects in the Ionosphere and Thermosphere, Journal of Geophysical Research: Space Physics, 10.1029/2020JA027939, 125, 7, 2020.07, This paper examines the response of the upper atmosphere to equatorial Kelvin waves with a period of ∼3 days, also known as ultrafast Kelvin waves (UFKWs). The whole atmosphere model Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) is used to simulate the UFKW events in the late summer of 2010 and 2011 as well as in the boreal winter of 2012/2013. When the lower layers of the model below 30-km altitude are constrained with meteorological data, GAIA is able to reproduce salient features of the UFKW in the mesosphere and lower thermosphere as observed by the Aura Microwave Limb Sounder. The model also reproduces ionospheric response, as validated through comparisons with total electron content data from the Gravity field and steady-state Ocean Circulation Explorer satellite as well as with earlier observations. Model results suggest that the UFKW produces eastward-propagating ∼3-day variations with zonal wavenumber 1 in the equatorial zonal electric field and F region plasma density. Model results also suggest that for a ground observer, identifying ionospheric signatures of the UFKW is a challenge because of ∼3-day variations due to other sources. This issue can be overcome by combining ground-based measurements from different longitudes. As a demonstration, we analyze ground-based magnetometer data from equatorial stations during the 2011 event. It is shown that wavelet spectra of the magnetic data at different longitudes are only in partial agreement, with or without a ∼3-day peak, but a spectrum analysis based on multipoint observations reveals the presence of the UFKW..
2. S. S. Starzhinskii, V. M. Nikiforov, @A. Yoshikawa, The Experience of Magnetovariational Sounding in the Arctic: the Laptev Sea Region, Izvestiya, Physics of the Solid Earth, 10.1134/S106935132002010X, 56, 2, 225-237, 2020.03, [URL], Abstract—We present the results of magnetovariational soundings at two sites (Tiksi Observatory and Kotelny Island in the Laptev Sea region of the Arctic) and their three-dimensional (3D) inversion using the ModEM program. In the models obtained by the inversion, the conductive heterogeneities are present in the regions of the both sites down to a depth of 200 km in the region of the observatory and 100 km beneath the Kotelny Island. The geoelectric heterogeneities in the model in the region of the observatory are most contrasting and voluminous, whereas beneath the island they are more localized. The correlation between the locations of these heterogeneities at both sites and the features of the geological and geophysical structure of the region is noted. It is shown that the applied algorithm of data processing eliminates the effect of the polar electrojet which provides the possibility to study the geoelectric structure of the region by magnetovariational method..
3. @T. Uozumi, @A. Yoshikawa, S. Ohtani, Formation of a 3-D Oscillatory Current System Associated With Global High-Correlation Pi 2 Event: A Case Study, Journal of Geophysical Research: Space Physics, 10.1029/2019JA026988, 125, 1, 2020.01, [URL], We present a typical example of the formation of a three-dimensional (3-D) oscillatory current system associated with a global high-correlation Pi 2 event. The time variation of the field-aligned current (FAC) density in the magnetosphere is estimated using multisatellite magnetic field data in the near-Earth plasma sheet (~10 RE, ~23 MLT). Pi 2 pulsations, which were accompanied with the development of the upward and downward FACs in the substorm current wedge, were observed at mid-latitude stations in the pre-midnight sector (20.6 and 22.6 MLT), and the periodicity of the FAC fluctuations was correlated with the estimated current-density fluctuations in the near-Earth plasma sheet. Compressional signals of the Pi 2 pulsation were observed by an equatorial ground station and a geosynchronous satellite located in the midnight sector (0.1 and 0.4 MLT). A detailed comparison of the Pi 2 waveforms, which were simultaneously observed on the ground and in the near-Earth magnetosphere, revealed high correlations between the fluctuations of the FACs and compressional pulses. These observations strongly suggest the formation of a 3-D oscillatory current system associated with the global high-correlation Pi 2 event. The sources of the oscillatory current system and compressional pulses were confirmed to be closely coupled with one another..
4. Akiko Fujimoto, Akimasa Yoshikawa, Teiji Uozumi, Shuji Abe, Seasonal dependence of semidiurnal equatorial magnetic variation during quiet and disturbed periods, 10th Anniversary International Conference on Solar-Terrestrial Relations and Physics of Earthquake Precursors, STRPEP 2019
E3S Web of Conferences
, 10.1051/e3sconf/201912702025, 127, 2019.11, [URL], The analysis of 20-year long-term semidiurnal lunar tidal variations gave the evidence that the semidiurnal variations are completely different between the magnetic quiet and disturbed periods. This is the first time that the seasonal dependence of disturbance-time semidiurnal variation has been provided from the analysis of the EE-index. We found the Kp dependence of semidiurnal variation: For full and new moon phase, counter troughs are amplified during disturbance time, possibly related to disturbance dynamo. For all moon phase, there are positive enhancements in dawn and strong depressions after sunset, resulting from the penetration of polar electric filed. For Seasonal dependence, semidiurnal variations are divided to three seasonal groups, and characterized as deep trough, enhanced crest and weak structure for D-solstice, Equinoxes and J-solstice, respectively. There is no significant longitudinal difference between Ancon and Davao, except for the amplitude of semidiurnal variations. The deep troughs occur during D-solstice and the enhanced crests during Equinoxes, at both Ancon and Davao..
5. R Umar, SF Natasha, SSN Aminah, KN Juhari, MH Jusoh, NSA Hamid, MH Hashim, ZM Radzi, AN Ishak, SN Hazmin, WZAW Mokhtar, MKA Kamarudin, H Juahir, A Yoshikawa, Features of horizontal magnetic field intensity over northern island of Malaysia, Indian Journal of Physics, 10.1007/s12648-018-1318-x, 93, 5, 553-564, 2019.05, [URL], Magnetic Data Acquisition System (MAGDAS) is a magnetometer initiated by the International Center for Space Weather Science and Education in Kyushu University, Japan, to study space weather. The latest of real-time Magnetic Data Acquisition System/Circum-pan Pacific Magnetometer Network was successfully installed at the East Coast Environmental Research Institute in Universiti Sultan Zainal Abidin, Terengganu, Malaysia, by Kyushu University. This is the fifth magnetometer under the MAGDAS network (geographic latitude and longitude: 5.23°, 103.04° and geomagnetic latitude and longitude: − 4.21°, 175.91°). In this study, the results of data plot obtained at Terengganu (TRE) station were shown to have reliable patterns of geomagnetic elements. The amplitude variations for each component were also proximate with other stations and a standard model. This study compared MAGDAS-II data for the H component with solar wind data (input energy, IMF, dynamic pressure and speed)..
6. R. A. Marshall, L. Wang, G. A. Paskos, G. Olivares-Pulido, T. Van Der Walt, C. Ong, D. Mikkelsen, G. Hesse, B. McMahon, E. Van Wyk, G. Ivanovich, D. Spoor, C. Taylor, A. Yoshikawa, Modeling Geomagnetically Induced Currents in Australian Power Networks Using Different Conductivity Models, Space Weather, 10.1029/2018SW002047, 7, 5, 727-756, 2019.04, [URL], Space weather manifests in power networks as quasi-DC currents flowing in and out of the power system through the grounded neutrals of high-voltage transformers, referred to as geomagnetically induced currents. This paper presents a comparison of modeled geomagnetically induced currents, determined using geoelectric fields derived from four different impedance models employing different conductivity structures, with geomagnetically induced current measurements from within the power system of the eastern states of Australia. The four different impedance models are a uniform conductivity model (UC), one-dimensional n-layered conductivity models (NU and NW), and a three-dimensional conductivity model of the Australian region (3DM) from which magnetotelluric impedance tensors are calculated. The modeled 3DM tensors show good agreement with measured magnetotelluric tensors obtained from recently released data from the Australian Lithospheric Architecture Magnetotelluric Project. The four different impedance models are applied to a network model for four geomagnetic storms of solar cycle 24 and compared with observations from up to eight different locations within the network. The models are assessed using several statistical performance parameters. For correlation values greater than 0.8 and amplitude scale factors less than 2, the 3DM model performs better than the simpler conductivity models. When considering the model performance parameter, P, the highest individual P value was for the 3DM model. The implications of the results are discussed in terms of the underlying geological structures and the power network electrical parameters..
7. A Fujimoto, A Yoshikawa, A Ikeda, Global response of Magnetic field and Ionosonde observations to intense solar flares on 6 and 10 September 2017, E3S Web of Conferences, 10.1051/e3sconf/20186201007, 62, 01007, 2018.11, [URL], Intense X-ray fluxes during solar flares are known to cause enhanced ionization in the Earth’s ionospheric D, E and F region. This sudden change of ionospheric electron density profile is serious problem to radio wave communication and navigation system. The ground magnetograms often record the sudden change in the sunlit hemisphere during the enhanced X-ray flux, due to the sudden increase in the global ionospheric current system caused by the flare-induced enhanced ionospheric conductivity. These geomagnetic field disturbances are known as ‘‘solar flare effects’’ (SFEs) or geomagnetic crochets [Campbell, 2003]. The typical SFE is increase variation on the equatorial magnetic data. On Ionosonde observation during solar flare event, the High-Frequency (HF) radio wave blackout is often detected in ionogram due to the sudden disturbance in ionosphere. Two intense X-class solar flares occurred on 6 and 10 September 2017. We investigated the magnetic field and Ionosonde responses to the intense solar flare events. Dayside magnetic field variations sudden increased due to the ionospheric disturbance resulting from solar flare. There is no response in night side magnetometer data. The magnitude of SFE (magnetic field) is independent of solar flare x-ray magnitude. We found HF radio wave blackout in ionogram at dayside Ionosonde stations. The duration of blackout is dependent of latitude and local time of Ionosonde stations. There is the different feature of ionogram at night side..
8. A Ikeda, T Uozumi, A Yoshikawa, A Fujimoto, S Abe, Schumann resonance parameters at Kuju station during solar flares, E3S Web of Conferences, 10.1051/e3sconf/20186201012, 62, 01012, 2018.11, [URL], We examined the Schumann resonance (SR) at low-latitude station KUJ by comparing with solar X-ray flux and solar proton flux at a geostationary orbit. For intense solar activity in October-November 2003, the reaction of the SR frequency to X-ray enhancement and SPEs was different. The SR frequency in H component increased at the time of the Xray enhancement. The response of SR seems to be caused by the increase of the electron density in the ionospheric D region which ionized by the enhanced solar X-ray flux. In the case of the SPEs, the SR frequency in D component decreased with enhancement of solar proton flux. We suggest that the SPEs caused the decrease of altitude on the ionopheric D region at high-latitude region, and the SR frequency decreased..
9. Akimasa Yoshikawa, Akiko Fujimoto, Akihiro Ikeda, Teiji Uozumi, Shuji Abe, Monitoring of Space and Earth electromagnetic environment by MAGDAS project
Collaboration with IKIR-Introduction to ICSWSE/MAGDAS project, E3S Web of Conferences, 10.1051/e3sconf/20172001013, 20, 2017.10, [URL], For study of coupling processes in the Solar-Terrestrial System, International Center for Space Weather Science and Education (ICSWSE), Kyushu University has developed a real time magnetic data acquisition system (the MAGDAS project) around the world. The number of observational sites is increasing every year with the collaboration of host countries. Now at this time, the MAGDAS Project has installed 78 real time magnetometers-so it is the largest magnetometer array in the world. The history of global observation at Kyushu University is over 30 years and number of developed observational sites is over 140. Especially, Collaboration between IKIR is extended back to 1990's. Now a time, we are operating Flux-gate magnetometer and FM-CW Radar. It is one of most important collaboration for space weather monitoring. By using MAGDAS data, ICSWSE produces many types of space weather index, such as EE-index (for monitoring long tern and shot term variation of equatorial electrojet), Pc5 index (for monitoring solar-wind velocity and high energy electron flux), Sq-index (for monitoring global change of ionospheric low and middle latitudinal current system), and Pc3 index (for monitoring of plasma density variation at low latitudes). In this report, we will introduce recent development of MAGDAS/ICSWSE Indexes project and topics for new open policy for MAGDAS data will be also discussed..
10. S. Imajo, Akimasa Yoshikawa, T. Uozumi, Shin Ohtani, A. Nakamizo, P. J. Chi, Application of a global magnetospheric-ionospheric current model for dayside and terminator Pi2 pulsations, Journal of Geophysical Research, 10.1002/2017JA024246, 122, 8, 8589-8603, 2017.08, [URL], Pi2 magnetic oscillations on the dayside are considered to be produced by the ionospheric current that is driven by Pi2-associated electric fields from the high-latitude region, but this idea has not been quantitatively tested. The present study numerically tested the magnetospheric-ionospheric current system for Pi2 consisting of field-aligned currents (FACs) localized in the nightside auroral region, the perpendicular magnetospheric current flowing in the azimuthal direction, and horizontal ionospheric currents driven by the FACs. We calculated the spatial distribution of the ground magnetic field produced by these currents using the Biot-Savart law in a stationary state. The calculated magnetic field reproduced the observational features reported by previous studies: (1) the sense of the H component does not change a wide range of local time sectors at low latitudes, (2) the amplitude of the H component on the dayside is enhanced at the equator, (3) the D component reverses its phase near the dawn and dusk terminators, (4) the meridian of the D component phase reversal near the dusk terminator is shifted more sunward than that near the dawn terminator, and (5) the amplitude of the D component in the morning is larger than that in the early evening. We also derived the global distributions of observed equivalent currents for two Pi2 events. The spatial patterns of dayside equivalent currents were similar to the spatial pattern of numerically derived equivalent currents. The results indicate that the oscillation of the magnetospheric-ionospheric current system is a plausible explanation of Pi2s on the dayside and near the terminator..
11. Toshitaka Tsuda, Mamoru Yamamoto, Hiroyuki Hashiguchi, Kazuo Shiokawa, Yasunobu Ogawa, Satonori Nozawa, Hiroshi Miyaoka, Akimasa Yoshikawa, A proposal on the study of solar-terrestrial coupling processes with atmospheric radars and ground-based observation network, Radio Science, 10.1002/2016RS006035, 51, 9, 1587-1599, 2016.09, [URL], The solar energy can mainly be divided into two categories: the solar radiation and the solar wind. The former maximizes at the equator, generating various disturbances over a wide height range and causing vertical coupling processes of the atmosphere between the troposphere and middle and upper atmospheres by upward propagating atmospheric waves. The energy and material flows that occur in all height regions of the equatorial atmosphere are named as “Equatorial Fountain.” These processes from the bottom also cause various space weather effects, such as satellite communication and Global Navigation Satellite System positioning. While, the electromagnetic energy and high-energy plasma particles in the solar wind converge into the polar region through geomagnetic fields. These energy/particle inflow results in auroral Joule heating and ion drag of the atmosphere particularly during geomagnetic storms and substorms. The ion outflow from the polar ionosphere controls ambient plasma constituents in the magnetosphere and may cause long-term variation of the atmosphere. We propose to clarify these overall coupling processes in the solar-terrestrial system from the bottom and from above through high-resolution observations at key latitudes in the equator and in the polar region. We will establish a large radar with active phased array antenna, called the Equatorial Middle and Upper atmosphere radar, in west Sumatra, Indonesia. We will participate in construction of the EISCAT_3D radar in northern Scandinavia. These radars will enhance the existing international radar network. We will also develop a global observation network of compact radio and optical remote sensing equipment from the equator to polar region..
12. R. Fujii, O. Amm, Heikki Antero Vanhamaki, Akimasa Yoshikawa, A. Ieda, An application of the finite length Cowling channel model to auroral arcs with longitudinal variations, Journal of Geophysical Research, 10.1029/2012JA017953, 117, 11, 2012.12, [URL], A physical process for the latitudinal motion of an auroral arc based on the four-side bound Cowling channel model is proposed. Assuming that an upward field-aligned current (FAC) is associated with the auroral arc that forms a Cowling channel with finite lengths not only latitudinally but also longitudinally and that the upward FAC region is primarily embedded in a purely northward electric field, the primary Hall current driven by the northward electric field accumulates positive excess charges at the eastern edge of the channel and negative charges at the western edge for a perfect or partial Cowling channel with a nonzero Cowling efficiency. The charges produce a westward secondary electric field, indicating that a westward electric field can thus be produced by a purely northward primary electric field. This secondary electric field moves the arc with its magnetospheric source drifting together with the magnetospheric plasmas equatorward and simultaneously produces the electric field outside the channel that moves the downward FAC equatorward of the upward FAC region equatorward together with the upward FAC. Thus, the whole 3-D current system is expected to move equatorward as often observed in the afternoon auroral zone..
13. Heikki Antero Vanhamaki, Akimasa Yoshikawa, O. Amm, R. Fujii, Ionospheric Joule heating and Poynting flux in quasi-static approximation, Journal of Geophysical Research, 10.1029/2012JA017841, 117, 8, 2012.01, [URL], Energy flow is an important aspect of magnetosphere-ionosphere coupling. Electromagnetic energy is transported as Poynting flux from the magnetosphere to the ionosphere, where it is dissipated as Joule heating. Recently Richmond derived an "Equipotential Boundary Poynting Flux (EBPF) theorem", that the Poynting flux within a flux tube whose boundary is an equipotential curve is dissipated inside the ionospheric foot point of the flux tube. In this article we study Richmond's EBPF theorem more closely by considering the curl-free and divergence-free parts as well as the Hall and Pedersen parts of the ionospheric current system separately. Our main findings are that i) divergence-free currents are on average dissipationless, ii) the curl-free Pedersen current is responsible for the whole ionospheric Joule heating and iii) pointwise match between vertical Poynting flux and ionospheric Joule heating is broken by gradients of Hall and Pedersen conductances. Results i) and ii) hold when integrated over the whole ionosphere or any area bounded by an equipotential curve. The present study is limited to quasi-static phenomena. The more general topic of electrodynamic Joule heating and Poynting flux, including inductive effects, will be addressed in a future study..
14. Akimasa Yoshikawa, O. Amm, Heikki Antero Vanhamaki, R. Fujii, A self-consistent synthesis description of magnetosphere-ionosphere coupling and scale-dependent auroral process using shear Alfvén wave, Journal of Geophysical Research, 10.1029/2011JA016460, 116, 8, 2011.01, [URL], In order to correctly describe the dynamical behavior of the magnetosphere-ionosphere (MI) coupling system and the scale-dependent auroral process, we develop a synthesis formulation that combines the process of (1) the inverse Walen separation of MHD disturbance into parallel- and antiparallel-propagating shear Alfvén wave to the ambient magnetic field, (2) the shear Alfvén wave reflection process including (3) the scale-dependent electrostatic coupling process through the linearized Knight relation, (4) two-layer ionosphere model, and (5) dynamic conductance variations. A novel procedure that applies the inverse Walen relation to the incompressional MHD disturbances at the inner boundary of the MHD region enables to extract the component of the shear Alfvén wave incident to the ionosphere. The extracted incident electric field supplies an electromotive force for the generation of the MI coupling system, and the reflected electric field is generated such that it totally satisfies the synthesis MI-coupling equation. A three-dimensional ionospheric current system is represented by a two-layer model in which the Pedersen and the Hall current are confined in the separated layers, which are connected by field-aligned currents driven by the linear current-voltage relation between two layers. Hence, our scheme possibly reproduces two types of the scale-dependent MI-decoupling process of the perpendicular potential structure: due to the parallel potential drop at the auroral acceleration region and the other due to the parallel potential differences inside the ionosphere. Our newly formulation may be well suited for description of scale-dependent auroral process and mesoscale ionospheric electrodynamics interlocked with the dynamical development of magnetospheric processes..
15. O. Amm, R. Fujii, K. Kauristie, A. Aikio, Akimasa Yoshikawa, A. Ieda, Heikki Antero Vanhamaki, A statistical investigation of the Cowling channel efficiency in the auroral zone, Journal of Geophysical Research, 10.1029/2010JA015988, 116, 2, 2011.01, [URL], The Cowling channel mechanism describes the creation of a secondary polarization electric field at sharp conductance boundaries in the ionosphere due to excess charges for the case in which the release of these charges to the magnetosphere is fully or partially impeded. The secondary currents generated by the polarization electric field effectively modify the effective ionospheric conductivity inside the Cowling channel. While the Cowling mechanism is generally accepted for the equatorial electrojet, there is a long-standing discussion about the importance of this mechanism and its efficiency in the auroral electrojet. We present a statistical investigation that enables us to identify the most probable geospace conditions and MLT locations for a high Cowling efficiency. This investigation is based on more than 1600 meridional profiles of data from the Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE) network in Scandinavia, in particular, ground magnetic field data from the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network and electric field data from the Scandinavian Twin Auroral Radar Experiment (STARE) radar, supported with pointwise ionospheric conductance measurements from the European Incoherent Scatter (EISCAT) radar. We analyze the data in the framework of a 3-D ionospheric model, but our data set is filtered so that only electrojet-type situations are included so that the gradients of all measured quantities in longitudinal direction can be neglected. The analysis results in a steep peak of high Cowling channel efficiency probability in the early morning sector (0245-0645 MLT), with the largest probability around 0500 MLT and for medium and high geomagnetic activity. In agreement with an earlier single-event study by Amm and Fujii (2008), this indicates that the Cowling mechanism may be most effective in the early morning part of the central substorm bulge. Further, our analysis results in an almost monotonic increase of the probability of high Cowling channel efficiency with increasing geomagnetic activity..
16. Y. Yamazaki, K. Yumoto, M. G. Cardinal, B. J. Fraser, P. Hattori, Y. Kakinami, J. Y. Liu, K. J.W. Lynn, R. Marshall, D. McNamara, T. Nagatsuma, V. M. Nikiforov, R. E. Otadoy, M. Ruhimat, B. M. Shevtsov, K. Shiokawa, S. Abe, T. Uozumi, Akimasa Yoshikawa, An empirical model of the quiet daily geomagnetic field variation, Journal of Geophysical Research, 10.1029/2011JA016487, 116, 10, 2011.01, [URL], An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ≤ 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity..
17. R. Fujii, O. Amm, Akimasa Yoshikawa, A. Ieda, Heikki Antero Vanhamaki, Reformulation and energy flow of the Cowling channel, Journal of Geophysical Research, 10.1029/2010JA015989, 116, 2, 2011.01, [URL], The question to which extent the divergence of the Hall current can be connected to the Pedersen current or to the closure current in the magnetosphere through field-aligned currents (FACs), that is, the Cowling channel process in the polar region, has long been debated but not fully understood. The present study reformulates the Cowling channel by introducing a two-layer model consisting of Hall and Pedersen conductivity layers with channel boundaries not only in the direction perpendicular to the channel but also in the direction along it. This new model enables us to better and more physically understand the connection between the Hall current, Pedersen current, and FAC. In particular, the finiteness of the channel along its direction enables us to understand that the primary nonzero electric field along the channel and FACs at the channel boundaries that faced each other in the channel direction carries the necessary energy for the Hall current to set up the secondary electric field from the magnetosphere. A case for a possible connection between the Pedersen and Hall currents is shown based on a polar current system derived from the Kamide-Richmond-Matsushita method. A more comprehensive analysis based on data is presented in the companion paper..
18. Akimasa Yoshikawa, A. Nakamizo, O. Amm, Heikki Antero Vanhamaki, R. Fujii, Y. M. Tanaka, T. Uozumi, K. Yumoto, S. Ohtani, Self-consistent formulation for the evolution of ionospheric conductances at the ionospheric e region within the M-I coupling scheme, Journal of Geophysical Research, 10.1029/2011JA016449, 116, 9, 2011.01, [URL], We formulate the evolution of ionospheric conductivity in the framework of 3-D M-I coupling. Two important physical processes are taken into account. One is the ionization process by precipitating mono-energetic particles, which are accelerated by parallel-potential drops in the auroral acceleration region. The other process reflects the fact that part of field-aligned current (FAC) carried by electrons is closed with a perpendicular ionic current. Here, whereas the electric current is divergence-free, the divergence of electron current is finite. Therefore, the ionospheric electron density changes, and so does the conductivity. If the energy of electron precipitation is below ∼10 eV, this second process plays an important role in plasma transportation, production, and evacuation processes. In this case the density variation does not extend in space at the perpendicular electron velocity, but it rather moves at the ion perpendicular velocity. If the energy of electron precipitation is above ∼1 keV, in contrast, the precipitation has a nonlinear effect on plasma evolution. That is, the propagation speed of the density variation increases with increasing upward-FAC density, and the propagation takes place in the direction of the converging current into the upward FAC region. The Cowling effect on the plasma evolution process is crucially important. Our formulation is more general than the previous studies and is not limited to certain geometries, current component or interaction modes between the ionosphere and magnetosphere. It is therefore better-suited for describing the self-organized M-I coupling system, which evolves with current systems, conductivity, and magnetospheric processes interacting with each other..
19. Tanaka T., A. Nakamizo, A. Yoshikawa , S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, K. Hashimoto, Substorm convection and current system deduced from the global simulation, J. Geophys. Res., 10.1029/2009JA014676, 115, A05220, J. Geophys. Res. 115, A05220, doi:10.1029/2009JA014676, 2010.12.
20. Yoshikawa A., H. Nakata, A. Nakamizo, T. Uozumi, M. Itonaga, S. Fujita, K. Yumoto, and T. Tanaka, Alfvenic-coupling algorithm for global and dynamical magnetosphere-ionosphere coupled system, J. Geophys. Res., 10.1029/2009JA014924, 115, A04211, J. Geophys. Res., 115, A04211, doi:10.1029/2009JA014924, 2010.03.
21. Yoshikwa A., H. Nakata, A. Nakamizo, T. Uozumi, M. Itonaga, and K. Yumoto, A new magnetospherere- ionosphere coupling scheme for temporal and global magnetospheric MHD simulations, Mem. Fac. Sci., Kyushu Univ., Ser. D, Earth & Planet.Sci.,Vol, XXXII, No2, 87-94, XXXII, 2, 87-94, Vol, XXXII, No2, 87-94, 2009.03.
22. T. Uozumi, K. Yumoto, K. Kitamura, S. Abe, Y. Kakinami, M. Shinohara, Akimasa Yoshikawa, Hideaki Kawano, T. Ueno, T. Tokunaga, D. McNamara, J. K. Ishituka, S. L.G. Dutra, B. Damtie, V. Doumbia, O. Obrou, A. B. Rabiu, I. A. Adimula, M. Othman, M. Fairos, R. E.S. Otadoy, A new index to monitor temporal and long-term variations of the equatorial electrojet by MAGDAS/CPMN real-time data
EE-index, Earth, Planets and Space, 10.1186/BF03352828, 60, 7, 785-790, 2008.01, [URL], A new index, EE-index (EDst, EU, and EL), is proposed to monitor temporal and long-term variations of the equatorial electrojet by using the MAGDAS/CPMN real-time data. The mean value of the H component magnetic variations observed at the nightside (LT = 18-06) MAGDAS/CPMN stations along the magnetic equatorial region is found to show variations similar to those of Dst; we defined this quantity as EDst. The EDst can be used as a proxy of Dst for the real-time and long-term geospace monitoring. By subtracting EDst from the H component data of each equatorial station, ir is possible to extract the Equatorial Electrojet and Counter Electrojetcomponents, which are defined as EU and EL, respectively..
23. Terumasa Tokunaga, Hiroko Kohta, Akimasa Yoshikawa, Teiji Uozumi, Kiyohumi Yumoto, Global features of Pi 2 pulsations obtained by independent component analysis, Geophysical Research Letters, 10.1029/2007GL030174, 34, 14, 2007.07, [URL], Ground Pi 2 pulsations are mixtures of several components reflecting (1) propagations of fast and shear Alfvén wave, (2) resonances of plasmaspheric/magnetospheric cavity and magnetic field lines, and (3) tansformations to ionospheric current systems. However, it has been unclear how they coupled with each other and how their signals are distributed at different latitudes. The present work is intended to pilot the future possibilities whether we can identify the global system of Pi 2 pulsations by Independent Component Analysis (ICA). We have successfully decomposed an isolated Pi 2 event on a quiet day observed at the CPMN stations into two components. One was the global oscillation that occurs from nightside high to equatorial latitudes with the common waveform and has an amplitude maximum at nightside high latitude. Another component was localized at nightside high latitudes. Its amplitudes were quite weak at low latitudes, but were enhanced near dayside dip equator..
24. Obana, A. Yoshikawa, J.V. Olson, R.J. Morris, B.J. Fraser, S.I. Solovyev, and K. Yumoto, Techniques to investigate the ionospheric effect on ULF waves, Proceeding of The fifth Workshop on Applications of Radio Science (WARS) obart Australia, on Feb. 18-20, 2004, CD-ROM, H12, 2004.02.
25. Abe S., K. Yumoto, H. Kawano, A. Yoshikawa, Y. Obana, S. I. Solovyev, D.G. Baishev, J.V. Olson, E.W. Worthington, and the Circum-pan Pacific Magnetometer Network Group, The Diagnosis of the Plasmapause by Ground Magnetometer Network Observation at Multiple Local Times, International Symposium on Information Science and Electrical Engineering 2003, Nov.13-14, 2003, ACROS Fukuoka, Fukuoka, Japan, 534-536, 2003.11.
26. Kitamura. K., H. Kawano, S. Ohtani, A. Yoshikawa, K. Yumoto, and the Circum-pan Pacific Magnetometer Network Group, Quasi-periodic Substorms during Recovery Phase of Magnetic Storm for Space Weather Study, 354-357, 2003.11.
27. Obana Y., A. Yoshikawa, J.V. Olson, R.J. Morris, B.J. Fraser, S.I. Solovyev and K. Yumoto, Environment Factors of PC 4 Amplitudes Observed at the CPMN Stations, International Symposium on Information Science and Electrical Engineering 2003, Nov.13-14, 2003, ACROS Fukuoka, Fukuoka, Japan, 256-258, 2003.11.
28. Yoshikawa A., H. Kohta, M.I tonaga, T. Uozumi, K. Yumoto, Inegrated Analysis of Coordinated Ground Magnetic Field Data for Space Weather Study, International Symposium on Information Science and Electrical Engineering 2003, Nov.13-14, 2003, ACROS Fukuoka, Fukuoka, Japan, 114-117, 2003.11.
29. Takasaki S., H. Kawano, Y. Tanaka, A. Yoshikawa, M. Seto, M. Iizima, and K. Yumoto, Plasma Distribution in the Low-L part of the Plasma sphere during Magnetic Storms, International Symposium on Information Science and Electrical Engineering 2003, Nov.13-14, 2003, ACROS Fukuoka, Fukuoka, Japan, 253-255, 2003.11.
30. Yoshikawa, A., M. Itonaga and K. Yumoto, On the energy of the poloidal magnetic field near the ionosphere, Advances in Polar Upper Atmospheric Research, No.16, 45-58, 2002.01.
31. M. Itonaga, A. Yoshikawa, K. Yumoto, S. Fujita and H. Nakata, A study on the generation of field-aligned current in the magnetosphere, Mem. Fac. Sci., Kyushu Univ., Ser. D, Earth and Planet. Sci., Vol, XXXI, No1, 1-9, 2000.01.
32. M. Itonaga, Akimasa Yoshikawa, K. Yumoto, One-dimensional transient response of the inner magnetosphere at the magnetic equator, 2. analysis of waveforms, Earth, Planets and Space, 49, 1, 49-68, 1997.02, Under a model of altitude distribution of the Alfvén speed VA, one-dimensional transient response of the inner magnetosphere at the magnetic equator to earthward propagating impulse- and step-like MHD disturbances is considered. The waveforms of transient compressional oscillations due to these disturbances at some L shells are directly simulated by a numerical inversion of the Laplace transform with orthonormal Laguerre functions. The present paper concentrates on the analysis of waveforms. Then, it is verified that the compressional oscillations are due to the poles of the system under consideration. The oscillation arising from the cavity resonance all over the inner magnetosphere is most dominant. However, its amplitude becomes smaller as the characteristic time scale T of an incident disturbance grows large, and it is negligibly small for T greater than several times of eigenperiod of the resonance. On the other hand, when T is relatively small (e.g., T £10 s), the oscillations due to the cavity resonances trapped around the trough in VA are outstanding. It is also found that the relative phase between the cavity-mode oscillations all over the inner magnetosphere at the earth's surface and another L shell increases monotonically with L when the inner magnetosphere has no strong gradient or a strong positive gradient of VA at its outer boundary. However, the relative phase is nearly zero and nearly 180 inside and outside a specific L shell, respectively, when the inner magnetosphere has a strong negative gradient at its outer boundary. The one-dimensional cavity-mode type resonance of the inner magnetosphere is certainly a cause of equatorial Pi2 pulsations. However, some constituents of the Pi2's may be not cavity-mode oscillations but quasi-steady-state oscillations forced by some damped sinusoidal waves incident on the outer boundary of the inner magnetosphere..
33. M. Itonaga, Akimasa Yoshikawa, K. Yumoto, One-dimensional transient response of the inner magnetosphere at the magnetic equator, 1. transfer function and poles, Earth, Planets and Space, 10.5636/jgg.49.21, 49, 1, 21-48, 1997.01, [URL], One-dimensional transient response of the inner magnetosphere at the magnetic equator is investigated using two models of altitude distribution of the Alfvén speed VA- The present paper concentrates on the transfer function of the system under consideration and its poles, which govern the transient response of the system. The poles, which are mathematical counterparts of the cavity resonances, appear owing to the inhomogeneity of VA and their locations depend on the altitude distribution of VA as well as the position of external source (or outer boundary of the inner magnetosphere). Even if there exists no strong Alfvén velocity gradient at the outer boundary, an observable cavity-mode oscillation in the Pi2 range can be excited because of the existence of a strong gradient of the plasmapause within the inner magnetosphere. However, the existence of a strong gradient at the outer boundary brings about a long-lived nature of the cavity-mode oscillation as well as calls some new poles into existence. While the surface of the solid earth forms the inner boundary at which the almost perfect reflection of wave takes place, the ionosphere is of secondary importance as a reflector of wave. The existence of the solid earth plays an essential role in the observability of the compressional oscillation arising from the cavity resonance all over the inner magnetosphere. The real part of each pole has a negative value, meaning that the cavity-mode oscillation decays with a damping factor of absolute value of the real part of the pole. Such a damping is primarily due to the leakage of energy through the outer boundary of the inner magnetosphere..
34. M. Itonaga, Akimasa Yoshikawa, The excitation of shear alfvén wave and the associated modulation of compressional wave in the inner magnetosphere, Earth, Planets and Space, 10.5636/jgg.48.1451, 48, 11, 1451-1459, 1996.06, [URL], Two basic but novel equations directly describing the generation of shear Alfvén and compressional waves in the inner magnetosphere filled with a cold magnetized plasma are derived. The shear Alfvén wave is characterized by the field-aligned current and the compressional wave by the compressional component of the magnetic field. Such a generation arises from the effects of inhomogeneous Alfvén speed and curvilinear field line. Around the magnetic equator, if the Alfvén speed is inversely proportional to a power of the geocentric distance, these effects have magnitudes of the same order and their signs are identical. Considered in the present study is a situation that the earthward propagating compressional wave is launched from a large scale oscillating current wedge centered at midnight and symmetric about the magnetic equator. Then, it is found that the field-aligned current excited around the equator by the compressional wave has opposite senses in direction in the northern and southern hemispheres, in the pro- and post-midnight sectors as well as just inside the plasmapause and in its surrounding regions. As a result of the excitation of shear Alfvén wave, two types of oscillations appear on a field line: One is a forced oscillation and the other is an eigenoscillation. Although a modulation of the compressional wave may be caused locally (or microscopically) around the equator by the eigenoscillation of field line, the modulation can be globally (or macroscopically) neglected. So far as the propagation along the source longitude (source-earth line) around the equator is concerned, the coupling between compressional and shear Alfvén waves can be almost neglected and so one-dimensional response of the inner magnetosphere around the equator plays a significant role in the compressional oscillation..
35. Yoshikawa, A., M. Itonaga and T.-I.Kitamura, On the coupled effect between the field aligned and ionospheric current, Proceeding of Eight International Symposium on Solar Terrestrial Physics, June 5-10, 1994, Sendai, Japan, 155-159, 1994.06.
36. Yoshikawa, A., M. Itonaga and T.-I.Kitamura, Effect of the ionospheric induction current on magnetohydrodynamic waves in the magnetosphere, Proceedings of the NIPR Symposium on Upper Atmosphere Physics, Vol.17, No.8, 49-59, 1995, 1995.01.
37. Itonaga, M., T.-I.Kitamura and A. Yoshikawa, Interaction between hydromagnetic waves and the anisotropically conducting ionosphere, Journal of Geomagnetism and Geoelectricity, 47, 5, 459-474, Vol.47, No.5, 459-474, 1995, 1995.01.
38. Itonaga, M., and A. Yoshikawa, Discrete spectral structure of low latitude and equatorial Pi2 pulsations,, Journal of Geomagnetism and Geoelectricity, Vol.44, No.3, 253-259, 44, 3, 253-259, 1992.01.
主要総説, 論評, 解説, 書評, 報告書等
1. Yoshikawa A., O. Amm, and R. Fujii, 3次元Cowlingチャンネルの理論, 2009.12.
2. Yoshikawa A., (pp.1-10), and A. Nakamizo (pp.11-20), 宇宙天気概況解析実験マニュアル, 2006.04.
3. 吉川顕正、河野英昭、公田浩子、高崎聡子、魚住禎司、北村健太郎、湯元清文, 地上多点磁場観測と海底ケーブルを組み合わせた宙空電磁環境のモニタリング/モデリングの可能性について, 4D地球・ 海洋・環境科学研究の幕開け-海底ケーブルの科学的利用による海洋観測の新時代-、月刊地球, VOL. 26, NO. 5, 307-314, 2004, 2004.12.
主要学会発表等
1. Higuchi, H, and A. Yoshikawa, Electron acceleration mechanism in "ionospheric polarized Poleward Boundary Intensification": A new validation with 3-dimensional fluid electron acceleration simulators, American Geophysics Union Fall Meeting 2021, 2021.12.
2. M. Hayashi, A.Yoshikawa, A.Fujimoto, S.Ohtani, Research on the Poler to Mid-latitude Ionospheric Response During Substorm based on mid-latitude electric field and global magnetic field observations, American Geophysics Union Fall Meeting 2021, 2021.12.
3. Takayama Kumi, Yoshikawa Akimasa , Principal Component Analysis for Extracting Variations due to Sq Current and Atmospheric Tides from Magnetic Field Data, American Geophysics Union Fall Meeting 2021, 2021.12.
4. 森澤 将, 吉川 顕正, 大谷 晋一, 夜側オーロラオーバルの極側境界で発生するオーロラ増光現象における電離圏分極の数値解析, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
5. 林 萌英, 吉川 顕正, 藤本 晶子, Ohtani Shinichi, 磁場・電界観測に基づく極域・中緯度電離圏の応答の解明, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
6. Kentarou Kitamura, Mengu Cho, Akimasa Yoshikawa, Teiji Uozumi, Shuji Abe, Mariko Teramoto, Akiko Fujimoto, Feasibility Study of Space Weather Observation by CubeSat in LEO, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
7. Akiko Fujimoto, Akimasa Yoshikawa, Manjula Ranasinghe, Chandana Jayaratne, Characteristics of dusk-side IHFAC polarity during storm and quiet time, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
8. Shuji Abe, Akiko Fujimoto, Akimasa Yoshikawa, Progress of the SDR-based dual-band scintillation detector development and its application for space weather study, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
9. Akihiro Ikeda,Teiji Uozumi, Akimasa Yoshikawa, Akiko Fujimoto, Shuji Abe, Seasonal and long-term variations in the Schumann Resonance observed at Kuju Japan, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
10. Shuji Abe, Akiko Fujimoto, Akimasa Yoshikawa , Progress of the SDR-based dual-band scintillation detector development and its application for space weather study, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
11. Toru Mikuriya,Akiko Fujimoto,Shuji Abe,Akihiro Ikeda,Akimasa Yoshikawa , Development of an autonomous FM-CW ionospheric observation system based on reinforcement learning, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
12. 安永 朗宏, 藤本 晶子, 吉川 顕正, 磁気赤道域における特異的な太陽フレア効果(SFE*)の発生要因の探究, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
13. 樋口 颯人, 吉川 顕正, 電離圏分極型PBIにおける電子加速メカニズム:3次元流体的電子加速シミュレータから得られる新機構, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
14. Akimasa Yoshikawa, A study on the geometrical evolution of magnetic fields, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
15. 伊集院 拓也, 吉川 顕正, 3次元全球電離圏静電ポテンシャルソルバーの開発, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
16. 中村 典, 吉川 顕正, 磁気圏多点衛星観測時代に向けたデータ解析手法の開発, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
17. Aoi Nakamizo, Akimasa Yoshikawa, Hiroyuki Nakata, Keiichiro Fukazawa,Takashi Tanaka,, Implementation of Alfvenic Coupling in Global MHD Magnetosphere Simulation, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
18. 高山 久美, 吉川 顕正, 主成分分析による地上磁場データの成分分離, 地球電磁気・地球惑星圏学会(SGEPSS) 第150 回総会・講演会, 2021.11.
19. Yasunaga Akihiro、Akimasa Yoshikawa, and Fujimoto Akiko, Research on the unique Solar Flare Effect (SFE*) at the dip equator around local noon, AOGS Annual Virtual Meeting 2021, 2021.08.
20. Takayama Kumi, Yoshikawa Akimasa, and Miyoshi Yasunobu, Quasi-6-Day Wave Effect on Electric Conductivity, Electric field, and Current with GAIA model, AOGS Annual Virtual Meeting 2021, 2021.08.
21. #M.Hayashi, @A.Yoshikawa, A.Fujimoto, S.Ohtani,, Research for formation of global current system during substorm through observation of ionospheric response at mid-latitudinal region, AOGS Annual Virtual Meeting 2021, 2021.08.
22. 山本 衛、橋口 浩之、横山 竜宏、宮岡 宏、小川 泰信、塩川 和夫、野澤 悟徳、@吉川 顕正、津田 敏隆, Study of coupling processes in the solar-terrestrial system, Japan GeoScience Meeting 2021, 2021.06.
23. 惣宇利 卓弥、新堀 淳樹、大塚 雄一、津川 卓也、西岡 未知、@吉川 顕正, Generation mechanisms of plasma density irregularity from equatorial to midlatitude ionosphere during a geomagnetic storm on 21 and 22 December 2014, Japan GeoScience Meeting 2021, 2021.06.
24. 大矢 浩代、折戸 雄飛、土屋 史紀、山本 真行、中田 裕之、@吉川 顕正, D-region ionospheric effects for 2016 eruptions of Mt. Aso using LF transmitter signals, Japan GeoScience Meeting 2021, 2021.06.
25. 藤本 晶子、@阿部 修司、御厨 徹、池田 昭大、@吉川 顕正, Multiple equatorial ionospheric observation project based on FMCW radar combining MAGDAS/SDR-based scintillation detector, Japan GeoScience Meeting 2021, 2021.06.
26. @吉川 顕正、#橋本 翼、中溝 葵、大谷 晋一, Development of a novel method for extracting the geometrical properties of the magnetic vector fields towards the era of multi-point satellite observations, Japan GeoScience Meeting 2021, 2021.06.
27. 塩川 和夫, 三好 由純, @吉川 顕正、中村 卓司, 太陽地球系物理学科学委員会(SCOSTEP)の活動と展望:学術会議を通した国際活動の推進, Japan GeoScience Meeting 2021, 2021.06.
28. ラナシンハ マンジュラ, 藤本 晶子, @吉川 顕正, ジャヤラトナ チャンダ, Seasonal dependence of dusk-side equatorial IHFACs polarity during solar cycle 23-24, Japan GeoScience Meeting 2021, 2021.06.
29. 中溝 葵, @吉川 顕正, 中田 裕之, 深沢 圭一郎, 田中 高史, Development of a new M-I coupling algorithm in global MHD magnetosphere simulation: Alfvénic-Coupling, Japan GeoScience Meeting 2021, 2021.06.
30. @Akimasa Yoshikawa, Modeling of magnetosphere-ionosphere-atmosphere system for investigation of coupling process in the space-terrestrial transition region, Japan GeoScience Meeting 2021, 2021.06.
31. @Kirolosse Mina Girgis, @Tohru Hada, @Shuichi Matsukiyo, @Akimasa Yoshikawa, , Numerical Proton Flux Response in South Atlantic Anomaly during Geomagnetic Storm, Japan GeoScience Meeting 2021, 2021.06.
32. #森澤将、@吉川顕正、大谷晋一, 夜側オーロラオーバルの極側境界で起こるオーロラ増光現象の発生過程における電離圏分極の数値解析, Japan GeoScience Meeting 2021, 2021.06.
33. #伊集院拓也、@吉川顕正, IGRFモデルを用いた3次元全球電離圏静電ポテンシャルソルバーの開発, Japan GeoScience Meeting 2021, 2021.06.
34. #Yasunaga Akihiro、Fujimoto Akiko、@Yoshikawa Akimasa, Study on the Solar Flare Effect (SFE*) of equatorial electrojet around local noon, Japan GeoScience Meeting 2021, 2021.06.
35. #Takayama Kumi, @Yoshikawa Akimasa, and @Miyoshi Yasunobu, Seasonal Dependence of the Quasi-6-Day Oscillation in Sq-EEJ Current System, Japan GeoScience Meeting 2021, 2021.06.
36. #Higuchi, H. and @A. Yoshikawa, , Exploring the Electron Acceleration Mechanism in the Poleward Boundary Intensification, Japan GeoScience Meeting 2021, 2021.06.
37. M.Hayashi, A.Yoshikawa, A.Fujimoto , S. Ohtani, Investigation of the mid-latitude ionospheric response during substorm based on magnetic and electric field observations, Japan GeoScience Meeting 2021, 2021.06.
38. 吉川顕正, 磁気圏電離圏結合の展開とその基礎論, EISCAT研究集会, 2021.03.
39. 樺澤 大生, 吉川 顕正, 魚住 禎司, 藤本 晶子, 阿部 修司, 塩川 和夫, Connors Martin, MAGDASシステムの10Hzデータを用いた、Pc2脈動の全球的分布特性の解明, 地球電磁気・地球惑星圏学会 第148回 総会・講演会(2020年 秋学会), 2020.11.
40. 林 萌英, @吉川 顕正, 藤本 晶子, Ohtani Shinichi, サブストームオンセットにおける中緯度電離圏全球応答の精査, 地球電磁気・地球惑星圏学会 第148回 総会・講演会(2020年 秋学会), 2020.11.
41. 高山 久美, 三好 勉信, 吉川 顕正, 大気波動によるSq-EEJ電流系の準6日振動現象の解明, 地球電磁気・地球惑星圏学会 第148回 総会・講演会(2020年 秋学会), 2020.11.
42. 中溝 葵, 吉川 顕正, 大谷 晋一, 田中 高史, Alfvénic disturbances generated by the ionospheric polarization and the convection reversal in the magnetosphere, JpGU-AGU Joint Meeting 2020, 2020.07.
43. 吉川 顕正, 中溝 葵, 大谷 晋一, Causality for formation of electromagnetic channel from Polar to Equatorial Ionosphere, JpGU-AGU Joint Meeting 2020, 2020.07.
44. 吉川 顕正, 河野 英昭, 阿部 修司, 魚住 禎司, 藤本 晶子, 池田 昭大, 樺澤 大生, 黒木 智, 林 萌英, 高山 久美, 中溝 葵, Ohtani Shinichi, Investigation of global electromagnetic coupling from polar to equatorial ionosphere, JpGU-AGU Joint Meeting 2020, 2020.07.
45. 樺澤 大生, 吉川 顕正, 魚住 禎司, 藤本 晶子, 阿部 修司, MAGDAS9システムの10Hzデータによる、Pc2脈動の全球的発生分布特性解明, JpGU-AGU Joint Meeting 2020, 2020.07.
46. 高山 久美, 三好 勉信, 吉川 顕正, Sq・EEJ電流系における6日振動現象に着目した大気圏ー電離圏の上下結合の研究, JpGU-AGU Joint Meeting 2020, 2020.07.
47. 林 萌英, 吉川 顕正, 藤本 晶子, 大谷 晋一, 磁気圏電離圏全球結合系解明に向けたイオノグラムの自動読み取り, JpGU-AGU Joint Meeting 2020, 2020.07.
48. Yoshimasa Tanaka, Yasunobu Ogawa, Akira Kadokura, Takanori Nishiyama, Akimasa Yoshikawa, Bjorn Gustavsson, Kirsti Kauristie, Carl-fredrik, Enell, Urban Brandstrom, Tima Sergienko, Alexander Kozlovsky, Tero Raita, Vanhamaki Heikki, Study on auroral 3D structure in the northen Europe, Sixth International Symposium on Arctic Research (ISAR-6), Online, 2020.03.
49. 池田昭大, 魚住禎司, 吉川顕正, 藤本晶子, 阿部修司, 大分県久住町で観測されたシューマン共鳴の特性, 日本大気電気学会第98回研究発表会, 2020.01.
50. Ikeda A., T. Uozumi, A. Yoshikawa, A. Fujimoto, and S. Abe, Diurnal and seasonal variations in the Schumann Resonance observed at Kuju Japan, AGU fall meeting, 2019.12.
51. 三好 勉信, 山崎 洋介, 陣 英克, 藤田 茂, 吉川 顕正, 阿部 修司, プラネタリー波が電離圏変動に及ぼす影響, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
52. Yoshimasa Tanaka, Yasunobu Ogawa, Akira Kadokura, Takanori Nishiyama and Akimasa Yoshikawa, 3D analysis of discrete arcs based on auroral computed tomography, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
53. Aoi Nakamizo, Akimasa Yoshikawa, Shinichi Ohtani and Takashi Tanaka, Ionospheric Polarization: Deformation of Ionospheric Convection and Effects on Magnetosphere, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
54. Akimasa Yoshikawa, Revisiting dynamical process of Birkeland current generation, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
55. 波多江 真紀, 吉川 顕正, 魚住 禎司, サブストームオンセット後のPc4脈動とオーロラストリーマーの動態解明に向けて,, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
56. 今城 峻, 能勢 正仁, 相田 真里, 東尾 奈々, 松本 晴久, 古賀 清一, 吉川 顕正, サブストームに伴う磁気擾乱の子午面内伝播, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
57. Teiji Uozumi, Akimasa Yoshikawa, Shinichi Ohtani, Atsushi Kumamoto, Fuminori Tsuchiya, Yoshiya Kasahara, One-to-one correspondence between the vertical evolution of AKR and global high-correlation Pi 2, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
58. Akihiro Ikeda, Teiji Uozumi, Akimasa Yoshikawa, Akiko Fujimoto, Shuji Abe, Daily and seasonal variations of Schumann Resonance, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
59. 樺澤 大生, 吉川 顕正, 魚住 禎司, 藤本 晶子,阿部 修司, MAGDAS9システムの10Hzデータを用いた,Pc2脈動の全球的な発生特性解明, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
60. Akiko Fujimoto, Shuji Abe, Akihiro Ikeda, Akimasa Yoshikawa, Comparison of FM-CW Ionosonde and MAGDAS observations with S4 index in Peru, 第146回地球電磁気・地球惑星圏学会総会・講演会(2019年秋学会), 2019.10, [URL].
61. Aoi Nakamizo and Akimasa Yoshikawa, Deformation of ionospheric potential pattern by ionospheric Hall polarization, SuperDARN Workshop 2019, Fuji, 2019.06, [URL], The present study shows that the ionospheric Hall polarization can deform the high-latitude ionospheric convection field, which is widely considered to be a manifestation of the convection field in the magnetosphere.
We perform the Hall polarization field separation with a potential solver by changing the conductance distribution step- by-step from a uniform one to a more realistic one.
We adopt dawn-dusk and north-south symmetric distributions of conductance and region 1 (R1) field-aligned current (FAC).
The pair of the primary field of the R1 system and each gradient of Hall conductance generates the Hall polarization field and consequently causes potential deformations as follows.
(a) The equatorward gradient causes clockwise rotation.
(b) The gradient across the terminator, together with the effect of the equatorward gradient, causes the dawn-dusk asymmetry.
(c) The high conductance band in the auroral region causes kink-type deformations.
In particular, a nested structure at the equatorward edge of the band in the midnight sector well resembles the Harang Reversal.
Result (a) can explain the clockwise bias inexplicable by the IMF-By effect alone, the combination of (a) and (b) can explain the clearness and unclearness in the round or crescent shapes of the dawn-dusk cells depending on the IMF-By polarity, and (c) suggests that the ionosphere may not need the upward-FAC for the formation of the Harang Reversal.
We suggest that the final structure of the ionospheric potential is established by the combined effects of both the magnetospheric requirements (external causes) and ionospheric polarization (internal effect)..
62. Akimasa Yoshikawa, MAGDAS project: Research for global and local electromagnetic coupling from polar to equatorial ionosphere, SuperDARN Workshop 2019, Fuji, 2019.06, [URL], International Center for Space Weather Science and Education (ICSWSE) of Kyushu University is a research institute that conducts academic research and education in space weather and related fields. We have constructed an observation network known as the "MAGDAS/CPMN (MAGnetic Data AcquisitionSystem/Circum-pan Pacific Magnetometer Network)" in international collaboration with more than 60 organizations, including those in developing countries. Currently, over 80 magnetometers and 4 FM-CW (Frequency Modulated Continuous Wave) radars have been installed all over the world. To understand the active role of ionospheric dynamics on the global and local Magnetosphere-Ionosphere coupling from polar to equatorial ionosphere, we conduct integrated studies of theory, numerical simulation, in-situ magnetosphere observation, and global ionosphere observation by MAGDAS. Especially, the ionospheric Hall effect strongly controls the spatiotemporal evolution of the M-I coupling system. Generation of polarization electric field at conductance gradient regions causes rotation, shear, and acceleration/deceleration of ionospheric convection in both local and global manners. The ionospheric polarization field activates upward shear Alfven wave that could cause ionospheric driven magnetospheric dynamics and induce a new type of M-I coupled current system. Generation of induction electric field at the wavefront of ionospheric disturbances enables the electric field of electrostatic potential type to propagate horizontally as a result of coupling between magnetosonic mode and shear Alfven mode induced by multistep Hall effect in a time domain, at the ionospheric E-layer. Such a combined effect of ionospheric Hall polarization and induction on the ionospheric dynamics is a key element for understanding the formation process of the global current system from polar to equatorial ionosphere. In this talk, we will discuss how to identify elementary components of Hall-polarization and induction effect (generalized Cowling effect) from coupled phenomena, and the possibility of collaborative studies between SuperDARN and MAGDAS project to further understand active role of ionospheric dynamics..
63. Akimasa Yoshikawa, Revisiting the energy conversion process of Birkeland current, 日本地球惑星科学連合2019年大会, 2019.05, [URL].
64. 藤本 晶子, 池田 昭大, 吉川顕正, Latest installation of FM-CW radar in Peru, 日本地球惑星科学連合2019年大会, 2019.05, [URL].
65. 樺澤 大生, 吉川 顕正, 魚住 禎司, 藤本 晶子, 阿部 修司, MAGDAS9システムの10Hzデータによる,Pc1-2脈動の全球分布特性解明, 日本地球惑星科学連合2019年大会, 2019.05, [URL].
66. 吉川 顕正, 樺澤 大生, 魚住 禎司, 藤本 晶子, 阿部 修司, Development of MAGDAS project: Search for global electromagnetic coupling from polar to equatorial ionosphere, 日本地球惑星科学連合2019年大会, 2019.05, [URL].
67. 山本 衛, 橋口 浩之, 横山 竜宏, 宮岡 宏, 小川 泰信, 塩川 和夫, 野澤 悟徳, 吉川 顕正, 津田 敏隆, 太陽地球系結合過程の研究基盤形成, 日本地球惑星科学連合2019年大会, 2019.05, [URL].
68. Mio Nakahara, Akimasa Yoshikawa, Teiji Uozumi, Akiko Fujimoto, Electromagnetic induction responses to geomagnetic disturbances at low-and-mid-latitudes, 1st International Conference on Space Weather and Satellite Application 2018, ICeSSAT 2018, 2019.03, [URL], The geomagnetically induced current (GIC) is one of the most widely recognized phenomena caused by geomagnetic disturbances. Realistic predictions of magnetic field fluctuations may be used to evaluate the induction of electric fields to ground surfaces, and thus to estimate the occurrence of GICs. Although many GICs occur at high latitudes, they are now being studied at low and mid-latitudes as well. The purpose of this research was to understand the dynamics, observation, and prediction in Japan for GICs occurring at the low and mid-latitudes. In this study, the influence of geomagnetic field variations on Earth's electric field was examined. The magnetic field and the electric field components of 3 observation points for 1 year in 2015 are visually examined, and the characteristics of the fluctuations of the magnetic field and the surface electrical field were also analysed..
69. T. Akiyama, Akimasa Yoshikawa, A. Fujimoto, T. Uozumi, Relationship between plasma bubble and ionospheric current, equatorial electrojet, and equatorial counter electrojet, 1st International Conference on Space Weather and Satellite Application 2018, ICeSSAT 2018, 2019.03, [URL], In recent years, it has been clarified from previous studies that plasma bubbles and equatorial electrojets (EEJs) are related. In general, EEJs are calculated by subtracting the magnetic field H component of the magnetic equator from that at low latitude. However, in this study, EE-index data at Langkawi (magnetic equator), which includes all local current systems, were used for the analysis during the period from January 1, 2011, to November 8, 2014. By using the EE-index, it was found that plasma bubbles tend to occur for larger EEJ strengths. This result differs from the previous studies. In addition, if an equatorial counter electrojet (CEJ) occurs, it is understood that plasma bubbles will rarely occur due to the westward current; however, we found that when the lunar tidal effect is strong, plasma bubbles can occur even in conjunction with CEJs. Finally, we want to find the relationship between plasma bubbles and ionospheric current to predict them..
70. Akimasa YOSHIKAWA, Research of Geomagnetism for Earth and Space Environmen, Theme Seminar of the Scientific lecture at the annual Theme Seminar of the Sri Lanka Association for the Advancement of Science (“Space Science and Technology Applications for Sustainable Development” ), 2018.12.
71. Akimasa Yoshikawa, Teiji Uozumi, Aoi Nakamizo, Shinichi Ohtani, Revisiting the dynamic process of field-aligned current generation, 第144回 地球電磁気・地球惑星圏学会総会・講演会(2018年 秋学会), 2018.11, [URL].
72. 波多江 真紀, 吉川 顕正, 魚住 禎司, サブストームオンセット後に励起されるPc4脈動とオーロラストリーマの動態解明に向けて, 第144回 地球電磁気・地球惑星圏学会総会・講演会(2018年 秋学会), 2018.11, [URL].
73. 中原 美音, 吉川 顕正, 魚住 禎司, 藤本 晶子, 磁気擾乱時における中低緯度領域電磁誘導応答の研究, 第144回 地球電磁気・地球惑星圏学会総会・講演会(2018年 秋学会), 2018.11, [URL].
74. 秋山 鷹史, 吉川 顕正, 藤本 晶子, 魚住 禎司, EEJ、CEJ とプラズマバブルの関係, 第144回 地球電磁気・地球惑星圏学会総会・講演会(2018年 秋学会), 2018.11, [URL].
75. Shun Imajo, Akimasa Yoshikawa, Teiji Uozumi, Shinichi Ohtani, Aoi Nakamizo, Peter Chi, Propagation of Pi2 pulsation from nightside to dayside: Observations and modeling of global current system, 第144回 地球電磁気・地球惑星圏学会総会・講演会(2018年 秋学会), 2018.11, [URL].
76. Akihiro Ikeda, Teiji Uozumi, Akimasa Yoshikawa, Akiko Fujimoto, Shuji Abe, Variation of Schumann Resonance during the intense solar activity from October to November, 2003, 第144回 地球電磁気・地球惑星圏学会総会・講演会(2018年 秋学会), 2018.11, [URL].
77. Teiji Uozumi, Akimasa Yoshikawa, Shinichi Ohtani, Atsushi Kumamoto, Fuminori Tsuchiya, Yoshiya Kasahara, Characteristics of temporal variation of AKR and Pi 2 observed by ARASE and MAGDAS/CPMN: Initial results, 第144回 地球電磁気・地球惑星圏学会総会・講演会(2018年 秋学会), 2018.11, [URL].
78. Akimasa YOSHIKAWA, Geomagnetism and Life, Geomagnetic Focus Group Discussion 2018, 2018.09.
79. Akimasa YOSHIKAWA, Space Weather Data in IR 4.0 (Industry Revolution 4.0) era and the success story on MAGDAS project, International Conference on Space Weather and Satellite Application (ICeSSAT2018), 2018.08, [URL].
80. Takafumi Akiyama and Akimasa Yoshikawa, Akiko Fujimoto, Teiji Uozumi, Relationship Between Plasma Bubble and Ionospheric Current Equatorial Electrojet and Equatorial Counter Electrojet, International Conference on Space Weather and Satellite Application (ICeSSAT2018), 2018.08, [URL].
81. Siti Nurbaiti Ibrahim, Mohamad Huzaimy Jusoh, Ahmad Asari Sulaiman, Akimasa Yoshikawa, Characteristic of the Disturbed Days Ionospheric Current System in the 180-Degree Magnetic Meridian, International Conference on Space Weather and Satellite Application (ICeSSAT2018), 2018.08, [URL].
82. Akimasa Yoshikawa, On Generalization of Birkeland Current System in the Tree-Dimensional Magnetosphere-Ionosphere Coupling, AOGS2018 15th Annual Meeting, 2018.06, [URL].
83. Teiji UOZUMI, Akimasa YOSHIKAWA, Shin OHTANI, Dmitry BAISHEV, Alexey MOISEEV, Boris SHEVTSOV, Decomposition of the Wave Elements of the Global High-Correlation Pi 2, AOGS2018 15th Annual Meeting, 2018.06, [URL].
84. Akiko FUJIMOTO, Akimasa YOSHIKAWA, Toshiya NISHIGUCHI, Local Time Characteristic of Low-Latitude Geomagnetic Field Response to Intense Solar Flares, AOGS2018 15th Annual Meeting, 2018.06, [URL].
85. Akihiro IKEDA, Teiji UOZUMI, Akimasa YOSHIKAWA, Akiko FUJIMOTO, Shuji ABE, Hiromasa NOZAWA, Manabu SHINOHARA, Response of Schumann Resonance to Solar and Geomagnetic Activities, AOGS2018 15th Annual Meeting, 2018.06, [URL].
86. 白 旻基, 吉川 顕正, Study of anomalous behaviors of geomagnetic diurnal variations prior to earthquake, 日本地球惑星科学連合2018大会, 2018.05, [URL].
87. 藤本 晶子, 池田 昭大, 吉川 顕正, FM-CW radar project: goals and a new installation in Peru, 日本地球惑星科学連合2018大会, 2018.05, [URL].
88. 中溝 葵, 吉川 顕正, 田中 高史, Effects of Ionospheric Hall Polarization on Magnetospheric Configurations and Dynamics in Global MHD Simulation, 日本地球惑星科学連合2018大会, 2018.05, [URL].
89. 吉川 顕正, 大谷 晋一, 中溝 葵, 今城 峻, Research project for investigation of active role of ionospheric dynamics on the magnetosphere-ionosphere coupled system, 日本地球惑星科学連合2018大会, 2018.05, [URL].
90. 阿部 修司, 吉川 顕正, 魚住 禎司, 藤本 晶子, Recent activities of MAGDAS project, 日本地球惑星科学連合2018大会, 2018.05, [URL].
91. 池田 昭大, 魚住 禎司, 吉川 顕正, 藤本 晶子, 野澤 宏大, Variation of Schumann resonance at Kuju station during solar flares, 日本地球惑星科学連合2018大会, 2018.05, [URL].
92. 山本 衛, 橋口 浩之, 宮岡 宏, 小川 泰信, 塩川 和夫, 野澤 悟徳, 吉川 顕正, 津田 敏隆, 太陽地球系結合過程の研究基盤形成, 日本地球惑星科学連合2018大会, 2018.05, [URL].
93. 高橋 直子, 関 華奈子, 寺本 万里子, Mei-Ching Fok, 松岡 彩子, 東尾 奈々, 塩川 和夫, Dmitry Baishev, 吉川 顕正, Global distribution of ULF waves during magnetic storms: Comparison of Arase and ground observations and BATSRUS+CRCM modeling, 日本地球惑星科学連合2018大会, 2018.05, [URL].
94. 寺田 綱一朗, 垰 千尋, 寺田 直樹, 笠羽 康正, 北 元, 中溝 葵, 吉川 顕正, 大谷 晋一, 土屋 史紀, 鍵谷 将人, 坂野井 健, 村上 豪, 吉岡 和夫, 木村 智樹, 山崎 敦, 吉川 一朗, Study of the Jovian magnetosphere-ionosphere coupling using an ionospheric potential solver: Contributions of H+ and meteoric ions to ionospheric conductivity, 日本地球惑星科学連合2018大会, 2018.05, [URL].
95. 田中 良昌, 小川 泰信, 門倉 昭, Gustavsson Bjorn, Partamies Noora, Kauristie Kirsti, Whiter Daniel, Enell Carl-fredrik, Brandstrom Urban, Sergienko Tima, Kozlovsky Alexander, Vanhamaki Heikki, 吉川 顕正, 宮岡 宏, 3D current system of eastward expanding auroral surges, 日本地球惑星科学連合2018大会, 2018.05, [URL].
96. A Nakamizo, A Yoshikawa, T Tanaka, Effects of Ionospheric Hall Polarization on Magnetospheric Configurations and Dynamics in Global MHD Simulation, AGU Fall Meeting, 2017.12.
97. 青柳 優介, 吉川 顕正, PBI 数値シミュレーション~オーロラオーバルとオーロラストリーマーの相互作用 について~, 第142回地球電磁気・地球惑星圏学会, 2017.10.
98. Akimasa Yoshikawa, Shinichi Ohtani, New interpretation PBI, 第142回地球電磁気・地球惑星圏学会, 2017.10.
99. Shun Imajo, Akimasa Yoshikawa, Teiji Uozumi, Shinichi Ohtani, Aoi Nakamizo, Peter Chi, Application of a magnetospheric-ionospheric current model for dayside and terminator Pi2 pulsation, 第142回地球電磁気・地球惑星圏学会, 2017.10.
100. Aoi Nakamizo, Akimasa Yoshikawa, Takashi Tanaka, Effects of Ionospheric Hall Polarization Field on Magnetosphere in Global MHD Simulation, 第142回地球電磁気・地球惑星圏学会, 2017.10.
101. Shinichi Ohtani, Tetsuo Motoba, Akimasa Yoshikawa, Formation and Development of Poleward Boundary Intensifications of Auroral Emission, 第142回地球電磁気・地球惑星圏学会, 2017.10.
102. 西口 俊弥, 吉川 顕正, 藤本 晶子, 松下 拓輝, 各地方時におけるSFEの発生特性について, 第142回地球電磁気・地球惑星圏学会, 2017.10.
103. 中原 美音, 吉川 顕正, 魚住 禎司, 藤本 晶子, 松下 拓輝, 磁気擾乱時における中低緯度領域電磁誘導応答の研究, 第142回地球電磁気・地球惑星圏学会, 2017.10.
104. 秋山 鷹史, 吉川 顕正, 藤本 晶子, 魚住 禎司, CEJ発生日のプラズマバブルイベント, 第142回地球電磁気・地球惑星圏学会, 2017.10.
105. Akiko Fujimoto, Ayako Matsuoka, Akimasa Yoshikawa, Mariko Teramoto, Reiko Nomura, Yoshimasa Tanaka, Manabu Shinohara, Comparison of ULF waves measured by the ERG satellite and MAGDAS network, 第142回地球電磁気・地球惑星圏学会, 2017.10.
106. Akiko Fujimoto, Akimasa Yoshikawa, Teiji Uozumi, Shuji Abe, Hiroki Matsushita, Seasonal dependence of semidiurnal equatorial magnetic variations, 第142回地球電磁気・地球惑星圏学会, 2017.10.
107. Yoshikawa A., Monitoring of Space and Earth electromagnetic environment by MAGDAS project: Collaboration with IKIR, International Conference on Solar-Terrestrial Relations and Physics of Earthquake Precursors, 2017.09.
108. Akihiro Ikeda, Teiji Uozumi, Akimasa Yoshikawa, Akiko Fujimoto, Shuji Abe, Hiromasa Nozawa, Manabu Shinohara, Characteristics of Schumann Resonance Parameters at Kuju Station, International Conference on Solar-Terrestrial Relations and Physics of Earthquake Precursors, 2017.09.
109. Yoshikawa A., Study of Coupling Processes in the Solar-Terrestrial System, 2nd National School on EARTH and ELECTROMAGNETISM, 2017.08.
110. Yoshikawa A., Geomagnetic observation to support space weather study, AMGASA Public Talk, 2017.08, 汎世界的な地磁気多点観測網によりあぶり出される様々な宇宙天気現象、宇宙ー気象ー地象結合現象について紹介し、その適用サイエンスの幅広さと様々な地球物理現象のモニタリングの可能性について、わかりやすく講演する。.
111. Yoshikawa A., What is Space Weather?, Universidad Nacional Agraria de la Selva (UNAS) Invited Seminar, 2017.08.
112. Yoshikawa A., Recent Development of ICWSE/MAGDAS project for Study of Coupling Processes in the Solar-Terrestrial System, 日本地球惑星科学連合2017大会, 2017.05.
113. Yoshikawa A., Magnetosphere-Ionosphere coupling process produced by Ampere force forcing from the magnetosphere, 日本地球惑星科学連合2017大会, 2017.05.
114. 藤本 晶子, 吉川 顕正, 魚住 禎司, 阿部 修司, 松下 拓輝, MAGDASプロジェクトEE-indexの磁気赤道域現象への適用事例, 日本地球惑星科学連合2017大会, 2017.05.
115. 中溝 葵, 吉川 顕正, 田中 高史, Study on Effects of Ionospheric Polarization Field and Inner Boundary Conditions on Magnetospheric Dynamics and Substorm Processes in Global MHD Simulation, 日本地球惑星科学連合2017大会, 2017.05.
116. 今城 峻, 吉川 顕正, 魚住 禎司, 大谷 晋一, 中溝 葵, Application of Global Three-Dimensional Current Model for Dayside and Terminator Pi2 Pulsations, 日本地球惑星科学連合2017大会, 2017.05.
117. 秋山 鷹史, 吉川 顕正, 松下 拓輝, 藤本 晶子, 魚住 禎司, On the relationships between EEJ distribution and plasma bubble occurrences, 日本地球惑星科学連合2017大会, 2017.05.
118. 中原 美音, 松下 拓輝, 吉川 顕正, 魚住 禎司, 藤本 晶子, 阿部 修司, 磁気擾乱時における中低緯度領域電磁誘導応答の研究, 日本地球惑星科学連合2017大会, 2017.05.
119. 阿部 修司, 花田 俊也, 吉川 顕正, 平井 隆之, 河本 聡美, スペースデブリ環境推移モデルにおける大気密度モデルの改良と宇宙天気活動の影響評価, 日本地球惑星科学連合2017大会, 2017.05.
120. 津田 敏隆, 山本 衛, 橋口 浩之, 宮岡 宏, 小川 泰信, 塩川 和夫, 野澤 悟徳, 吉川 顕正, Study of the Coupled Solar-Earth System with Large Atmospheric Radars, Ground-based Observation Network and Satellite Data: Project Overview, 日本地球惑星科学連合2017大会, 2017.05.
121. Nurul Shazana Abdul Hamid, Saeed Abioye Bello, Mardina Abdullah, Akimasa Yoshikawa, The Sq-current and the Ionospheric Profile Parameters during Solar Minimum, 日本地球惑星科学連合2017大会, 2017.05.
122. Nurul Shazana Abdul Hamid, Wan Nur Izzaty Ismail, Mardina Abdullah, Akimasa Yoshikawa, Latitudinal and Longitudinal Profile of EEJ current during different phases of Solar Cycle, 日本地球惑星科学連合2017大会, 2017.05.
123. Yoshikawa A., MAGDAS/CPMNプロジェクトの現状と課題, 九州大学西新プラザ、福岡県福岡市, 2017.03.
124. 藤本晶子, 魚住禎司, 阿部修司, 松下拓輝, 吉川顕正, EE-indexに基づく赤道地磁気活動の概況報告(2016年9月~2017年2月), 平成28年度・第2回STE現象報告会, 2017.03.
125. 藤本晶子, 吉川顕正, 魚住禎司, 阿部修司, 松下拓輝, MAGDASプロジェクト, EE-indexの磁気赤道域現象への適用事例と課題, 平成28年度・第2回STE現象報告会, 2017.03.
126. 今城峻, 吉川顕正, 魚住禎司, 西村幸敏, Vassilis Angelopoulos, Eric Donovan, 振動電流系、定在性および伝播性MHD波動としてのPi2振動の共存: 事例解析, 電磁圏物理学シンポジウム, 2017.03.
127. Quirino Sugon Jr., Christine Chan, Felix Muga II, Clint Bennett, Randell Teodoro, Sergio Su, Daniel McNamara, Dexter Lo, Roland Otadoy, Grace Rolusta, Akiko Fujimoto, Teiji Uozumi, and Akimasa Yoshikawa, Co-seismic magnetic signatures of Moro Gulf Quake of 2010-07-23 using MAGDAS data, 地域ネットワークによる宇宙天気の観測・教育活動に関する研究集会, 2017.03.
128. Yoshikawa A., MAGDAS/CPMNプロジェクトの現状と課題, シンポジウム「太陽地球系科学に於ける地上観測の現状と課題」, 2017.03.
129. Yoshikawa A., A. Nakamizo, and S. Ohtani, Generalized Description of Three- Dimensional Magnetosphere-Ionosphere Coupling by Shear Alfvén Waves, 2016 Fall AGU Meeting, 2016.12.
130. Ohtani, S., and A. Yoshikawa, Field-aligned Currents Induced by Electrostatic Polarization at the Ionosphere: Application to the Poleward Boundary Intensification (PBI) of Auroral Emission, 2016 Fall AGU Meeting, 2016.12.
131. A. Nakamizo and A. Yoshikawa, Possibility of Ionospheric Cause of FACs and Convection Field in the Magnetosphere-Ionosphere System: The Harang Reversal, Premidnight Upward-FAC, and the Ionospheric Hall Polarization Field, 2016 Fall AGU Meeting, 2016.12.
132. Matsushita, H., A. Yoshikawa, T. Uozumi, A. Fujimoto, S. Abe, J. K. Ishitsuka, O. Veliz, D. Rosales, E. Safor and V. Beteta, Development of EEJ Model Based on Dense Ground-based Magnetometer Array, 2016 Fall AGU Meeting, 2016.12.
133. @Yoshikawa A., Magnetosphere-Ionosphere Coupling, The SCOSTEP/ISWI International School on Space Science, 2016.11.
134. 吉川顕正, Generalization of Ionospheric Polarization and Magnetospheric Field- Resonance, 第140回 SGEPSS総会および講演会, 2016.11.
135. 中溝葵, 吉川顕正, 中田裕之, 磁気圏MHDグローバルモデルにおける磁気圏電離圏解法部分の概要・ 再考・改良計画, 第13回 宇宙環境シンポジウム, 2016.11.
136. Fujimoto, A., T. Uozumi, S. Abe, H. Matsushita, and A. Yoshikawa, Lunar tide variation of Equatorial Electrojet based on the long-term EE-index, 第140回 SGEPSS総会および講演会, 2016.11.
137. 今城峻, 西村幸敏, 吉川顕正, 魚住禎司, Ohtani Shinichi, 中溝葵, Vassilis Agelopoulos, Stephen Mende, Auroral features of Pi2 pulsation associated with poleward boundary intensification, 第140回 SGEPSS総会および講演会, 2016.11.
138. Imajo, S., A. Yoshikawa, T. Uozumi, S. Ohtani, A. Nakamizo, S.Demberel, and B. M. Shevtsov, Solar terminator effects on middle- to low-latitude Pi2 pulsations, 第140回 SGEPSS総会および講演会, 2016.11.
139. 藤本晶子, 魚住禎司, 阿部修司, 松下拓輝, and 吉川顕正, EE-indexに基づく赤道地磁気活動の概況報告(2016年4月~2016年11月), 平成28年度・第1回STE現象報告会, 2016.11.
140. Shun Imajo, Yukitoshi Nishimura, Akimasa Yoshikawa, Teiji Uozumi, Shinichi Ohtani, Aoi Nakamizo, Vassilis Angelopoulos, Stephen Mende, Coordinated observation of Pi2 pulsations by global magnetometer array, all sky imager and satellites in the plasmasphere, NIPR Symposium on Polar Science, 2016.11.
141. 吉川顕正, 磁気圏電離圏結合, 平成28年度「磁気圏・電離圏シンポジウム」、電離圏・磁気圏探査衛星検討リサーチグループ第1回会合」, 2016.10.
142. 吉川顕正, 磁気圏電離圏結合ダイナミクスの無撞着な記述:境界条件を超えて, 「磁気圏複合系研究会・プラズマシート極域電離圏投影問題研究会」, 2016.09.
143. Yoshikawa A., (B,V) Paradigm of Magnetosphere-Ionosphere Coupling, URSI Asia-Pacific Radio Science Conference (URSI AP-RASC 2016), 2016.08, これまでの磁気圏電離圏結合研究では、磁気圏側はMHDダイナミクス(B-Vパラダイム)で、電離圏側は静電的な電離層電流層近似(J-Eパラダイム)で扱われ、その両者は静電的な境界条件をつうじた結合問題として扱われてきた。本研究では電離圏ダイナミクスをイオン-中性大気の衝突効果により必然的に生じるHall電場を電離圏から磁気圏までシームレスに導入する理論的枠組を整理し、磁気圏電離圏結合系を一つの系のダイナミクスの下に記述する(B,V)パラダイムを提案する。これにより、これまで電気回路的な理解しかされてこなかった電離圏特有の現象をプラズマダイナミクスの文脈の下に記述することが可能となる。.
144. Impact of Space Weather on Earth COSPAR Capacity Building Workshop, Magnetosphere-Ionosphere coupling by shear Alfven wave, August 15 – 26, 2016, 2016.08.
145. 吉川顕正, Alfven波による一般化された3次元磁気圏電離圏結合, 名大ISEE/極地研/NICT/京大RISH 共同主催「中間圏・熱圏・電離圏 (MTI) 研究集会」/(第321回生存圏シンポジウム), 2016.08.
146. Yoshikawa A., Fujimoto, A., T. Uozumi, S. Abe, H. Matsushita, and, S. Abe, Space Weather Indexes Produced by ICSWSE/MAGDAS Project, Asia Oceania Geoscience Society 13th Annual Meeting, 2016.07.
147. Matsushita, H., A. Yoshikawa, T. Uozumi, A. Fujimoto, S. Abe, J. K. Ishitsuka, O. Veliz, D. ROSALES, E. SAFOR, V. BETETA, and G. CÁRDENAS, Development Of New Eej Index By Dense Magnetometer Array In Peru, presented at Asia Oceania Geoscience Society 13th Annual Meeting, Asia Oceania Geoscience Society 13th Annual Meeting, 2016.07.
148. Fujimoto, A., T. Uozumi, S. Abe, H. Matsushita, and A. Yoshikawa, Long-term EE-index Variation for Monitoring Equatorial Electrojet Based on ICSWSE Magnetometer Network, Asia Oceania Geoscience Society 13th Annual Meeting, 2016.07.
149. Abe. S, H. Matsushita, Y. Nawata, A. Yoshikawa, Three components analysis of ground magnetometer network data for developing GIC index,13th Annual Meeting Asia Oceania Geoscience Society, Asia Oceania Geoscience Society 13th Annual Meeting, 2016.07.
150. Yoshikawa A., How much curl-free Hall current flows out to the magnetosphere as field-aligned current from Cowling channel?, Chamman Conference on Current in Geospace and Beyond, 2016.05.
151. Yoshikawa A., Shuji Abe, Teiji Uozumi, Akiko Fujimoto, Hiroki Matsushita, Hideaki Kawano, Recent development of MAGDAS project: Strategy for international alliance of geomagnetic field network observation, 日本地球惑星科学連合2016大会, 2016.05.
152. Nakamizo, A. and A. Yoshikawa, The Harang Reversal Generated by Ionospheric Polarization Field by Hall Current Divergence, 日本地球惑星科学連合2016大会, 2016.05.
153. Ohtani, S., and A. Yoshikawa, What if the evolution of auroral forms does not reflect magnetospheric processes?, 日本地球惑星科学連合2016大会, 2016.05.
154. Abe. S, H. Matsushita, Y. Nawata, A. Yoshikawa, Three components analysis of ground magnetometer network data for understanding GIC excited by space weather disturbances, 日本地球惑星科学連合2016大会, 2016.05.
155. 吉川顕正, 湯元教授の九大での貢献について-観測と教育を中心に-, 電磁圏物理学シンポジウム, 2016.03.
156. 松下拓輝, 吉川顕正, 魚住禎司, 阿部修司, 藤本晶子, ペルー新地磁気観測ネットワークから見た、2015年12月19日発生の磁気嵐時のEEJ構造について, STE現象報告会, 2016.03.
157. 藤本 晶子, 魚住 禎司, 阿部 修司, 松下 拓輝, 吉川 顕正, EE-indexに基 づく赤道地磁気活動の概況報告(2015年9月~2016年3月), 平成 27年度・第2回STE現象報告会, 2016.03.
158. 今城 峻, 吉川 顕正, 魚住 禎司, Shinichi Ohtani, 中溝葵, 中低緯度Pi2地磁気脈動に対する朝夕昼夜境界の効果, 電磁圏物理学シンポジウム, 2016.03.
159. Teiji Uozumi, A. Yoshikawa, S. Ohtani, S. Imajo, D. G. Baishev, A. V. Moiseyev, B. M. Shevtsov, and K. Yumoto, Correlated temporal variations of AKR, substorm current wedge and global Pi 2, 平成27年度名古屋大学宇宙地球環境研究所研究集会 「サブストーム研究会」, 2016.02.
160. Matsushita, H, A. Yoshikawa, T. Uozumi, J. Ishitsuka, D. Rosales, O. Veliz, V. B. Alvarado and G. M. Cárdenas, Development of dense magnetometer array in Peru for investigating detailed structure of EEJ, 1st PSTEP International Symposium, 2016.01.
161. Fujimoto, A., A. Yoshikawa, T. Uozumi, S. Abe, and H. Matsushita, Space weather environment index based on ICSWSE magnetometer network, 1st PSTEP International Symposium, 2016.01.
162. 阿部 修司, 吉川 顕正, 魚住 禎司, 藤本 晶子, 松下 拓輝, 縄田 由香利, 九大多磁場観測網を用いた地磁気誘導電流関連研究の展開と展望, 第5回極端宇宙天気研究会, 2015.11.
163. 吉川顕正, 花田俊也, 羽田亨, 汎地球観測ネットワークを基軸とした 宇宙天気研究・教育の革新的国際展開, 第12回 宇宙環境シンポジウム, 2015.11.
164. Yoshikawa A., Time-dependent generalized Ohm’s Law and formation of global Cowling channel in the ionosphere, 14th International Symposium on Equatorial Aeronomy (ISEA), 2015.10.
165. Babatunde Rabiu, O.O.Folarin, T. Uozumi, N.S.Abdul-Hamid, A.Yoshikawa, Longitudinal variation of Equatorial Electrojet and the Occurrence of its Counter Electrojet, 14th International Symposium on Equatorial Aeronomy (ISEA), 2015.10.
166. @吉川顕正、花田俊也、山岡均、羽田亨, 宇宙科学教育の国際的展開, 第59回宇宙科学技術連合講演会, 2015.10.
167. 吉川顕正, 磁気圏電離圏結合の理論的研究, 第138回 地球電磁気・地球惑星圏学会総会・講演会(2015年 秋学会), 2015.10, 強磁場弱電離気体系である電離圏と、無衝突系 である磁気圏との相互作用の結果生じる磁気圏電 離圏結合系には、係わる現象の多彩さや複雑さか ら多くの未解明問題が残されている。 本研究ではこのような系で現象実現機構をシステムとして理解する事の重要性を世界に先駆けて明らかにしてきた。 さらに、理論的手法を中心に多圏間結合システム の本質的理解を強く希求する研究を積み上げ、磁気圏及び非等方的な伝導性 をもつ電離圏における磁気流体波動と、中性大気 及び固体地球での電磁波動が結合した多圏間結合 系を定式化し、そのシステム解が Hall 効果によって強くコントロールされることを発見すると ともに、その物理的メカニズムを世界で初めて明 らかにした。本講演では演者がこれまでに構築してきた多圏間結合物理学の理論体系、それからえられる様々な物理現象について紹介する。.
168. 吉川顕正, International alliance of geomagnetic field network observation, 第138回 地球電磁気・地球惑星圏学会総会・講演会(2015年 秋学会), 2015.10.
169. 吉川顕正, (B,V)で俯瞰する磁気圏電離圏結合, 第138回 地球電磁気・地球惑星圏学会総会・講演会(2015年 秋学会), 2015.10.
170. 阿部 修司, 魚住 禎司, 松下 拓輝, 藤本 晶子, 河野 英昭, 吉川 顕正, MAGDAS project and its new policy for data sharing, 第138回 地球電磁気・地球惑星圏学会総会・講演会(2015年 秋学会), 2015.10.
171. 藤本 晶子, 魚住 禎司, 阿部 修司, 今城 峻, 松下 拓輝, 吉川 顕正, Solar cycle variation of Equatorial Electrojet based on the EE-index, 第138回 地球電磁気・地球惑星圏学会総会・講演会(2015年 秋学会), 2015.10.
172. 今城 峻, 吉川 顕正, 魚住 禎司, Ohtani Shinich, 中溝 葵, 低緯度朝側昼夜境界付近で観測されるPi2型地磁気脈動と湾型磁場変動, 第138回 地球電磁気・地球惑星圏学会総会・講演会(2015年 秋学会), 2015.10.
173. Aoi Nakamizo, Akimasa Yoshikawa, Harang discontinuity and ionospheric polarization field by Hall current divergence, 第138回 地球電磁気・地球惑星圏学会総会・講演会(2015年 秋学会), 2015.10.
174. Yoshikawa A., MAGDAS Network, Space Weather, and Geomagnetic Storms, A Conference on “Scientific Frontiers: Serving the Peripheries in Times of Change”, 2015.09.
175. Yoshikawa A., Description of Magnetosphere-ionosphere coupling with Alfven waves, Olaf Amm Memorial Workshop, 2015.09.
176. Yoshikawa A., The Magnetosphere-Ionosphere Coupling, International School on Equatorial and Low-Latitude Ionosphere, ISELLI, 2015.09.
177. Imajo S., A. Yoshikawa, T. Uozumi, S. Ohtani, A. Nakamizo, P. J. Chi, Nature of dayside ionospheric current system of Pi2 Pulsations: Comparison between equivalent currents and numerical simulation, AOGS12th Annual Meeting, 2015.08.
178. 吉川 顕正, ICSWSE/ MAGDAS Research Project-極域-磁気赤道域電磁結合系の探査, 日本地球惑星科学連合2015年大会, 2015.05.
179. 吉川 顕正, ICSWSE/ MAGDAS Projectに於ける国際宇宙天気キャパシティ・ビルディング, 日本地球惑星科学連合2015年大会, 2015.05.
180. 佐々木 晶, 吉川 顕正, 宇宙惑星科学における国際協力:過去・現在・将来, 日本地球惑星科学連合2015年大会, 2015.05.
181. 羽田 亨, 吉川 顕正, ICSWSEとSTELの連携についての展望, 日本地球惑星科学連合2015年大会, 2015.05.
182. Gopalswamy Nat, 吉川 顕正, 国際宇宙天気イニシアチブ プロジェクト(ISWI), 日本地球惑星科学連合2015年大会, 2015.05.
183. CHI, Peter, YOSHIKAWA, Akimasa, MANN, Ian, International collaboration in ground based magnetometer observations via ULTIMA: A tribute to Professor Kiyohumi Yumoto, 日本地球惑星科学連合2015年大会, 2015.05.
184. 松下 拓輝, 吉川 顕正, 魚住 禎司, Dp2イベント時の極域から磁気赤道域にかけてのグローバル電離圏電流系の特徴, 日本地球惑星科学連合2015年大会, 2015.05.
185. 秋本 開成, 藤本 晶子, 吉川 顕正, 魚住 禎司, 阿部 修司, MAGDASネットワークによって観測された高速太陽風条件下での磁気赤道Pc 5の特徴, 日本地球惑星科学連合2015年大会, 2015.05.
186. 今城 峻, 吉川 顕正, 魚住 禎司, 大谷 晋一, 中溝 葵, Chi Peter, Pi2型地磁気脈動の昼間側電離層電流系: 等価電流系と数値計算の比較, 日本地球惑星科学連合2015年大会, 2015.05.
187. 阿部 修司, 魚住 禎司, 松下 拓輝, 藤本 晶子, 河野 英昭, 吉川 顕正, MAGDASプロジェクトと新しいデータ共有ポリシー, 日本地球惑星科学連合2015年大会, 2015.05.
188. 今城 峻, 吉川 顕正, 魚住 禎司, 大谷 晋一, 中溝 葵, 湯元清文, 昼間側Pi2型地磁気脈動の等価電流分布と夜側FACの作る電離層電流系, 平成27年度IUGONET研究集会, 2015.05.
189. Akimasa Yoshikawa, ICSWSE/MAGDAS project, United Nations/Japan for Space Weather Symposium, 2015.03.
190. Estelle, Dirand, Akimasa Yoshikawa, Computer simulation on formation of ionospheric current system accompanied by the incidence of shear Alfvén waves to the ionosphere, United Nations/Japan for Space Weather Symposium, 2015.03.
191. Akimasa Yoshikawa, Hideaki Kawano, S. Abe, T. Uozumi, M. Grace, G. Maeda, ICSWSE MAGDAS project, National school on Space and Earth Electromagnetism(SEE) 2014, 2014.12.
192. Kiyohumi Yumoto, Akimasa Yoshikawa, Hideaki Kawano, S. Abe, T. Uozumi, M. Grace, G. Maeda, Recent developments from ICSWSE/MAGDAS Research Project, AGU fall meeting, 2014.12.
193. 北川 雄一郎, 河野 英昭, Mann Ian R, Milling David, 林 幹治, 北村 健太郎, Akimasa Yoshikawa, FLR周波数自動検出と、それによる磁気圏プラズマ質量密度の緯度経度構造の統計解析, 第136回 地球電磁気・地球惑星圏学会総会・講演会(2014年 秋学会), 2014.11.
194. 上谷 浩之, Akimasa Yoshikawa, オーロラストリーマの移動に伴う磁気圏-電離圏結合対流の変動, 第136回 地球電磁気・地球惑星圏学会総会・講演会(2014年 秋学会), 2014.11.
195. Nakamizo A, Akimasa Yoshikawa, S. Ohtani, S. Imajo, A. Ieda, K. Seki, A new idea for the equatorial electric field asymmetries based on the global polarization effect, 第136回 地球電磁気・地球惑星圏学会総会・講演会(2014年 秋学会), 2014.11.
196. Uetsuhara T, Akimasa Yoshikawa, T. Uozumi, Spatial-temporal response of space debris distribution to geomagnetic storms, 第136回 地球電磁気・地球惑星圏学会総会・講演会(2014年 秋学会), 2014.11.
197. Akimasa Yoshikawa, T. Uozumi, A. Nakamizo, S.Ohtani, R. Fujii, Alfven wave in the weakly ionized system, 第136回 地球電磁気・地球惑星圏学会総会・講演会(2014年 秋学会), 2014.10.
198. 吉川 顕正, Technical Presentation on the International Center for Space Weather Science and Education (ICSWSE) of Kyushu University, Geomagnetic Workshop in Medan (North Sumatra, Indonesia), 2014.09.
199. 吉川 顕正, Magnetosphere-Ionosphere Coupling through Alfven Wave, SCOSTEP/ISWI International Space Science School (ISSS) in Peru, SCOSTEP/ISWI International Space Science School (ISSS) in Peru, 2014.09.
200. Akimasa Yoshikawa, Hideaki Kawano, Shuji Abe, T. Uozumi, M. Grace, G. Maeda, Space Science Capacity Building at International Center for Space Weather Science and Education (ICSWSE), United Nations / Austria Symposium on “Space Science and the United Nations”, 2014.09.
201. 吉川 顕正, Theory of Cowling channel formation by reflection of shear Alfven waves from the auroral Ionosphere, AGU Chapman Conference on Low-Frequency Waves in Space Plasmas, 2014.08, Cowlingチャンネルとは電離圏に於けるHall電流が電気伝導度勾配領域において発散成分をもつことによって生じる分極電場により、2次的に励起されるHall電流によって誘導された電流系の総称であり、本来のHall電流と2次的なHall電流が同方向に流れる事により、オーロラジェット電流や、赤道ジェット電流等の強力に強調されたジェット電流効果を生み出す基本メカニズムを内包していることは良く知られている。しかしながら、このジェット電流効果を定量的にコントロールするHall電流発散の電離圏内への閉じ込め効率、Hall電流がどれくらいの割合で電離圏内に閉じ込められ、どれくらいの割合で磁気圏に沿磁力線電流として流出するのか?それによってどれくらいの強さの2次的分極電場が生成され、どの程度ジェット電流効果が生み出されるのか?という問題が理論的にも観測的にも不明なままであった。本論文では、沿磁力線電流を形成するshear Alfven waveと相互作用するHall電流系の発散部分を一意に決定する理論枠組を構築し、Hall電流の電離圏内閉じ込め効率の定式化を初めて行う事により、電離圏で最もダイナミックに変動するジェット電流系の定量的解析を可能とする道筋を示したマイルストーン的な論文である。.
202. Akimasa Yoshikawa, A. Nakamizo, S.Ohtani, Y. Tanaka, ICSWSE/ MAGDAS Project: 極域-磁気赤道域電磁結合系の実証的研究, Japan GeoScience Union Meeting 2014, 2014.05.
203. Akimasa Yoshikawa, 電離層電流の地電流電磁的結合:非一様・非等方性伝導度の効果, Japan GeoScience Union Meeting 2014, 2014.05.
204. 河野 英昭, Akimasa Yoshikawa, 魚住 禎司, 阿部 修司, Cardinal Maria Gracita, 前田 丈二, 湯元 清文, VarSITIプログラム期間における国際宇宙天気科学・教育センター/MAGDASの研究プロジェクト, Japan GeoScience Union Meeting 2014, 2014.04.
205. Akimasa Yoshikawa, Technical presentation on the “International Center for Space Wather Science and Education”, Kyushu University, 第52回国連宇宙平和利用委員会, 2014.02.
206. 吉川 顕正, 磁気圏電離圏結合(異プラズマ結合システム:宇宙天気と太陽物理への一般物理の応用), 太陽研連シンポジウム 「活動極大期を迎えた太陽研究の新たな展開、彩層プラズマ診断、宇宙天気、Solar-C」, 2014.02.
207. Akimasa Yoshikawa, On formation of Global Cowling channel in the ionosphere and the generalized Ohm’s Law, AGU General Assembly 2013, 2013.12.
208. A. Nakamizo, Akimasa Yoshikawa, Shinichi Ohtani, Akimasa Ieda, Kanako Seki, Rotation of the ionospheric electric potential caused by spatial gradients of ionospheric conductivity, AGU General Assembly 2013, 2013.12.
209. G. Maeda, Akimasa Yoshikawa, S. Abe, Progress of the MAGDAS Project During 2013, AGU General Assembly 2013, 2013.12.
210. 中溝 葵, 吉川 顕正, Ohtani Shinichi, 家田 章正, 関 華奈子, Effects of Hall-Pedersen ratio and conductivity gradients on the rotation of ionospheric electric field potential, 第134回SGEPSS 総会及び講演会, 2013.11.
211. 今城 峻, 吉川 顕正, 魚住 禎司, Marshall Richard, Shevtsov Boris M., 湯元 清文, Pi 2型地磁気脈動に対する日の出境界の効果, 第134回SGEPSS 総会及び講演会, 2013.11.
212. 吉川 顕正, 中溝 葵, Ohtani Shinichi, 弱電離気体系に於ける一般化された3次元オームの法則と分極電場生成について, 第134回SGEPSS 総会及び講演会, 2013.11.
213. 松下 拓輝, 吉川 顕正, 魚住 禎司, Ohtani Shinichi, Characteristic of longitudinal profile of dayside equatorial DP2 oscillation, 第134回SGEPSS 総会及び講演会, 2013.11.
214. 魚住 禎司, 吉川 顕正, Ohtani Shinichi, Baishev Dmitry, 阿部 修司, 河野 英昭, 湯元 清文, Substorm current wedge model for Pi 2 pulsation revisited with middle-latitude MAGDAS and the Polar UVI data, 第134回SGEPSS 総会及び講演会, 2013.11.
215. Cardinal, M.G, Akimasa Yoshikawa, Hideaki Kawano, Huixin Liu, Masakazu Watanabe, S. Abe, T. Uozumi, G. Maeda, Tohru Hada, Kiyohumi Yumoto, Capacity building activities at ICSWSE, SCOSTEP, International CAWSES-II meeting, 2013.11.
216. G. Maeda, Kiyohumi Yumoto, Hideaki Kawano, Akimasa Yoshikawa, Huixin Liu, Masakazu Watanabe, S. Abe, T. Uozumi, A. Ikeda, Cardinal, M.G, MAGDAS activities of year 2013, SCOSTEP, International CAWSES-II meeting, 2013.11.
217. S. Abe, Akimasa Yoshikawa, Hideaki Kawano, T. Uozumi, A. Ikeda, Cardinal, M.G, G. Maeda, Kiyohumi Yumoto, Rebuild of data distribution service for MAGDAS/CPMN project
, SCOSTEP, International CAWSES-II meeting, SCOSTEP, International CAWSES-II meeting, 2013.11.
218. Akimasa Yoshikawa, MAGDAS/CPMN Project, UN/Austria Symposium on “Space Weather Data, Instruments and Models: Looking Beyond the International Space Weather Initiative, 2013.09.
219. Akimasa Yoshikawa, Modeling of 3-fluid dynamic and generalized Ohm’s law for understanding ionospheric dynamics, JSPS Core-to-Core Program, 2013 ISWI and MAGDAS Africa School, 2013.09.
220. G. Maeda, Kiyohumi Yumoto, Hideaki Kawano, Akimasa Yoshikawa, A. Ikeda, T. Uozumi, Huixin Liu, S. Abe, Masakazu Watanabe, Cardinal, M.G, MAGDAS Activities in Australia Since 2005, AOGS Annual meeting, 2013.06.
221. Magdi Elfadil Yousif Suliman, 吉川 顕正, 魚住 禎司, 湯元 清文, Remotely sensed of some parameters of the solar wind via a low-latitude Pc 5 index, 2013年度日本地球惑星科学連合大会, 2013.05.
222. Maria Gracita Cardinal, 吉川 顕正, 河野 英昭, 渡辺 正和, LIU HUIXIN, Shuji Abe, Teiji Uozumi, George Maeda, Tohru Hada, MAGDAS capacity building activities at ICSWSE, 2013年度日本地球惑星科学連合大会, 2013.05.
223. 今城 峻, 吉川 顕正, 魚住 禎司, 大谷 晋一, 湯元 清文, 朝側で観測される東西偏波Pi 2の性質, 2013年度日本地球惑星科学連合大会, 2013.05.
224. 吉川 顕正, R1電流系と結合した赤道ジェット電流の電流保存について, 2013年度日本地球惑星科学連合大会, 2013.05.
225. 寺田 直樹, 吉村 令慧, 大塚 雄一, 小川 泰信, 神田 径, 櫻庭 中, 塩川 和夫, 篠原 育, 清水 久芳, 高橋 幸弘, 成行 泰裕, 藤井 郁子, 三好 由純, 山本 裕二, 吉川 顕正, SGEPSS将来構想検討ワーキンググループ, 地球電磁気学・地球惑星圏科学の現状と将来(1) − 地球電磁気学・地球惑星圏科学の科学課題, 2013年度日本地球惑星科学連合大会, 2013.05.
226. 松下 拓輝, 吉川 顕正, 魚住 禎司, 池田 昭大, DP2の伝播特性による電離圏電流の同定, 2013年度日本地球惑星科学連合大会, 2013.05.
227. 田中 良昌, 行松 彰, 佐藤 夏雄, 堀 智昭, 吉川 顕正, 才田 聡子, 極域電離圏等価電流系の季節変化, 2013年度日本地球惑星科学連合大会, 2013.05.
228. 細川 敬祐, 吉川 顕正, 小川 泰信, IMAGE FUV と SuperDARN による沿磁力線電流分布の導出, 2013年度日本地球惑星科学連合大会, 2013.05.
229. 関 華奈子, 三好 由純, 天野 孝伸, 齊藤 慎司, 宮下 幸長, 堀 智昭, 大村 善治, 海老原 祐輔, 能勢 正仁, 加藤 雄人, 家田 章正, 梅田 隆行, 齊藤 実穂, 北村 成寿, 中溝 葵, 瀬川 朋紀, 篠原 育, 松本 洋介, 中野 慎也, 吉川 顕正, ERG理論・モデリング・総合解析班およびERGサイエンスセンター現状報告, 2013年度日本地球惑星科学連合大会, 2013.05.
230. 高橋 幸弘, 吉川 顕正, 清水 久芳, SGEPSS将来構想検討ワーキンググループ, 地球電磁気学・地球惑星圏科学の現状と将来(2)-人類活動を支える知識基盤の構築, 2013年度日本地球惑星科学連合大会, 2013.05.
231. Akimasa Yoshikawa, State-of-art in 3D Ionosphere and internal ionospheric dynamics effect on M-I coupling, ISSI Forum "Near Earth Electro-magnetic Environment (Swarm and Cluster), 2013.04.
232. Akimasa Yoshikawa, Current Closure from Polar to Equatorial Ionosphere via Cowling Channel,, EGU General Assembly 2013, 2013.04.
233. Akimasa Yoshikawa, M-I couping theory, ECLAT Project Meeting, 2nd Project Review Graz, 2013.04.
234. 吉川 顕正, 強磁場弱電離気体系に於ける電流クロージャー:Hall電流時空間非一様性がもたらすもの, 日本物理学会第68回年次大会「プラズマ宇宙物理3学会合同セッション」, 2013.03.
235. 吉川 顕正, Cowling チャンネルの物理, 「国立極地研究所研究集会:極域電磁圏構造の非線形発展」, 2013.02.
236. Akimasa Yoshikawa, Technical presentation on the “International Center for Space Wather Science and Education”, Kyushu University, 第50回国連宇宙平和利用委員会, 2013.02.
237. Akimasa Yoshikawa, Analogy of Magnetosphere-Ionosphere coupling and Corona-chromosphere-photosphere coupling, ISSI Workshop on "Standing MHD Waves", 2013.02.
238. Akimasa Yoshikawa, Formation of Cowling channel from Polar to Equatorial Ionosphere, the 2012 AGU Fall Meeting, 2012.12.
239. 吉川顕正, Cowlingチャンネル形成の理論, 国立極地研究所研究集会:極域電磁圏構造の非線形発展(観測と理論的アプローチの協働を目指して), 2012.12.
240. 吉川 顕正, MI結合の理論的側面から見たEISCAT_3Dへの期待, EISCAT研究集会:北極・北欧における観測・研究戦略, 2012.11.
241. 吉川顕正, Illustration of Cowling channel coupling to the shear Alfven wave, 第35回極域宙空圏シンポジウム, 2012.11.
242. Akimasa Yoshikawa, Establishment of International Center fot Space Science and education, United Nations/Ecuador Workshop on the International Space Weather Initiative (20th Workshop of the United Nations Basic Space Science Initiative), 2012.10.
243. Akimasa Yoshikawa, Extraction of polarization field and magnetospheric impedance from the M-I coupled system via shear Alfven wave, 第132回 地球電磁気・地球惑星圏学会総会・講演会, 2012.10.
244. Akimasa Yoshikawa, Aoi Nakamizo, Shin Ohtani, Teiji Uozumi, Y. Tanaka, Formation of FAC -Cowling channel connecting from polar to equatorial ionosphere, 第132回 地球電磁気・地球惑星圏学会総会・講演会, 2012.10.
245. Aoi Nakamizo, Akimasa Yoshikawa, T. Hori, A. Ieda, Y. Hiraki, K. Seiki, Y. Miyoshi, T. Kikuchi, Y. Ebihara, The Response of the Dayside Equatorial Electrojet to Step-like Changes of IMF Bz, 第132回 地球電磁気・地球惑星圏学会総会・講演会, 2012.10.
246. Run Shi, Huixin Liu, Akimasa Yoshikawa, 1D simulation of Electron acceleration by Inertial Alfven wave pulse, 第132回 地球電磁気・地球惑星圏学会総会・講演会, 2012.10.
247. 吉川 顕正, 将来構想の施策まとめに関するパネルディスカッション 1, 第132回 地球電磁気・地球惑星圏学会総会・講演会, 2012.10.
248. 高橋幸弘, 吉川 顕正, SGEPSS 将来構想検討ワーキンググループ,太陽地球系科学の現状と科学課題 4:地球惑星圏における人類活動を支える知識基盤の構築, 第132回 地球電磁気・地球惑星圏学会総会・講演会, 2012.10.
249. Akimasa Yoshikawa, Opening of International Space Wather Science and Education, UN/Austria Symposium on Space Weather Data Analysis, 2012.09.
250. Akimasa Yoshikawa, Modeling of 3D Sq current system, JSPS Core-to-Core Program, 2012 ISWI and MAGDAS School on Space Science, 2012.09.
251. 吉川 顕正, Ryoichi Fujii, Olaf Amm, Heikki Vanhamakki, On the importance of the Cowling/polarization mechanism for the electrodynamics of the ionosphere and magnetosphere, 2012年度日本地球惑星科学連合大会, 2012.05.
252. 吉川 顕正, Shin Ohtani, 中溝葵, 魚住禎司, Kiyohumi Yumoto, 極域から磁気赤道域にかけて形成されるCowlingチャンネル, 2012年度日本地球惑星科学連合大会, 2012.05.
253. 吉川 顕正, 細川 敬祐, 小川 泰信, 電離圏に於ける入反射Alfven 波の分離, 2012年度日本地球惑星科学連合大会, 2012.05.
254. 吉川 顕正, 魚住禎司, 湯元 清文, Sq電流系に於ける3次元カウリングチャンネルモデル, 2012年度日本地球惑星科学連合大会, 2012.05.
255. 湯元 清文, 吉川 顕正, 河野 英昭, LIU HUIXIN, 渡辺 正和, 池田 昭大, 前田丈二, 阿部修司, 魚住禎司, 宇宙天気研究キャパシティ・ビルディング(能力強化)のための拠点形成について, 2012年度日本地球惑星科学連合大会, 2012.05.
256. 吉川顕正, 磁気圏電離圏チュートリアル, 第26回大気圏シンポジウム, 2012.03.
257. 吉川顕正, 理論的観点から見た電離圏・磁気圏結合, 国立天文台研究集会「太陽彩層と地球電離圏の接点」研究会, 2012.01.
258. Yoshikawa A, A new method for describing the Cowling channel coupling to the FAC system via shear Alfven wave: Conjugate Hall current analysis, AGU-Fall meeting, 2011.12.
259. 吉川顕正, New method for describing theCowling channel coupling to the FAC system via shear Alfven wave: Conjugate Hall current analysis, 地球電磁気・地球惑星圏学会,第130回総会・講演会, 2011.11.
260. Yoshikawa A, A new method for describing the Cowling channel coupling to the FAC system via shear Alfven wave: Conjugate Hall current analysis, Workshop on Physical Processes in Non-Uniform Finite Magnetospheric Systems-50 Years of Tamao's Resonant Mode Coupling Theory, 2011.09.
261. 吉川顕正, A new method for describing the Cowling channel coupling to the FAC system via shear Alfven wave: Conjugate Hall current analysis, NICT/STEL共催 2011年度中間圏・熱圏・電離圏(MTI)研究集会, 2011.08.
262. Yoshikawa A, Principle of Geomagnetism, ISWI/MAGDAS school on Litho-Space Weather, 2011.08.
263. Yoshikawa A, Geomagnetic Distrbances, ISWI/MAGDAS school on Litho-Space Weather, 2011.08.
264. Yoshikawa A, A self-consistent formulation for the evolution of ionospheric conductances at the ionospheric E-region within an M-I coupling scheme, AGU Chapman conference on Relationship Between Auroral Phenomonology and Magnetospheric processes, 2011.03.
265. 吉川顕正, Cowlingチャンネル生成に伴う伝導度分配機構, 平成22年度国立極地研究所研究集会「極域における電離圏パラメータの非線形発展:モデル化と検証」, 2010.12.
266. 吉川顕正, 電流キャリア遷移過程を考慮した電気伝導度発展方程式の考察, 第34回極域宙空圏シンポジウム, 2010.12.
267. 吉川顕正, Cowlingチャンネル研究の展開, 平成22年度名古屋大学太陽地球環境研究所研究集「EISCAT研究集会, 2010.12.
268. 田中良昌, 小川泰信, 宮岡宏, 海老原祐輔, 吉川顕正, 才田聡子, A. T. Weatherwax, 2009 年11 月にトロムソで観測された準定常オーロラパッチ, 平成22年度名古屋大学太陽地球環境研究所研究集「EISCAT研究集会, 2010.12.
269. 吉川顕正, Cowling研究からみた二次元ポテンシャルソルバーの留意点, 平成22年度名古屋大学太陽地球環境研究所研究集会「GEMSIS-太陽、磁気圏、電離圏ワークショップ2010:ジオスペースにおける多圏間相互作用と高エネルギー粒子生成・消滅機構」, 2010.12.
270. 吉川 顕正, 中溝 葵, 魚住 禎司, 田中 良昌, 大谷 晋一, 磁気圏電離圏結合系に於ける電流キャリア遷移過程を考慮した電気伝導度モデリングとその帰結, 地球電磁気・地球惑星圏学会,第128回総会・講演会, 2010.11.
271. Yoshikawa A, Hall Conjugate Analysis for extraction of Cowling Channel, FMI-Invitation seminar, 2010.09.
272. Yoshikawa A, Generalized Cowling Channel in the global ionosphere, FMI-Invitation seminar, 2010.08.
273. Y.-M. Tanaka, Y. Ebihara, S. Saita, and A. Yoshikawa, Magnetosphere-ionosphere coupling process for poleward moving auroral arcs, 2010 Western Pacific Geophysics Meeting, 22–25 June 2010 
Taipei, Taiwan, 2010.06.
274. Yoshikawa A., and S Ohtani, On the Harang-discontinuity type ionospheric potential field deformation derived from the multi- functional ionospheric potential solver, 2010 Western Pacific Geophysics Meeting, 22–25 June 2010 
Taipei, Taiwan, 2010.06.
275. Yoshikawa A., O Amm, H Vanhamäki, and R Fujii, Formation of Cowling Channel through the Inductive MI-Coupling Process, 2010 Western Pacific Geophysics Meeting, 22–25 June 2010 
Taipei, Taiwan, 2010.06.
276. Yoshikawa A., O Amm and R Fujii, Formation of Cowling Channel through the MI-Coupling Process via Shear Alfven Wave, EGU Spring meeting, 2010.05.
277. 吉川 顕正, Alfven波をつうじたMI結合系でのCowling-channelの形成, 日本地球惑星連合2010年大会, 2010.05.
278. 吉川 顕正, 多機能型電離圏ポテンシャルソルバーによって導出された電離圏対流変形の要因分離:ハラング連続性の考察, 日本地球惑星連合2010年大会, 2010.05.
279. 田中 良昌, 吉川 顕正, 極域における磁気圏電離圏結合過程, 日本地球惑星連合2010年大会, 2010.05.
280. Y. Yamazaki, K. Yumoto, H. Terada, Y. Kakinami, T. Uozumi, S. Abe, A. Yoshikawa and CPMN Group, Empirical Sq field model obtained from the 210°MMCPMN data during 1996-2007, AGU Fall meeting, 2009.12.
281. Yoshikawa A, The α- and β-current separation of MI-coupled system using Whalen-relation and Hall conjugate current analysis, AGU Fall meeting, 2009.12.
282. Yamazaki Y., K. Yumoto, T. Uozumi, and A. Yoshikawa, Long-term Sq variation in the 210 magnetic meridian region, URSI/COSPAR INTERNATIONAL REFERENCE IONOSPHERE WORKSHOP, 2009.11.
283. 吉川顕正, 低高度MHD擾乱からのCowling-channel抽出手法の開発, The 33rd Symposium on Space and Upper Atmospheric Sciences in the Polar Regions, 2009.11.
284. 吉川顕正, 一般化Cowling効果の記述と電離圏対流の変形, 第5回 磁気圏-電離圏複合系における対流に関する研究会, 2009.10.
285. 吉川顕正, 田中良昌, 中田裕之, 中溝葵, 磁気圏電離圏結合電流系の包括的記述と理解:Alfvenic-coupling をベースとしたアプローチ, 第126回 SGEPSS総会および講演会, 2009.09.
286. 田中良昌, 吉川顕正, アルフェン波を介在したオーロラ帯の磁気圏電離圏結合, 第126回 SGEPSS総会および講演会, 2009.09.
287. 吉川顕正, グローバルシミュレーションの為の一般化Alfvenic MI-couplingアルゴリズム, JST/CREST「リアルタイム宇宙天気シミュレーションの研究」チーム成果発表会, 2009.08.
288. 中田裕之, 吉川顕正, Global MHD simulation using Alvenic-coupling algorithm (Yoshikawa algorithm), H21年度名古屋大学太陽地球環境研究所「太陽地球惑星系統合型モデル・シミュレータ構築に向けた研究集会」, 2009.08.
289. 吉川顕正, Hall 共役電流法によるAlfvenic MI-coupling系のα・β channel separation, H21年度名古屋大学太陽地球環境研究所「太陽地球惑星系統合型モデル・シミュレータ構築に向けた研究集会」, 2009.08.
290. 徳永旭将, 吉川顕正, 湯元清文, 宇宙天気研究のための時系列データマイニングの応用~動的・へテロなシステムからの知識発見, H21年度名古屋大学太陽地球環境研究所「太陽地球惑星系統合型モデル・シミュレータ構築に向けた研究集会」, 2009.08.
291. Yoshikawa A, Alfvenic-coupling algorithm for analysis of FAC system, The workshop on large-scale field-aligned current systems and associated processes in the magnetosphere and ionosphere, 2009.07.
292. 吉川顕正, 磁気圏電離圏結合に於けるHall電流の発散により生成された分極場の役割, 日本地球惑星科学連合2009年大会, 2009.05.
293. 山崎洋介, 湯元清文, 吉川顕正, Annual and Semi-annual Variations of Equivalent Sq Current System along the 210 MM, 日本地球惑星科学連合2009年大会, 2009.05.
294. 徳永旭将, 吉川顕正, 魚住禎司, 樋口知之, 中村和幸, 湯元清文, Pi 2 型地磁気脈動の生成・伝播機構解明に関する知見獲得のための独立成分分析の応用, 日本地球惑星科学連合2009年大会, 2009.05.
295. 吉川顕正, 磁気圏電離圏結合における Hall 電流発散の役割, 平成20年度名古屋大学太陽地球環境研究所研究集会, 2009.03.
296. Yoshikawa A., A. Nakamizo, and T. Tanaka, Electromagnetic MI-coupling algorithm through magnetic shear and compression flow for Global M-I coupled Simulation, Michigan-Japan Space Science Workshop, 2008.11.
297. Tokunaga T., A. Yoshikawa, T. Uozumi, K. Yumoto, MAGDAS Group, Convolutive Blind Source Separation of Pi 2 magnetic pulsations observed on the ground, International Symposium: Fifty Years after IGY - Modern Information Technologies and Earth and Solar Sciences, 2008.11.
298. 山崎洋介, 湯元清文, 吉川顕正, 亘慎一,歌田久司, SFE*s observed at Dip-equator CPMN stations: Characteristics and possible mechanisms, 第124回 SGEPSS総会および講演会, 2008.10.
299. 平山有紀, 湯元清文, 魚住禎司, 吉川顕正, Nighttime and Daytime Equatorial Pi 2 Pulsations Observed at the MAGDAS/CPMN Stations MAGDAS/CPMN, 第124回 SGEPSS総会および講演会, 2008.10.
300. 徳永 旭将, 吉川顕正, 魚住 禎司, 湯元 清文, 地上多点同時観測されたPi 2型地磁気脈動への独立成分分析の適用–時空間混合モデル, 第124回 SGEPSS総会および講演会, 2008.10.
301. 中溝葵, 吉川顕正, The realization of substorm processes by the eigenmode decomposition method in global MHD simulations, 第124回 SGEPSS総会および講演会, 2008.10.
302. 吉川顕正, 陣英克, 三好勉信, 魚住禎司, 藤井良一, 宮原三郎, 糸長雅弘, 湯元清文, Separation of Sq current system into Cowling-Electrojet current channel using Hall conjugate current analysis, 第124回 SGEPSS総会および講演会, 2008.10.
303. 寺田大師, 吉川顕正, 藤本晶子, 魚住禎司, 湯元清文, ULTIMAで求めた電離層Sq電流系の太陽風電場依存性, 第124回 SGEPSS総会および講演会, 2008.10.
304. 山崎洋介, 湯元清文, 吉川顕正, 亘慎一, 歌田久司, SFE*s observed at Dip-equator CPMN stations: Characteristics and possible mechanisms, 第124回 SGEPSS総会および講演会, 2008.10.
305. 吉川顕正, 地上多点ネットワークデータの活用:MAGDAS/ CPMNデータの料理の仕方, 第107回生存圏シンポジウム/SGEPSS波動分科会「磁気圏および宇宙空間のプラズマ波動の観測と理論」, 2008.10.
306. Tokunaga T., A. Yoshikawa, T. Uozumi, K. Yumoto, Quantitative evaluations of substorm- associated Pi 2 magnetic pulsations observed at dayside equatorial latitudes by means of ICA, 第32回極域宙空圏シンポジウム, 2008.08.
307. Yamazaki Y, K. Yumoto, A. Yoshikawa, S. Watari and H. Utada, SFE*s Observed at Dip-equator CPMN Stations, 第32回極域宙空圏シンポジウム, 2008.08.
308. Yoshikawa A, Formation of Cowling channel in the global ionosphere, 第32回極域宙空圏シンポジウム, 2008.08.
309. 吉川顕正, 内部境界条件に於ける誘導効果とBrの処理:仮想モノポールの取り扱いについて, STE研究集会「太陽地球/惑星系統合型モデル・シミュレータ構築に向けた研究集会, 2008.08.
310. 吉川顕正, 磁気圏電離圏間の対流・電流・物質流結合, 第2回GEMISISワークショップ, 2008.08.
311. Tokunaga, T., A. Yoshikawa, T. Uozumi., and K. Yumoto, The Relationship Between the Two- dimensional Distribution Characteristics of Global Mode Pi 2 Pulsations Extracted by ICA and Auroral Breakups, AOGS 2008 meeting, 2008.06.
312. Yoshiawa A., Uozumi, T., and K. Yumoto, 3D-Cowling Channel Model in the Sq Current System,, AOGS 2008 meeting, 2008.06.
313. T. Tokunaga, A. Yoshikawa, T. Uozumi, K. Yumoto, CPMN Group, The two-dimensional distribution of global mode Pi 2 pulsations extracted by Independent Component Analysis and the position of auroral breakup, 日本地球惑星科学連合2008年大会, 2008.05.
314. YAMAZAKI Y., K. YUMOT, A. YOSIKAWA, S. ABE, A. IKEDA, T.A TOKUNAGA, Y. NUMATA, S. WATARI, H. UTADA and Y. KIYOHUMI , Characteristics of SFEs observed at the dip-equator CPMN stations, 日本地球惑星科学連合2008年大会, 2008.05.
315. 平山有紀, 湯元清文, 魚住禎司, 吉川顕正, MAGDAS/CPMN Group, Nighttime and Daytime Equatorial Pi 2 Pulsations Observed at the MAGDAS/CPMN Stations, 日本地球惑星科学連合2008年大会, 2008.05.
316. 池田昭大,湯元清文,魚住禎司,篠原学,野崎憲朗 吉川顕正,塩川和夫, Characteristics of Pi2 electric and magnetic pulsations observed at the low-latitude CPMN magnetometers and a FM-CW radar, 日本地球惑星科学連合2008年大会, 2008.05.
317. 中溝葵, 吉川顕正, 磁気圏非定常MHD過程とその磁気圏-電離圏結合過程, 日本地球惑星科学連合2008年大会, 2008.05.
318. 吉川顕正, 魚住禎司, 糸長雅弘, 湯元清文, Cowling効果同定の為のHall共役電流法の開発, 日本地球惑星科学連合2008年大会, 2008.05.
319. 吉川顕正, 魚住禎司, 三好勉信, 公田浩子, 平野隆, 糸長雅弘, 湯元清文顕正, Sq研究の新展開, 第3回ジオスペース環境科学研究会, 2008.03.
320. A. Yoshikawa, Hall conjugates current analysis for extraction of Cowling effect from nonuniform-anisotropically conducting ionospheric current system, EISCAT International Symposium, 2008.03.
321. Yoshikawa A., Hall conjugates current analysis for extraction of Cowling effect from nonuniform-anisotropically conducting ionospheric current system, EISCAT International Symposium, 2008.03.
322. 吉川顕正, Sq-EEJ電流系の三次元結合モデル, STE研究所研究集会 『第4回 磁気圏-電離圏複合系における対流に関する研究会』, 2007.11.
323. 吉川顕正, 公田浩子, 川野圭子, 魚住禎司, 藤井良一, 宮原 三郎, 湯元 清文, 3D-Cowling Channel Model in the Sq Current System, 第122回地球電磁気・地球惑星圏学会, 2007.09.
324. A. Yoshikawa, 3D-Cowling effect in the Sq current system, ISSI teams meeting for "Ionosphere-magnetosphere coupling and induction effects in a three-dimensional ionosphere model", 2007.09.
325. A. Yoshikawa, Cowling channel formation model in the 3d-ionosphere,, IAGA at the IUGG General Assembly 2007, 2007.07.
326. Ikeda A., M.Shinohara, A.Yoshikawa, K.Nozaki, A.Shinbori, K.Yumoto, Change in Ionospheric Electric Field and Geomagnetic Field due to Solar Wind Variations at the time of SC, IAGA at the IUGG General Assembly 2007, 2007.07.
327. Tokunaga T., H. Kohta, A. Yoshikawa, T. Uozumi, H. Kawano, K. Yumoto and CPMN/MAGDAS Group, Independent Component Analysis of Nightside Magnetospheric Forced Pi2 Oscillations ovserved at the CPMN Stations, 日本地球惑星科学連合大会, 2007.05.
328. 吉川顕正, 川野圭子, 魚住禎司, 公田浩子, 宮原三郎, 湯元清文, 3次元電離圏におけるCowling Channelの形成モデル, 日本地球惑星科学連合大会, 2007.05.
329. 吉川顕正, 磁気嵐シミュレータ検討会からの報告, 名古屋大学太陽地球環境研究所研究集会, 2007.03.
330. 吉川顕正, 磁気嵐シミュレータの方向性について, 名古屋大学太陽地球環境研究所研究集会, 2007.02.
331. Hiroko KOHTA, Akimasa YOSHIKAWA, Teiji UOZUMI, Kiyohumi YUMOTO, Monitoring of Ionosphere-Atmosphere Electrodynamic Coupling by Geomagnetic Network Data, AGU Fall Meeting, 2006.12.
332. T. Tokunaga, H. Kohta, A. Yoshikawa, T. Uozumi, H. Kawano, K. Yumoto, Global Wave characteristics of Pi 2 Pulsations Extracted by Independent Component Analysis, AGU Fall Meeting, 2006.12.
333. 中田裕之, 吉川顕正, 田中高史, 改良した磁気圏電離圏結合アルゴリズムを用いたグローバルMHDシミュレーション, 地球電磁気・地球惑星圏学会第120回講演会, 2006.11.
334. 公田浩子, 吉川顕正, 魚住禎司, 湯元清文, MAGDAS/CPMNグループ, MAGDAS/CPMNによるSqダイナミクス特性, 地球電磁気・地球惑星圏学会第120回講演会, 2006.11.
335. 吉川 顕正, New coupling algorithm for global magnetosphere-ionosphere- thermosphere coupling simulation, 地球電磁気・地球惑星圏学会第120回講演会, 2006.11.
336. A. Ikeda, M. Shinohara, A. Yoshikawa, K. Nozaki, K. Yumoto, Comparison of the ionospheric electric field and the geomagnetic field at the time of SC, Future Perspectives of Space Plasma and Particle Instrumentation and International Collaborations, 2006.11.
337. H. Kohta, A. Yoshikawa, T. Uozumi, K. Yumoto and MAGDAS/CPMN Group, Some Features of Sq Dynamics Analyzed by MAGDAS/CPMN Data, Future Perspectives of Space Plasma and Particle Instrumentation and International Collaborations, 2006.11.
338. T. Tokunaga, A. Morikawa, H. Kohta, A. Yoshikawa, T. Uozumi, K. Yumoto and MAGDAS/CPMN group, Comparison between High-Latitude Pi 2 Pulsations Extracted by ICA (Independent Component Analysis) and AKR, Future Perspectives of Space Plasma and Particle Instrumentation and International Collaborations, 2006.11.
339. 吉川 顕正, Spatio-temporal development of ionospheric current system and its relation to atmospheric waveguide modes, 幕張メッセ国際会議場, 2006.05.
340. 公田 浩子, 吉川 顕正, 魚住 禎司, 湯元 清文, CPMNデータ解析に基づくSq中心の変動と沿磁力線電流・赤道ジェット電流の関係, 地球惑星科学関連学会合同大会, 2006.05.
341. 徳永 旭将, 公田 浩子, 吉川 顕正, 魚住 禎司, 河野 英昭, 湯元 清文, 環太平洋地磁気観測グループ, 独立成分分析によって抽出されたグローバルなPi2型地磁気脈動の波動特性について, 地球惑星科学関連学会合同大会, 2006.05.
作品・ソフトウェア・データベース等
1. Yoshikawa A., and A. Nakamizo, 宇宙天気概況解析実験マニュアル, 2006.04.
その他の優れた研究業績
2020.01, 第24期日本学術会議マスタープラン2020に於いて、京都大学、名古屋大学、国立極地研究所と共同提案した「太陽地球結合系の研究基盤形成」が、重点大型研究計画として採択された。.
2018.01, 最新磁気圏電離圏結合の教科書執筆 「Earth’s Ionosphere: Theory and Phenomenology of Cowling Channels」, in Electric Currents in Geospace and Beyond (eds A. Keiling, O. Marghitu, and M. Wheatland), John Wiley & Sons, Inc, Hoboken, N.J., doi: 10.1002/9781119324522.ch25.
2016.12, 論文名「The initiation of the poleward boundary intensification of auroral emission by fast polar cap flows: A new interpretation based on ionospheric polarization」のJGR Space Physicsへの出版.
学会活動
所属学会名
アメリカ地球物理学連合米国(AMERICAN GEOPRSICAL UNION)
日本地球惑星 科学連合
欧州地球物理学連合
国際宇宙空間研究委員会
米国地球物理学連合
地球電磁気・地球惑星圏学会
学協会役員等への就任
2023.05~2025.04, 地球電磁気・地球惑星圏学会, 評議員.
2005.04~2007.03, オーロラメダル賞選考委員.
2010.04~2012.03, 運営委員.
2011.04~2013.03, 地球電磁気・地球惑星圏学会, 運営委員.
2011.04~2014.03, 日本地球惑星科学連合, 環境災害対応委員.
2013.04~2015.03, 地球電磁気・地球惑星圏学会, 運営委員.
2019.04~2021.03, 日本地球惑星科学連合, 学生賞小委員会.
2020.04~2020.07, ネットワーク開催コアメンバー、大会運営特任管理官, ネットワーク開催コアメンバー、大会運営特任管理官.
2019.02~2021.03, 地球電磁気・地球惑星圏学会, オーロラメダル賞選考委員会(主管).
2019.04~2021.03, 日本地球惑星科学連合, 学生賞小委員会委員.
2012.06~2020.06, アジア太平洋物理学連合, 活動活性化諮問委員会(Plasma 領域) 委員.
2017.02~2020.03, 地球電磁気・地球惑星圏学会, 学会将来検討委員会委員.
2014.01~2022.01, UN/International Space Weather Initiative (ISWI), 運営委員.
2015.01~2020.12, ICUS, The Scientific Committee on Solar Terrestrial Physics (SCOSTEP), 運営委員.
2014.04~2020.03, 日本地球惑星科学連合(宇宙惑星科学セクショボードメンバー), 幹事.
2014.04~2020.03, 代議員(宇宙惑星科学セクション選出), 代議員(宇宙惑星科学セクション選出).
2011.04~2014.03, 環境災害対策委員, 環境災害対策委員.
2014.04~2017.03, 大林奨励賞推薦委員会委員, 大林奨励賞推薦委員会委員.
2012.02~2013.03, 学会将来検討委員会委員, 学会将来検討委員会委員.
2013.01~2019.03, IUGONET運営協議会, 運営協議会 構成員.
2011.04~2015.03, 運営委員, 運営委員.
2012.02~2014.03, アジア太平洋物理学連合, 活動活性化諮問委員会(Plasma 領域)委員.
2014.04~2015.03, 総合解析委員会委員, 総合解析委員会委員.
2012.04~2014.03, 総合観測委員会委員, 総合観測委員会委員.
2009.04~2014.03, 運営委員, 運営委員.
学会大会・会議・シンポジウム等における役割
2023.05.21~2023.05.26, JpGU−AGU Joint Meeting 2023, コンビナー.
2022.05.29~2022.06.03, JpGU−AGU Joint Meeting 2022, コンビナー.
2021.05.30~2021.06.06, JpGU−AGU Joint Meeting 2021:Virtual, その他.
2020.07.12~2020.07.16, JpGU−AGU Joint Meeting 2020:Virtual, その他.
2020.07.12~2020.07.16, JpGU−AGU Joint Meeting 2020:Virtual, その他.
2019.05.26~2019.05.30, 日本地球惑星科学連合2019年大会, その他.
2017.03.13~2017.03.13, シンポジウム「太陽地球系科学に於ける地上観測の現状と課題」, その他.
2018.05.20~2018.05.24, 日本地球惑星科学連合2018年大会, その他.
2018.03.22~2018.03.29, Japan-Malaysia Joint Seminar on Space and Earth Electromagnetism 2018, Other.
2017.05.20~2017.05.25, 日本地球惑星科学連合2017年大会, その他.
2016.11.19~2016.11.23, 第140回地球電磁気・地球惑星圏学「磁気圏電離圏結合セッション座長」, その他.
2016.08.02~2016.08.04, AOSG2016, Other.
2016.05.22~2016.05.26, AGU Chapman Conference on Current in Geospace and Beyond, Other.
2016.05.22~2016.05.26, 日本地球惑星科学連合2016年大会, その他.
2015.10.19~2016.10.23, 14-th International Symposium on Equatorial Aeronomy (ISEA), Other.
2015.05.24~2015.05.28, 日本地球惑星科学連合2015年大会, その他.
2015.05.24~2015.05.28, 日本地球惑星科学連合2015年大会, その他.
2016.05.22~2016.05.26, 日本地球惑星科学連合2016年大会, その他.
2015.03.02~2015.03.06, UN/JAPAN Workshop on Space Weather Science 2015, その他.
2015.03.02~2015.03.06, United nations/Japan Workshop on Space Weather Science, その他.
2015.03.02~2015.03.06, United nations/Japan Workshop on Space Weather Science, その他.
2014.12.15~2013.12.19, AGU General Assembly 2014,” Causes of large-scale geomagnetic disturbances, Convener.
2014.12.15~2014.12.19, AGU General Assembly 2014,” Causes of large-scale geomagnetic disturbances”, その他.
2014.09.22~2013.09.24, UN/Austria Symposium on “Space Science and the United Nations”, Science Program Committee.
2014.08.31~2014.09.06, AGU Chapman Conference on Low frequency Waves in Space Plasma, Other.
2013.11.07~2013.11.09, International Workshop on global ionospheric dynamics II, その他.
2013.09.23~2013.09.27, UN-ISWI/MAGDAS AFRICA School, その他.
2013.09.16~2013.09.20, UN/Austria Symposium on “Space Weather Data, Instruments and Models: Looking Beyond the International Space Weather Initiative, その他.
2013.01.04~2013.01.09, International Workshop on global ionospheric dynamics I, その他.
2012.09.17~2012.09.26, UN-ISWI/MAGDAS INDONESIA School, その他.
2011.12.14~2011.12.16, 国立極地研究所研究集会:極域における電離圏パラメータの非線形発展:モデル化と検証II, その他.
2011.12.14~2011.12.15, 極域における電離圏パラメータの非線形発展:モデル化と検証II, その他.
2011.09.12~2011.09.15, Workshop on Physical Processes in Non-Uniform Finite Magnetospheric Systems-50 Years of Tamao's Resonant Mode Coupling Theory, その他.
2011.09.12~2011.09.15, Workshop on Physical Processes in Non-Uniform Finite Magnetospheric Systems-50 Years of Tamao's Resonant Mode Coupling Theory, その他.
2011.08.16~2011.08.19, UN-ISWI/MAGDAS School on Litho-Space Weather, その他.
2010.12.21~2010.12.22, 国立極地研究所研究集会:極域における電離圏パラメータの非線形発展:モデル化と検証, その他.
2010.12.21~2010.12.12, 極域における電離圏パラメータの非線形発展:モデル化と検証, 座長(Chairmanship).
2010.05.23~2010.05.28, 地球惑星科学関連合同大会2010年度大会, その他.
2010.03.02~2009.03.05, 第6回ジオスペース研究会, 座長(Chairmanship).
2009.08.04~2008.08.07, 名古屋大学太陽地球環境研究所:太陽地球/惑星系統合型モデル・シミュレータ構築に向けた研究集会, コンビーナ.
2009.08.04~2009.08.07, 名古屋大学太陽地球環境研究所: 太陽地球/惑星系統合型モデル・シミュレータ構築に向けた研究集会, その他.
2009.05~2009.05, 地球惑星科学関連合同大会2009年度大会, その他.
2009.03.04~2009.03.05, 第5回ジオスペース研究会, その他.
2008.08.06~2008.08.08, 名古屋大学太陽地球環境研究所:太陽地球/惑星系統合型モデル・シミュレータ構築に向けた研究集会, その他.
2008.08.06~2009.08.08, 名古屋大学太陽地球環境研究所: 太陽地球/惑星系統合型モデル・シミュレータ構築に向けた研究集集会, その他.
2008.05~2008.05, 地球惑星科学関連合同大会2008年度大会, その他.
2008.03~2008.03, 第4回ジオスペース研究会, その他.
2007.11~2007.11, ISSI team meeting, Other.
2007.09~2007.09.21, 名古屋大学太陽地球環境研究所:磁気嵐シミュレータ検討会, その他.
2007.09~2007.09, 磁気嵐シミュレータ検討会, その他.
2007.05~2007.05, 地球惑星科学関連合同大会2007年度大会, その他.
2007.02~2007.02, 磁気嵐シミュレータ検討会, その他.
2006.08~2006.08, 名古屋大学太陽地球環境研究所:磁気嵐シミュレータ検討会, その他.
2006.05~2006.05, 地球惑星科学関連合同大会2006年度大会, その他.
2006.03~2006.03, 磁気嵐シミュレータ検討会, その他.
2005.12~2005.12, 宇宙プラズマ/太陽系環境研究の将来構想座談会(SSF)4, その他.
2005.10~2005.10, ISSI team meeting, Other.
2005.07~2005.07, The IAGA Scientific Assembly in Toulouse, その他.
2005.05~2005.05, 地球惑星科学関連合同大会2005年度大会, その他.
2005.05~2005.05, 地球惑星科学合同大会2005年大会, その他.
2005.03~2005.03, Chapman conference on magnetospheric ULF waves, その他.
2005.03~2005.03, Chapman conference on magnetospheric ULF waves-Magnetosphere-ionosphere coupling session, Other.
2005.03~2005.03, Chapman conference on magnetospheric ULF waves-Magnetospheric diagonosis session, Other.
2004.05~2004.05, 地球惑星科学関連合同大会2004年度大会, その他.
2004.05~2004.05, 地球惑星科学合同大会2004年大会, その他.
2004.03~2004.03, CAWSES宇宙天気シンポジウム, その他.
2003.05~2003.05, 地球惑星科学関連合同大会2003年度大会, その他.
2003.05~2003.05, 地球惑星科学合同大会2003年大会, その他.
2002.05~2002.05, 地球惑星科学関連合同大会2002年度大会, その他.
2002.05~2002.05, 地球惑星科学合同大会2002年大会, その他.
学会誌・雑誌・著書の編集への参加状況
2013.04~2015.03, 地球電磁気・地球惑星圏科学学会会報誌, 国内, 編集委員長.
2013.09~2017.12, Earth, Planet and Space, 国際, 編集委員.
2011.04~2013.03, Earth, Planet and Space, 国際, 運営委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2020年度      
2019年度      
2018年度      
2017年度      
2016年度      
2015年度      
2014年度      
2013年度      
2012年度      
2011年度      
2010年度      
2009年度      
2008年度      
2007年度      
2006年度      
2005年度      
2004年度      
2003年度      
2002年度    
その他の研究活動
海外渡航状況, 海外での教育研究歴
Berlin, Germany, Germany, 2023.05~2023.06.
モスコーニ国際会議場, UnitedStatesofAmerica, 2019.12~2019.12.
ロシア科学アカデミー宇宙線研究所(IKFIA), Russia, 2018.09~2018.09.
マラ工科大学, Malaysia, 2018.08~2017.08.
USGS観測所, UnitedStatesofAmerica, 2018.06~2017.06.
USGS観測所, UnitedStatesofAmerica, 2018.11~2018.11.
国連, Austria, 2018.06~2018.06.
BMKG, Indonesia, 2018.09~2018.09.
スリランカ学術会議, SriLanka, 2018.11~2018.12.
ペルー地球物理学研究所, Peru, 2018.12~2018.12.
国際連合本部, Austria, 2018.06~2018.06.
ロシア科学アカデミー極東研究所(IKRI), Russia, 2017.06~2017.06.
ノーフォーク国際会議場, UnitedStatesofAmerica, 2017.06~2017.06.
マラ工科大学, マレーシア大学, Malaysia, 2017.08~2017.08.
Universidad Nacional Agraria de la Selva , ペルー地球物理学研究所, Peru, 2017.08~2017.09.
ナイジェリア国立宇宙研究開発機構, Nigeria, 2017.09~2017.09.
ロシア科学アカデミー極東研究所(IKRI), Russia, 2017.09~2017.09.
オーストラリア気象庁, Australia, 2017.12~2017.12.
YAP気象ステーション, Federated States of Micronesia, 2017.12~2017.12.
マラ工科大学, Malaysia, 2017.02~2017.02.
ペルー地球物理学研究所, Peru, 2017.02~2017.03.
インドネシア気象気候地球物理庁(BMKG), Indonesia, 2017.03~2017.03.
ジョンズ・ホプキンズ大学応用物理学研究所, UnitedStatesofAmerica, 2016.01~2016.02.
国際連合本部, Austria, 2016.02~2016.02.
コロンボ大学, SriLanka, 2016.02~2016.02.
国際会議場, Croatia, 2016.05~2016.05.
北京オリンピックセンター, China, 2016.08~2016.08.
ソウル国際会議場, Korea, 2016.08~2016.08.
YAP気象ステーション, Federated States of Micronesia, 2016.09~2016.09.
シャングリ国際会議場, India, 2016.10~2016.10.
ロシア科学アカデミー極東研究所, Russia, 2016.08~2016.08.
モスコーニ国際会議場, UnitedStatesofAmerica, 2016.12~2016.12.
スノーマス国際会議場, UnitedStatesofAmerica, 2015.06~2014.06.
Oulu大学, フィンランド気象研究所, Finland, 2015.08~2015.09.
ナイジェリア国立宇宙研究開発機構, Nigeria, 2015.09~2015.09.
アテネオ大学, マニラ観測所, Philippines, 2015.09~2015.09.
エチオピア大学, Ethiopia, 2015.10~2015.10.
国連ウィーン本部, Austria, 2014.02~2014.02.
ハイアットホテル, Korea, 2014.09~2014.09.
インドネシア気象庁(BMKG), Indonesia, 2014.09~2014.09.
ペルー地球物理学研究所, Peru, 2014.09~2014.09.
オーストリア科学アカデミー, Austria, 2014.09~2014.09.
マレーシア航空宇宙庁, Malaysia, 2014.11~2014.12.
Moscone Center, UnitedStatesofAmerica, 2014.12~2014.12.
国連ウィーン本部, Austria, 2013.02~2013.02.
スイス国際宇宙科学研究所, Switzerland, 2013.02~2013.02.
スイス国際宇宙科学研究所, ウィーン国際会議場, オーストリア科学アカデミー, Switzerland, Austria, 2013.04~2013.04.
オーストリア科学アカデミー, Austria, 2013.09~2013.09.
ココディ大学, , 2013.09~2013.09.
フィンランド気象研究所, Finland, 2013.10~2013.10.
インドネシア地震・気象庁, Indonesia, 2013.10~2013.10.
ジョンズ・ホプキンズ大学 応用物理学研究所, モスコーニコンベンションセンター, UnitedStatesofAmerica, 2013.12~2013.12.
国連ウィーン本部, Austria, 2012.06~2012.06.
スノーマス会議場, UnitedStatesofAmerica, 2012.06~2012.06.
ペルー地球物理学研究所, イカ大学太陽観測所, Peru, 2012.09~2012.09.
オーストリア科学アカデミー, Austria, 2012.09~2012.09.
インドネシア航空宇宙庁, Indonesia, 2012.09~2012.09.
エクアドル外務省, Ecuador, 2012.09~2012.10.
ジョンズ・ホプキンズ大学 応用物理学研究所, モスコーニコンベンションセンター, UnitedStatesofAmerica, 2012.11~2012.12.
アラスカ大学地球物理学研究所, UnitedStatesofAmerica, 2011.02~2011.03.
Redeemers大学, , 2011.08~2011.08.
ジョンズ・ホプキンズ大学 応用物理学研究所, UnitedStatesofAmerica, 2011.10~2011.10.
モスコーンセンター, UnitedStatesofAmerica, 2011.12~2011.12.
ウィーン国際会議場, Austria, 2010.05~2010.05.
台北国際会議場, Taiwan, 2010.06~2010.06.
ハイデラバード国際会議場, India, 2010.07~2010.07.
フィンランド気象研究所, Finland, 2010.08~2010.09.
モスコーンセンター, UnitedStatesofAmerica, 2009.12~2009.12.
Central Queesland University, IPS, CISRO, Australia, Australia, Australia, 2008.03~2008.03.
釜山国際コンベンションセンター, Korea, 2008.06~2008.06.
ミシガン大学, UnitedStatesofAmerica, 2008.11~2008.11.
ペルージャ大学, ヘルシンキ大学, Italy, Finland, 2007.07~2007.08.
スイス国際宇宙科学研究所, Switzerland, 2007.09~2007.09.
サンディエゴ・コンベンションセンター, UnitedStatesofAmerica, 2005.03~2005.03.
ツールース・コンベンションセンター, France, 2005.08~2005.08.
オーストラリア南極庁, Australia, 2005.08~2005.08.
西インド諸島大学, ブラジル宇宙科学研究所, ペルー地球物理学研究所, Trinidad and obaco, Brazil, Peru, 2004.02~2004.02.
kyonhee大学, Korea, 2004.02~2004.02.
アラスカ大学北極圏研究センター, ジョンホプキンス大学応用物理学研究所(APL), UnitedStatesofAmerica, 2003.08~2003.10.
ミネソタ大学, ジョンホプキンス大学, UnitedStatesofAmerica, 2002.03~2003.05.
SFO/Moscone convention center, UnitedStatesofAmerica, 2002.11~2002.11.
ペルー地球物理学研究所, ブラジル宇宙科学研究所, Peru, Brazil, 2002.12~2002.12.
外国人研究者等の受入れ状況
2022.07~2023.09, 1ヶ月以上, Indian Institute of Geomagnetism, India, 外国政府・外国研究機関・国際機関.
2022.12~2023.03, 1ヶ月以上, 日本エジプト科学技術大学, Nigeria, 外国政府・外国研究機関・国際機関.
2022.10~2022.12, 1ヶ月以上, コロンボ大学, SriLanka, .
2020.01~2020.09, 1ヶ月以上, National Research Institute of Astronomy and Geophysics, Egypt, 外国政府・外国研究機関・国際機関.
2019.12~2020.08, 1ヶ月以上, National Research Institute of Astronomy and Geophysics, Egypt, 外国政府・外国研究機関・国際機関.
2019.10~2019.12, 1ヶ月以上, コロンボ大学, SriLanka, 外国政府・外国研究機関・国際機関.
2018.06~2018.07, 1ヶ月以上, National Research Institute of Astronomy and Geophysics (NRIAG), Egypt, 外国政府・外国研究機関・国際機関.
2017.11~2018.05, 1ヶ月以上, Department of Physics, Oulu University, Finland, 学内資金.
2017.07~2017.09, 1ヶ月以上, マラ工科大学, Malaysia, 外国政府・外国研究機関・国際機関.
2017.07~2017.09, 1ヶ月以上, マラ工科大学, Malaysia, 外国政府・外国研究機関・国際機関.
2017.05~2017.06, 1ヶ月以上, National Research Institute of Astronomy and Geophysics (NRIAG), Egypt, 日本学術振興会.
2017.02~2017.03, 2週間以上1ヶ月未満, コロンボ大学, SriLanka, 外国政府・外国研究機関・国際機関.
2016.10~2017.05, 1ヶ月以上, Department of Physics, Ateneo de Manila University, Program Manager, Upper Atmosphere Dynamics, Manila Observatory, Philippines, 学内資金.
2016.07~2016.09, 1ヶ月以上, National Research Institute of Astronomy and Geophysics (NRIAG), Egypt, 日本学術振興会.
2015.02~2015.08, 1ヶ月以上, ロシア科学アカデミーYu.Gシャファー宇宙物理・超高層大気物理学研究所, Russia, 学内資金.
2014.09~2014.11, 1ヶ月以上, フィンランド気象研究所, Germany, 情報システム研究機構国際交流プログラム“研究者交流”.
2014.03~2014.04, 2週間以上1ヶ月未満, ジョンズ・ホプキンス大学応用物理学研究所, UnitedStatesofAmerica, 学内資金.
2014.03~2014.03, 2週間未満, ナイジェリア宇宙開発事業団, , 日本学術振興会.
2013.10~2013.11, 2週間以上1ヶ月未満, インドネシア航空宇宙庁, Indonesia, 外国政府・外国研究機関・国際機関.
2013.06~2013.08, 1ヶ月以上, パリ先端科学校(グランセコール), France, 外国政府・外国研究機関・国際機関.
2013.01~2013.01, 2週間未満, ジョンズ・ホプキンス大学応用物理学研究所, UnitedStatesofAmerica, 学内資金.
2012.10~2013.10, 2週間未満, ジョンズ・ホプキンス大学応用物理学研究所, UnitedStatesofAmerica, 外国政府・外国研究機関・国際機関.
2012.04~2012.04, 2週間未満, フィンランド気象研究所, Germany, 外国政府・外国研究機関・国際機関.
2011.11~2012.04, 1ヶ月以上, フィンランド気象研究所, Finland, 日本学術振興会.
2010.03~2009.03, 2週間未満, フィンランド気象研究所, Finland, 外国政府・外国研究機関・国際機関.
2009.01~2009.01, 2週間未満, フィンランド気象研究所, Finland, 外国政府・外国研究機関・国際機関.
2008.03~2008.03, 2週間未満, コロラド大学大気海洋研究センター, Japan, 学内資金.
受賞
田中館賞, 地球電磁気・地球惑星圏学会, 2015.05.
第一回年九州大学総長賞, 九州大学, 2001.12.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2022年度~2029年度, 国際先導研究, 分担, 国際地上観測網と人工衛星観測・モデリングに基づくジオスペース変動の国際共同研究.
2022年度~2025年度, 基盤研究(C), 分担, オーロラ嵐時の電離圏全球電場構造・電流クロージャー形成の解明.
2021年度~2026年度, 基盤研究(A), 分担, 地上多点ネットワークに基づく超高層大気変動の緯度間結合の観測的研究.
2021年度~2025年度, 基盤研究(C), 分担, 自律型電離圏観測による赤道ジェット電流-プラズマバブル発生/抑制モデルの実証.
2020年度~2022年度, 基盤研究(B), 代表, 磁気圏ダイナミクスを創発する磁気圏電離圏結合過程の探究.
2019年度~2023年度, 基盤研究(C), 分担, 宇宙災害回避のためのシューマン共鳴による電離圏モニタリングシステムの開発.
2015年度~2020年度, 新学術領域研究(研究領域提案型), 分担, 地球電磁気圏擾乱現象の発生機構の解明と予測.
2012年度~2014年度, 基盤研究(B), 分担, 放射線帯形成を促す内部磁気圏複雑系の創発的特性.
2012年度~2014年度, 基盤研究(C), 分担, 電磁流体・粒子連結シミュレーションによる地球放射線帯ダイナミクスの研究.
2011年度~2013年度, 基盤研究(C), 分担, 大気大循環モデルと超多点磁場観測データによる大気圏電離圏協調現象の解明.
2010年度~2012年度, 基盤研究(C), 代表, EMF駆動型磁気圏電離圏結合シミュレータによる全球Cowlingチャンネルの解明.
2010年度~2012年度, 基盤研究(C), 大規模電離圏電流の観測に基づく太陽圏ー磁気圏ー電離圏ー大気圏結合過程の研究.
2007年度~2007年度, 研究成果公開促進費, 分担, マグダス環太平洋地磁気ネットワークデータベース.
2006年度~2006年度, 研究成果公開促進費, 分担, マグダス環太平洋地磁気ネットワークデータベース.
2003年度~2005年度, 若手研究(B), 代表, 沿磁力線電流、Sqダイナモ効果を繰り込りだ電離層電流の全球過渡応答モデルの開発.
2003年度~2005年度, 基盤研究(C), 太陽風から磁気赤道領域までのエネルギー・物質流入過程に伴う宙空環境変動の研究.
2001年度~2003年度, 基盤研究(C), グローバルな宙空環境変動観測記録システムの開発.
2000年度~2001年度, 奨励研究(B), 代表, 磁気圏-電離圏-中性大気-固体地球 電磁気的結合系の理論的研究.
2000年度~2002年度, 基盤研究(C), 太陽風-地球磁気圏相互作用によるエネルギーの侵入・結合・変換過程の研究.
1998年度~2001年度, 基盤研究(C), 大規模電磁場擾乱の極冠域から赤道域への侵入・伝播過程.
1998年度~1999年度, 基盤研究(C), 磁気圏―電離圏―中性大気層―固体地球電磁結合系での地磁気脈動.
1997年度~1999年度, 基盤研究(C), 南大西洋域磁気異常帯での超高層現象の研究.
1996年度~1997年度, 基盤研究(C), 太陽風変動に伴う擾乱の極域から赤道域への侵入・輸送過程の研究.
日本学術振興会への採択状況(科学研究費補助金以外)
2016年度~2016年度, JASSO帰国外国人留学生短期研究制度, 代表, MAGDASデータを用いた太陽活動と地殻変動現象の関連性について.
2012年度~2014年度, 多国間交流, 代表, 国際宇宙天気キャパシティビルディングの形成.
2011年度~2012年度, 海外特別研究員, 代表, 磁気圏MHDシミュレータの為の電離圏・大気圏・固体地球系融合結合ソルバーの開発.
競争的資金(受託研究を含む)の採択状況
2021年度~2023年度, 令和3年度宇宙航空科学技術推進委託費(プログラム名:宇宙航空人材育成プログラム), 代表, 大学間連携による理学工学融合実践的宇宙ミッション早期教育プログラム.
2013年度~2014年度, 情報システム研究機構国際交流プログラム“国際研究集会開催支援”, 代表, 国際連合・日本合同宇宙天気ワークショップ2015の開催.
2014年度~2014年度, 情報システム研究機構国際交流プログラム“研究者交流”, 代表, 3次元電離圏に於けるCowling チャンネル生成機構の解明.
2013年度~2014年度, (公財)福岡観光コンベンションビューロー国際研究集会助成, 代表, 国際連合・日本合同宇宙天気ワークショップ2015の開催.
2004年度~2009年度, 科学技術振興調整費 (文部科学省), 分担, リアルタイム宇宙天気シミュレーション.
共同研究、受託研究(競争的資金を除く)の受入状況
2021.04~2024.03, 連携, 大学間連携による理学工学融合実践的宇宙ミッション早期教育プログラム.
2022.04~2023.03, 代表, 多様なデータにメタデータを付与できるシステムの開発と複数実データセットへの適用.
2017.04~2023.03, 代表, IUGONETメタデータデータベースの保守・更新、及び、システムの改良.
2021.04~2022.03, 代表, 多様なデータにメタデータを付与できるシステムの開発と複数実データセットへの適用.
2020.04~2021.03, 代表, 多様なデータにメタデータを付与できるシステムの開発と複数実データセットへの適用.
2019.04~2020.03, 代表, 多様なデータにメタデータを付与できるシステムの開発と複数実データセットへの適用.
2017.04~2019.03, 代表, PBIの理論構築.
2016.04~2019.03, 代表, 磁気赤道稠密観測網の 構築によるEEJ研究.
2014.04~2017.03, 代表, 極域3次元磁気圏電離圏結合系の再定式.
2015.04~2016.03, 代表, 超多点地上ネットワーク観測データ解析による電離圏極域-磁気赤道域電磁結合メカニズムの解明.
2013.04~2015.03, 代表, 超多点地上ネットワークデータ解析による電離圏極域−磁気赤道域電磁結合メカニズムの解明.
2012.04~2014.03, 代表, EISCAT/SuperDARNレーダーを用いたCowlingチャンネル検出手法の検討.
2011.04~2012.03, 分担, 極域における電離圏パラメータの非線形発展:モデル化と検証II.
2010.04~2011.03, 代表, 極域における電離圏パラメータの非線形発展:モデル化と検証.
2009.04~2010.03, 代表, 太陽地球/惑星系統合型モデル・シミュレータ構築に向けた研究集会.
2009.04~2011.03, 代表, Hall共役電流を用いたCowling効果解析手法の開発.
2008.04~2009.03, 代表, 太陽地球/惑星系統合型モデル・シミュレータ構築に向けた研究集会.
2007.04~2009.03, 代表, 3次元電離圏に於けるCowling Channel形成過程の解明.
2006.04~2007.03, 代表, 磁気嵐シミュレータ実現に向けた検討会.
2005.04~2006.03, 代表, 磁気嵐シミュレータ実現に向けた検討会.
2005.03~2006.03, 代表, 地上磁場による三次元電流系推定アルゴリズムの開発.
2004.03~2005.03, 代表, サブストーム電流系形成メカニズムの研究.
2002.04~2004.03, 代表, オーロラ形成に於ける発散性ホール電流の役割に関する研究.
2000.04~2002.03, 代表, 極域・磁気赤道域を含む磁気圏-電離圏結合の理論的研究.
寄附金の受入状況
2020年度, Bridgeporth Ltd., MAGDAS/CPMNプロジェクト.
2019年度, Bridgeporth Ltd., MAGDAS/CPMNプロジェクト.
2017年度, Bridgeporth Ltd., MAGDAS/CPMNプロジェクト.
2016年度, テラテクニカ株式会社, MAGDAS/CPMNプロジェクト.
2004年度, 松本研究奨励資金(若手研究者招聘).
学内資金・基金等への採択状況
2020年度~2020年度, 九州大学研究環境整備事業(キャンパス整備事業等経費), 代表, 地磁気観測記録装置の導入.
2017年度~2018年度, 大学・部局間国際交流協定等推進事業:外国人教員招聘, 代表, Composite study on Magnetosphere-Ionosphere Coupling by using MAGDAS and SWARM satellite.
2016年度~2017年度, 大学・部局間国際交流協定等推進事業:外国人教員招聘, 代表, Seismoelectromagnetics of the Moro Gulf Quake project.
2016年度~2016年度, スーパーグローバル創成大学支援事業, 代表, 留学生獲得のための海外プロモーション.
2015年度~2018年度, 国際宇宙天気科学・教育センター共同利用研究研究費, 代表, PBI研究の新展開.
2015年度~2016年度, 大学・部局間国際交流協定等推進事業:外国人教員招聘, 代表, Studies on global aspects of Storm Sudden Commencement.
2013年度~2013年度, 九州大学研究者招聘・派遣プログラム, 代表, 全球結合系に関する論文執筆.
2012年度~2014年度, 国際宇宙天気科学・教育センター共同利用研究研究費, 代表, International workshop on global ionospheric dynamics.
2011年度~2011年度, 宙空環境研究センター平成23年度共同利用研究研究費, 代表, 3次元電離圏に於けるCowling Channel形成過程の解明.
2009年度~2010年度, 宙空環境研究センター平成21-22年度共同利用研究研究費, 代表, 3次元電離圏に於けるCowling Channel形成過程の解明.
2008年度~2008年度, 宙空環境研究センター平成20年度共同利用研究研究費, 代表, 3次元電離圏に於けるCowling Channel形成過程の解明.
2007年度~2007年度, 宙空環境研究センター平成19年度共同利用研究研究費, 代表, 統合型多圏間シミュレータの開発.
2006年度~2006年度, 宙空環境研究センター平成18年度共同利用研究研究費, 代表, 統合型多圏間シミュレータの開発.
2005年度~2005年度, 宙空環境研究センター平成17年度共同利用研究研究費, 代表, サブストーム電流系形成メカニズムの評価.
2004年度~2004年度, 財団法人九州大学後援会国際研究集会派遣助成, 代表, 米国地球物理学連合、Chapman conference(サンディエゴ、カルフォルニア)への出席補助(議長、招待講演).
2004年度~2004年度, 宙空環境研究センター平成16年度共同利用研究研究費, 代表, サブストーム電流系形成メカニズムの評価.
1997年度~1997年度, 九州大学総長特別経費, 代表, インターネットを通じた大学研究情報公開のあり方に関する研究.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。