九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
福井 宣規(ふくい よしのり) データ更新日:2024.04.19

教授 /  生体防御医学研究所 個体機能制御学部門 免疫遺伝学分野


主な研究テーマ
免疫系高次機能を司る細胞骨格制御機構の解明
キーワード:細胞骨格、細胞運動、抗原認識、免疫系の発生、低分子量Gタンパク
2001.01.
従事しているプロジェクト研究
革新的先端研究開発支援事業(CREST)
2019.10~2025.03, 代表者:福井宣規, 九州大学生体防御医学研究所, 九州大学生体防御医学研究所.
Leading Advanced Medical Innovation (LEAP)
2015.10~2020.03, 代表者:福井宣規, 九州大学生体防御医学研究所, 九州大学生体防御医学研究所.
次世代がん研究プロジェクト
2011.02~2014.03, 代表者:福井宣規, 九州大学生体防御医学研究所, 文部科学省
.
戦略的創造研究推進事業(CREST)
2008.10~2013.03, 代表者:福井宣規, 九州大学生体防御医学研究所, 科学技術振興機構
免疫応答におけるCDMファミリー分子群の機能、構造、シグナル伝達系を包括的に解析し、その理解に立脚して免疫難病の新しい治療法を開発する。.
グローバルCOEプロジェクト
2007.09~2012.03, 代表者:藤木幸夫, 九州大学, 文部科学省
個体恒常性を担う細胞運命の決定機構を解明する.
ターゲットタンパクプロジェクト
2007.07~2012.03, 代表者:福井宣規, 九州大学生体防御医学研究所, 文部科学省
DOCK2を標的とした創薬研究.
ゲノムネットワークプロジェクト
2006.07, 代表者:福井宣規, 九州大学, 文部科学省
受容体刺激からRac活性化に至るDOCK2シグナルネットワークを明らかにする。.
戦略的創造研究推進事業(PRESTO)
2003.11~2007.03, 代表者:福井宣規, 九州大学生体防御医学研究所, 科学技術振興機構
受容体刺激から細胞骨格再構築に至るシグナル伝達を解明し、その機能を個体レベルで明らかにすると共に、その成果に立脚して自己免疫疾患、移植片拒絶、感染症など現代医学が抱える難治性疾患の新しい治療法、予防法の開発を目指す。.
戦略的基礎研究推進事業(CREST)
1997.10~2002.09, 代表者:笹月健彦, 九州大学生体防御医学研究所, 科学技術振興事業団
T細胞レパートリ形成及び免疫制御機構の分子機構を、TCR-MHC/ペプチド相互作用という観点から解明する。.
研究業績
主要著書
1. 福井宣規, T細胞レセプターとMHC分子「免疫学イラストレイテッド」, 2009.01.
2. 福井宣規, T細胞による抗原の認識「エッセンシャル免疫学」, メディカル・サイエンス・インターナショナル, p67-96, 2007.04.
3. 福井宣規, 抗原提示細胞「戸田新細菌学」, 南山堂, p390-399, 2007.04.
主要原著論文
1. Kazufumi Kunimura , Sayaka Akiyoshi, Takehito Uruno, Keisuke Matsubara, Daiji Sakata, Kenji Morino, Kenichiro Hirotani, Yoshinori Fukui, DOCK2 regulates MRGPRX2/B2-mediated mast cell degranulation and drug-induced anaphylaxis., J. Allergy Clin. Immunol., 10.1016/j.jaci.2023.01.029., 2023.02, Background: Drug-induced anaphylaxis is triggered by the direct stimulation of mast cells (MCs) via Mas-related G protein–coupled receptor X2 (MRGPRX2; mouse ortholog MRGPRB2). However, the precise mechanism that links MRGPRX2/B2 to MC degranulation is poorly understood. Dedicator of cytokinesis 2 (DOCK2) is a Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 regulates migration and activation of leukocytes, its role in MCs remains unknown. Objective: We aimed to elucidate whether—and if so, how—DOCK2 is involved in MRGPRX2/B2-mediated MC degranulation and anaphylaxis. Methods: Induction of drug-induced systemic and cutaneous anaphylaxis was compared between wild-type and DOCK2-deficient mice. In addition, genetic or pharmacologic inactivation of DOCK2 in human and murine MCs was used to reveal its role in MRGPRX2/B2-mediated signal transduction and degranulation. Results: Induction of MC degranulation and anaphylaxis by compound 48/80 and ciprofloxacin was severely attenuated in the absence of DOCK2. Although calcium influx and phosphorylation of several signaling molecules were unaffected, MRGPRB2-mediated Rac activation and phosphorylation of p21-activated kinase 1 (PAK1) were impaired in DOCK2-deficient MCs. Similar results were obtained when mice or MCs were treated with small-molecule inhibitors that bind to the catalytic domain of DOCK2 and inhibit Rac activation. Conclusion: DOCK2 regulates MRGPRX2/B2-mediated MC degranulation through Rac activation and PAK1 phosphorylation, thereby indicating that the DOCK2-Rac-PAK1 axis could be a target for preventing drug-induced anaphylaxis..
2. Kenji Morino, Kazufumi Kunimura, Yuki Sugiura, Yoshihiro Izumi, Keisuke Matsubara, Sayaka Akiyoshi, Rae Maeda, Kenichiro Hirotani, Daiji Sakata, Seiya Mizuno, Satoru Takahashi, Takeshi Bamba, Takehito Uruno, Yoshinori Fukui, Cholesterol sulfate limits neutrophil recruitment and gut inflammation during mucosal injury., Front. Immunol., 10.3389/fimmu.2023.1131146, 14:1131146, 2023.03.
3. Ho Namkoong, (他473名) Yoshinori Fukui, (他14名) Yukinori Okada, DOCK2 is involved in the host genetics and biology of severe COVID-19, Nature, 609:754-760, 2022.08, Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1,2,3,4,5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target..
4. Kazufumi Kunimura, Kazuhiko Yamamura, Takeshi Nakahara, Makiko Kido-Nakahara, Takehito Uruno, Yoshinori Fukui, Identification of a functional DOCK8 gene polymorphism associated with atopic dermatitis, Allergy, 77:3670-3672, 2022.07, Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by recurrent eczematous lesions, intense itch, and type 2 immune responses. Interleukin 31 (IL-31) is a cytokine mainly produced from skin-homing CLA+ T cells. IL-31 plays a major role in AD pathogenesis. Dedicator of cytokinesis 8 (DOCK8) is an evolutionarily conserved guanine nucleotide exchange factor (GEF) for Cdc42. Bi-allelic loss-of-function mutations of DOCK8 cause a combined immunodeficiency characterized by AD. We have previously shown that knock down of DOCK8 gene in T cells from healthy controls markedly increases T-cell receptor-mediated IL31 gene expression. Therefore, DOCK8 acts as a negative regulator for IL-31 induction in human T cells. However, DOCK8 expression is comparable between healthy controls and AD patients, and functional significance of DOCK8 in the disease predisposition remains unknown. In this study, we found that DOCK8 polymorphism at position 1790 (rs17673268) is associated with the susceptibility to AD and revealed its underlying molecular basis. Although this study used a relatively small sample size, our findings provide a novel insight into AD pathogenesis..
5. Kazufumi Kunimura, Yoshinori Fukui, The molecular basis for IL-31 production and IL-31-mediated itch transmission: from biology to drug development., Int. Immunol., 10.1093/intimm/dxab065, 33, 731-736, 2021.09.
6. Takaaki Tatsuguchi, Takehito Uruno, Yuki Sugiura, Kounosuke Oisaki, Daisuke Takaya, Daiji Sakata, Yoshihiro Izumi, Takaya Togo, Yuko Hattori, Kazufumi Kunimura, Tetsuya Sakurai, Teruki Honma, Takeshi Bamba, Masafumi Nakamura, Motomu Kanai, Makoto Suematsu, Yoshinori Fukui, Pharmacological intervention of cholesterol sulfate-mediated T cell exclusion promotes antitumor immunity, Biochem. Biophys. Res. Commun., 609:183-188, 2022.06.
7. Takaaki Tatsuguchi, Takehito Uruno, Yuki Sugiura, Daiji Sakata, Yoshihiro Izumi, Tetsuya Sakurai, Yuko Hattori, Eiji Oki, Naoto Kubota, Koshiro Nishimoto, Masafumi Oyama, Kazufumi Kunimura, Takuto Ohki, Takeshi Bamba, Hideaki Tahara, Michiie Sakamoto, Masafumi Nakamura, Makoto Suematsu, Yoshinori Fukui, Cancer-derived cholesterol sulfate is a key mediator to prevent tumor infiltration by effector T cells., Int. Immunol. , 34:277-289, 2022.04.
8. Keisuke Matsubara, Kazufumi Kunimura, Nana Yamane, Ryosuke Aihara, Tetsuya Sakurai, Daiji Sakata, Takehito Uruno, Yoshinori Fukui, DOCK8 dificiency causes a skewing to type 2 immunity in the gut with expansion of group 2 innate lymphoid cells., Biochem. Biophys. Res. Commun., 10.1016/j.bbrc.2021.04.094, 559, 135-140, 2021.06.
9. Yasuhisa Kamikaseda, Takehito Uruno, Kazufumi Kunimura, Akihito Harada, Kuniko Saiki, Kounosuke Oisaki, Daiji Sakata, Takeshi Nakahara, Makiko Kido-Nakahara, Motomu Kanai, Seiji Nakamura, Yasuyuki Ohkawa, Masutaka Furue, Yoshinori Fukui, Target inhibition of EPAS1-driven IL-31 production by a small-molecule compound., J. Allergy Clin. Immun., 10.1016/j.jaci.2021.03.029, 148, 633-638, in press, 2021.04, Background: IL-31 is a major pruritogen associated with atopic dermatitis (AD). Although a specific antibody for IL-31 receptor has been shown to alleviate pruritus in patients with AD, therapeutic approaches to inhibit IL-31 production remain unexploited. IL-31 production by helper T cells critically depends on the transcription factor EPAS1, which mediates IL31 promoter activation in collaboration with SP1.
Objective: We aimed at developing small-molecule inhibitors that selectively block IL-31 production by helper T cells.
Methods: We generated the reporter cell line that inducibly expressed EPAS1 in the presence of doxycycline to mediate Il31 promoter activation, and screened 9,600 chemical compounds. The selected compounds were further examined using helper T cells from a spontaneous mouse model of AD and those from patients with AD.
Results: We have identified 4-(2-(4-isopropylbenzylidene)hydrazineyl)benzoic acid (IPHBA) as an inhibitor of IL-31 induction. Although IPHBA did not affect non-specific T cell proliferation, IPHBA inhibited antigen–induced IL-31 production by helper T cells from both an AD mouse model and AD patients, without affecting other cytokine productions and hypoxic responses. In line with this, itch responses induced by adoptive transfer of IL-31-producing helper T cells were attenuated when mice were orally treated with IPHBA. Mechanistically, IPHBA inhibited association between EPAS1 and SP1, resulting in defective recruitment of both transcription factors to the specific sites of IL31 promoter. We also determined the structure–activity relationship of IPHBA by synthesizing and analyzing 201 analog compounds.
Conclusion: IPHBA could be a potential drug lead to inhibit EPAS1-driven IL-31 production..
10. Tetsuya Sakurai, Mutsuko Kunimoto-Niino, Kazufumi Kunimura, Nana Yamane, Daiji Sakata, Ryosuke Aihara, Tomoharu Yasuda, Shigeyuki Yokoyama, Mikako Shirouzu, Yoshinori Fukui, Takehito Uruno, A conserved PI(4,5)P2-binding domain is critical for immune regulatory function of DOCK8., Life Sci. Alliance, 10.26508/lsa.202000873, 4, 4, e202000873, 2021.02.
11. Ryosuke Aihara, Kazufumi Kunimura, Mayuki Watanabe, Takehito Uruno, Nana Yamane, Tetsuya Sakurai, Daiji Sakata, Fusanori Nishimura, Yoshinori Fukui, DOCK8 controls survival of group 3 innate lymphoid cells in the gut through Cdc42 activation., Int. Immunol.
, 10.1093/intimm/dxaa066, 33, 149-160, 2021.03.
12. Kazufumi Kunimura, Daiji Sakata, Xin Tun, Takehito Uruno, Miho Ushijima, Tomoya Katakai, Akira Shiraishi, Ryosuke Aihara, Yasuhisa Kamikaseda, Keisuke Matsubara, Hirokazu Kanegane, Shinichiro Sawa, Gerard Eberl, Shouichi Ohga, Yasunobu Yoshikai, Yoshinori Fukui, S100A4 Protein Is Essential for the Development of Mature Microfold Cells in Peyer's Patches, Cell Rep., 10.1016/j.celrep.2019.10.091, 26, 9, 2823-2834.e7, 2019.11, [URL].
13. Daiji Sakata, Takehito Uruno, Keisuke Matsubara, Tsugunobu Andoh, Kazuhiko Yamamura, Yuki Magoshi, Kazufumi Kunimura, Yasuhisa Kamikaseda, Masutaka Furue, Yoshinori Fukui, Selective role of neurokinin B in IL-31-induced itch response in mice, J. Allergy. Clin. Immunol., 10.1016/j.jaci.2019.06.031, 144, 4, 1130-1133.e8, 2019.10, [URL], Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by recurrent eczematous legions and intense itch. Itch can be induced by various chemical mediators. Among them, much attention has been paid to interleukin 31 (IL-31) as an AD-associated itch mediator since the discovery of the pruritogenic action of IL-31 in mice. IL-31 is mainly produced by CD4+ T cells and transmits the signals via a heterodimeric receptor composed of IL-31 receptor A (IL-31RA) and oncostatin M receptor (OSMR), both of which are expressed in dorsal root ganglion (DRG) neurons. However, the neuronal mechanism underlying IL-31–induced itch sensation is poorly understood. By analyzing a mouse model for atopic dermatitis, we found that the expression of Tac2, which encodes neurokinin B (NKB), markedly increased in the DRG neurons in response to IL-31. While NKB-deficient mice lost IL-31–induced itch response, scratching behaviors induced by other pruritogens such as histamine, chloroquine and protease-activated receptor 2 (PAR2) agonist were unaffected in the absence of NKB. NKB transmits the signal through neurokinin 3 receptor (NK3R), a G protein-coupled tachykinin receptor. When wild-type mice were pre-treated with NK3R antagonists, IL-31–induced scratching was significantly attenuated, without affecting itch responses induced by other pruritogens. These results indicate that NKB-NK3R axis could be a novel therapeutic target controlling IL-31–induced itch in AD patients..
14. Kazufumi Kunimura, Takehito Uruno, Yoshinori Fukui, DOCK-family proteins : key players in immune surveillance mechanisms, Int. Immunol., 10.1093/intimm/dxz067, 2019.10, [URL].
15. Tetsuya Sakurai, Takehito Uruno, Takaaki Tatsuguchi, Kazuhiko Yamamura, Miho Ushijima, Yuko Hattori, Mutsuko Kukimoto-Niino, Chiemi Mishima-Tsumagari, Mayuki Watanabe, Makoto Suematsu, Yoshinori Fukui, Cholesterol sulfate is a DOCK2 inhibitor that mediates tissue-specific immune evasion in the eye, Sci. Signal.
, 10.1126/scisignal.aao4874, 11, 541, 2018.07, [URL], Although immune responses are essential to protect the body from infection, they can also harm tissues. Certain tissues and organs, including the eye, constitute specialized microenvironments that locally inhibit immune reactivity. Dedicator of cytokinesis protein 2 (DOCK2) is a Rac-specific guanine nucleotide exchange factor (GEF) that is predominantly found in hematopoietic cells. DOCK2 plays a key role in immune surveillance because it is essential for the activation and migration of leukocytes. DOCK2 mutations cause severe immunodeficiency in humans. We found that DOCK2-mediated Rac activation and leukocyte migration were effectively inhibited by cholesterol sulfate (CS), but not by cholesterol or other sulfated steroids. CS bound to the catalytic domain of DOCK2 and suppressed its GEF activity. Mass spectrometric quantification revealed that CS was most abundantly produced in the Harderian gland, which provides the lipids that form the oily layer of the tear film. Sulfation of cholesterol is mediated by the sulfotransferases SULT2B1b and, to a lesser extent, SULT2B1a, which are produced from the same gene through alternative splicing. By genetically inactivating Sult2b1, we showed that the lack of CS in mice augmented ultraviolet- and antigen-induced ocular surface inflammation, which was suppressed by administration of eye drops containing CS. Thus, CS is a naturally occurring DOCK2 inhibitor and contributes to the generation of the immunosuppressive microenvironment in the eye..
16. Masutaka Furue, K. Yamamura, Makiko Nakahara, Takeshi Nakahara, Yoshinori Fukui, Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis, Allergy: European Journal of Allergy and Clinical Immunology, 10.1111/all.13239, 73, 1, 29-36, 2018.01, [URL], Atopic dermatitis (AD) is a chronic or chronically relapsing, eczematous, severely pruritic skin disorder associated with skin barrier dysfunction. The lesional skin of AD exhibits T helper 2 (TH2)-deviated immune reactions. Interleukin-31 (IL-31), preferentially produced from TH2 cells, is a potent pruritogenic cytokine, and its systemic and local administration induces scratching behavior in rodents, dogs and monkeys. Recent clinical trials have revealed that administration of an anti-IL-31 receptor antibody significantly alleviates pruritus in patients with AD. In this review, we summarize recent topics related to IL-31 and its receptor with special references to atopic itch..
17. Lauren A. Peters, Jacqueline Perrigoue, Arthur Mortha, Alina Iuga, Won Min Song, Eric M. Neiman, Sean R. Llewellyn, Antonio Di Narzo, Brian A. Kidd, Shannon E. Telesco, Yongzhong Zhao, Aleksandar Stojmirovic, Jocelyn Sendecki, Khader Shameer, Riccardo Miotto, Bojan Losic, Hardik Shah, Eunjee Lee, Minghui Wang, Jeremiah J. Faith, Andrew Kasarskis, Carrie Brodmerkel, Mark Curran, Anuk Das, Joshua R. Friedman, Yoshinori Fukui, Mary Beth Humphrey, Brian M. Iritani, Nicholas Sibinga, Teresa K. Tarrant, Carmen Argmann, Ke Hao, Panos Roussos, Jun Zhu, Bin Zhang, Radu Dobrin, Lloyd F. Mayer, Eric E. Schadt, A functional genomics predictive network model identifies regulators of inflammatory bowel disease, Nature Genetics, 10.1038/ng.3947, 49, 10, 1437-1449, 2017.10, [URL], A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD..
18. Toyoshi Yanagihara, Takahiro Tomino, Takehito Uruno, Yoshinori Fukui, Thymic epithelial cell–specific deletion of Jmjd6 reduces Aire protein expression and exacerbates disease development in a mouse model of autoimmune diabetes, Biochemical and Biophysical Research Communications, 10.1016/j.bbrc.2017.05.113, 489, 1, 8-13, 2017.07, [URL], Thymic epithelial cells (TECs) establish spatially distinct microenvironments in which developing T cells are selected to mature or die. A unique property of medullary TECs is their expression of thousands of tissue-restricted self-antigens that is largely under the control of the transcriptional regulator Aire. We previously showed that Jmjd6, a lysyl hydroxylase for splicing regulatory proteins, is important for Aire protein expression and that transplantation of Jmjd6-deficient thymic stroma into athymic nude mice resulted in multiorgan autoimmunity. Here we report that TEC-specific deletion of Jmjd6 exacerbates development of autoimmune diabetes in a mouse model, which express both ovalbumin (OVA) under the control of the rat insulin gene promoter and OT-I T cell receptor specific for OVA peptide bound to major histocompatibility complex class I Kb molecules. We found that Aire protein expression in mTECs was reduced in the absence of Jmjd6, with retention of intron 2 in Aire transcripts. Our results thus demonstrate the importance of Jmjd6 in establishment of immunological tolerance in a more physiological setting..
19. Hirotada Tajiri, Takehito Uruno, Takahiro Shirai, Daisuke Takaya, Shigeki Matsunaga, Daiki Setoyama, Mayuki Watanabe, Mutsuko Kukimoto-Niino, Kounosuke Oisaki, Miho Ushijima, Fumiyuki Sanematsu, Teruki Honma, Takaho Terada, Eiji Oki, Senji Shirasawa, Yoshihiko Maehara, Dongchon Kang, Jean François Côté, Shigeyuki Yokoyama, Motomu Kanai, Yoshinori Fukui, Targeting Ras-Driven Cancer Cell Survival and Invasion through Selective Inhibition of DOCK1, Cell Reports, 10.1016/j.celrep.2017.04.016, 19, 5, 969-980, 2017.05, [URL], Oncogenic Ras plays a key role in cancer initiation but also contributes to malignant phenotypes by stimulating nutrient uptake and promoting invasive migration. Because these latter cellular responses require Rac-mediated remodeling of the actin cytoskeleton, we hypothesized that molecules involved in Rac activation may be valuable targets for cancer therapy. We report that genetic inactivation of the Rac-specific guanine nucleotide exchange factor DOCK1 ablates both macropinocytosis-dependent nutrient uptake and cellular invasion in Ras-transformed cells. By screening chemical libraries, we have identified 1-(2-(3′-(trifluoromethyl)-[1,1′-biphenyl]-4-yl)-2-oxoethyl)-5-pyrrolidinylsulfonyl-2(1H)-pyridone (TBOPP) as a selective inhibitor of DOCK1. TBOPP dampened DOCK1-mediated invasion, macropinocytosis, and survival under the condition of glutamine deprivation without impairing the biological functions of the closely related DOCK2 and DOCK5 proteins. Furthermore, TBOPP treatment suppressed cancer metastasis and growth in vivo in mice. Our results demonstrate that selective pharmacological inhibition of DOCK1 could be a therapeutic approach to target cancer cell survival and invasion..
20. Akira Shiraishi, Takehito Uruno, Fumiyuki Sanematsu, Miho Ushijima, Daiji Sakata, Toshiro Hara, Yoshinori Fukui, DOCK8 protein regulates macrophage migration through Cdc42 protein activation and LRAP35a protein interaction, Journal of Biological Chemistry, 10.1074/jbc.M116.736306, 292, 6, 2191-2202, 2017.02, [URL], DOCK8 is an atypical guanine nucleotide exchange factor for Cdc42, and its mutations cause combined immunodeficiency in humans. Accumulating evidence indicates that DOCK8 regulates the migration and activation of various subsets of leukocytes, but its regulatory mechanism is poorly understood. We here report that DOCK8-deficient macrophages exhibit a migration defect in a 2D setting. Although DOCK8 deficiency in macrophages did not affect the global Cdc42 activation induced by chemokine stimulation, rescue experiments revealed that the guanine nucleotide exchange factor activity of DOCK8 was required for macrophage migration. We found that DOCK8 associated with LRAP35a, an adaptor molecule that binds to the Cdc42 effector myotonic dystrophy kinase-related Cdc42-binding kinase, and facilitated its activity to phosphorylate myosin II regulatory light chain. When this interaction was disrupted in WT macrophages, they showed a migration defect, as seen in DOCK8-deficient macrophages. These results suggest that, during macrophage migration, DOCK8 links Cdc42 activation to actomyosin dynamics through the association with LRAP35a..
21. Kazuhiko Yamamura, Takehito Uruno, Akira Shiraishi, Yoshihiko Tanaka, Miho Ushijima, Takeshi Nakahara, Mayuki Watanabe, Makiko Kido-Nakahara, Ikuya Tsuge, Masutaka Furue, Yoshinori Fukui, The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction, Nature communications, 10.1038/ncomms13946, 8, 2017.01, [URL], Mutations of DOCK8 in humans cause a combined immunodeficiency characterized by atopic dermatitis with high serum IgE levels. However, the molecular link between DOCK8 deficiency and atopic skin inflammation is unknown. Here we show that CD4+ T cells from DOCK8-deficient mice produce large amounts of IL-31, a major pruritogen associated with atopic dermatitis. IL-31 induction critically depends on the transcription factor EPAS1, and its conditional deletion in CD4+ T cells abrogates skin disease development in DOCK8-deficient mice. Although EPAS1 is known to form a complex with aryl hydrocarbon receptor nuclear translocator (ARNT) and control hypoxic responses, EPAS1-mediated Il31 promoter activation is independent of ARNT, but in collaboration with SP1. On the other hand, we find that DOCK8 is an adaptor and negative regulator of nuclear translocation of EPAS1. Thus, EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction in CD4+ T cells..
22. Toyoshi Yanagihara, Fumiyuki Sanematsu, Sato T, Takehito Uruno, DUAN XUEFENG, Takahiro Tomino, Yosuke Harada, Mayuki Watanabe, YUQING WANG, Yoshihiko Tanaka, Yoichi Nakanishi, M. Suyama, Yoshinori Fukui, Intronic regulation of Aire expression by Jmjd6 for self-tolerance induction in the thymus, Nature Commun., 6, 8820, 2015.11.
23. Guo X, Shi N, Cui X-B, Wang J-N, Yoshinori Fukui, Chen S-Y, Dedicator of cytokinesis 2, a novel regulator for smooth muscle phenotypic modulation and vascular remodeling, Cir. Res. , 116, e71-e80, 2015.05.
24. Abu-Thuraia A, Gauthier R, Chidiac R, Yoshinori Fukui, Screaton RA, Gratton JP, Cote JF, Axl phosphorylates Elmo scraffold proteins to promote Rac activation and cell invasion, Mol. Cell. Biol., 35, 76-87, 2015.01.
25. Watanabe M, Terasawa M, Miyano K, Yanagihara T, 宇留野 武人, Fumiyuki Sanematsu, Cote JF, Hideki Sumimoto, Yoshinori Fukui, DOCK2 and DOCK5 act additively in neutrophils to regulate chemotaxis, superoxide production, and extracellular trap formation, J. Immunol., 193, 5660-5667, 2014.12.
26. Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, Nacher M, Pitaval C, Radovanovic I, Yoshinori Fukui, McEver RP, Filippi M-D, Lizasoain I, Ruiz-Cabello J, Zarbock A, Moro MA, Hidalgo A, Neutrophils scan for activated platelets to initiate inflammation, Science, 346, 1234-1238, 2014.12.
27. Moalli F, Cupovic J, Thelen F, Halbherr P, Yoshinori Fukui, Narumiya S, Ludewig B, Stein JV, Thromboxane A2 acts as tonic immunoregulator by preferential disruption of low-avidity CD4+ T cell-dendritic cell interactions, J. Exp. Med., 211, 2507-2517, 2014.12.
28. Wen Y, Elliott MJ, Huang Y, Miller TO, Corbin DR, Hussain L-R, Ratajczak MZ, Yoshinori Fukui, Ilsars ST, DOCK2 is critical for CD8+TCR- graft facilitating cells to enhance engraftment of hematopoietic stem and progenitor cells, Stem Cells, 32, 2732-2734, 2014.10.
29. Kana Ogawa, Yoshihiko Tanaka, Takehito Uruno, DUAN XUEFENG, Yosuke Harada, Fumiyuki Sanematsu, Kazuhiko Yamamura, 寺澤 公男, Akihiko Nishikimi, JF Côté, Yoshinori Fukui, DOCK5 functions as a key signaling adaptor that links FcεRI signals to microtubule dynamics during mast cell degranulation, J. Exp.Med., 211, 1407-1419, 2014.07, マスト細胞は、細胞内に分泌顆粒を有しており、これに含まれるケミカルメディエーターを細胞外部に放出することで、アナフィラキシーと呼ばれる重篤なアレルギー反応を惹起する。マスト細胞はその表面にIgE抗体の高親和性受容体であるFcεRIを発現しており、これが抗原およびIgE抗体で架橋されると微小管のダイナミックな再構築が誘導され、脱顆粒反応がおこる。しかしながらこれまで、FcεRI近位のシグナル伝達機構に関してよく解析されているものの、微小管動態を制御する遠位のシグナル経路については依然として不明な点が多い。本研究において私達は、Racのグアニンヌクレオチド交換因子 (GEF)であるDOCK5が、マスト細胞の脱顆粒反応を重要な役割を演じていることを示す。私達は、DOCK5欠損マウスが全身性および皮膚アナフィラキシーショックに抵抗性を示すことを見いだした。驚いたことに、DOCK5が持つRac GEFとしての活性は、マスト細胞の脱顆粒反応に必要ではなかった。代わり、DOCK5はNck2やAktと会合し、GSK3βのリン酸化と不活性化を制御することで、微小管動態をコントロールしており、これらの分子との会合をブロックすると、微小管形成や脱顆粒反応が著しく障害された。以上より、DOCK5はアダプターとして機能し、マスト細胞の脱顆粒反応に重要な微小管動態を制御していることを明らかにした。.
30. Damoulakis G, Gambardella L, Rossman K, Lawson C, Anderson K, Yoshinori Fukui, Welch H, Der C, Stephens L, Hawkins P, P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils., J. Cell Sci., 127, 2589-2600, 2014.06.
31. Laurin M, Dumouchel A, Yoshinori Fukui, Côté JF, The Rac-specific exchange factors Dock1 and Dock5 are dispensable for the establishment of the glomerular filtration barrier in vivo., Small GTPases , 4, 4, 2013.12.
32. Le Floc’h A, Yoshihiko Tanaka, Bantilan BS, Voisinne G, Altan-Bonnet G, Yoshinori Fukui, Huse M, Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. , J. Exp. Med., 210, 2721-2737, 2013.11.
33. Akihiko Nishikimi, M Kukimoto-Niino, S Yokoyama, Yoshinori Fukui, Immune regulatory functions DOCK family proteins in health and disease., Exp.Cell.Res., 319, 15, 2343-2349, 2013.09.
34. Sachiko Kamakura, Masatoshi Nomura, Jyunya Hayase, Y Iwakiri, Akihiko Nishikimi, Ryoichi Takayanagi, Yoshinori Fukui, Hideki Sumimoto, The cell polarity protein mlnsc regulates neutrophil chemotaxis via a noncanonical G protein signaling pathway., Dev. Cell., 26, 3, 292-302, 2013.08.
35. Yusuke Sakai, Yoshihiko Tanaka, Tohoshi Yanagihara, Mayuki Watanabe, DUAN XUEFENG, 寺澤 公男, Akihiko Nishikimi, Fumiyuki Sanematsu, Yoshinori Fukui, The Rac activator DOCK2 regulates natural killer cell-mediated cytotoxicity in mice through the lytic synapse formation., Blood, 122, 3, 386-393, 2013.05.
36. M Laurin, J Huber, A Pelletier, T Houalla, M Park, Yoshinori Fukui, B Haibe-Kains, WJ Muller, JF Côté, Rac-specific guanine nucleotide exchange factor DOCK1 is a critical regulator of HER2-mediated breast cancer metastasis., Proc.Natl.Acad.Sci.USA, 110, 18, 7434-7439, 2013.03.
37. Cimino PJ, Yang Y, Li X, Hemingway JF, Cherne MK, Khademi SB, Fukui Y, Montine KS, Montine TJ, Keene CD, Ablation of the microglial protein DOCK2 reduces amyloid burden in a mouse model of alzheimer's disease, Exp. Mol. Pathol., 10.1016/j.yexmp.2013.01.002., in press, 1-5, 2013.01.
38. Unoki M, Masuda A, Dohmae N, Arita K, Yoshimatsu M, Iwai Y, Fukui Y, Ueda K, Hamamoto R, Shirakawa M, Sasaki H, Nakamura Y, Lysyl 5-Hydroxylation, a novel histone modification, by jumonji domain containing 6(JMJD6), J. Biol. Chem., in press, 1-5, 2013.01.
39. Fumiyuki Sanematsu, Akihiko Nishikimi, Mayuki Watanabe, T Hongu, Yoshihiko Tanaka, Y Kanaho, JF Côté, Yoshinori Fukui, Phosphatidic acid-dependent recruitment and function of the Rat activator DOCK1 during dorsal ruffle formation, J. Biol. Chem., 288, 8092-8100, 2013.01.
40. Shigeo Fujimori, Naoya Hirai, Hiroyuki Ohashi, Kazuyo Masuoka, Akihiko Nishikimi, Yoshinori Fukui, Takanori Washio, Tomohiro Oshikubo, Tatsuhiro Yamashita, Etsuko Miyamoto-Sato, Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data, Scientific Reports, 10.1038/srep00691, 2:691, 1-5, 2012.10.
41. Masao Terasawa, Takehito Uruno, Sayako Mori, Mutsuko Kukimoto-Niino, Akihiko Nishikimi, Fumiyuki Sanematsu, Yoshihiko Tanaka, Shigeyuki Yokoyama, Yoshinori Fukui, Dimerization of DOCK2 is essential for DOCK2-mediated Rac activation and lymphocyte migration, PLoS One, 2012.09.
42. Nishikimi A, Uruno T, Duan X, Cao Q, Okamura Y, Saitoh N, Sakaoka S, Du Y, Suenaga A, Kukimoto-NIino M, Miyano K, Okabe T, Sanematsu F, Tanaka Y, Sumimoto H, Honma T, Yokoyama S, Nagano T, Kohda D, Kanai M, Fukui Y, Blockade of inflammatory responses by a small-molecule inhibitor of the Rac activator DOCK2., Chem. Biol., 19, 488-497, 2012.04.
43. Harada Y, Tanaka Y, Terasawa M, Pieczyk M, Habiro K, Katakai T, Hanawa-Suetsugu K, Kukimoto-Niino M, Nishizaki T, Shirousu M, Duan X, Uruno T, Nishikimi A, Sanematsu F, Yokoyama S, Stein JV, Kinashi T, Fukui Y , DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses, Blood, 119, 4451-4461, 2012.03, 樹状細胞は、抗原に暴露されると輸入リンパ管を介してリンパ節に移動し、T 細胞に抗原を提示することで免疫応答を惹起する。樹状細胞は、三次元微小環境下では、二次元環境と異なり、インテグリン非依存的に細胞外マトリックスの隙間を形を変えながら進んでいくが、このアメーバ様運動を制御するシグナル伝達機構やスペースを感知するメカニズムは明らかではない。私達は、ヒト免疫不全症の責任分子として近年注目を集めているDOCK8の機能を、ノックアウトマウスを作製することで解析した。その結果、DOCK8欠損樹状細胞ではリンパ節へのホーミングが障害されており、T細胞を効率よく活性化できないことを見いだした。DOCK8欠損樹状細胞は二次元環境では正常に運動できるにも関わらず、三次元微小環境下での運動が顕著に障害されていた。DOCK8はCdc42特異的なGEFとして機能しており、その複合体の構造を決定すると共に、FRETを用いて、DOCK8がCdc42活性化の場の制御に重要な役割を演じることを明らかにした。.
44. Hanawa-Suetugu K, Kukimoto-Niino M, Mishima-Tsumagari C, Akasaka R, Ohsawa N, Sekine S, Ito T, Tochio N, Koshiba S, Kigawa T, Terada T, Shirouzu M, Nishikimi A, Uruno T, Katakai T, Kinishi T, Kohda D, Fukui Y, Yokoyama S, Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms., Proc. Natl. Acad. Sci. USA, 109, 9, 3305-3310, 2012.02.
45. Ippagunta SK, Subbarao Malireddi RK, Shaw PJ, Neal GA, Walle LV, Green DR, Fukui Y, Lamkanfi M, Kanneganti T-D, The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization., Nature Immunology, 2011.09.
46. Sanematsu F, Hirashima M, Laurin M, Takii R, Nishikimi A, Kitajima K, Ding G, Noda M, Murata Y, Tanaka Y, Masuko S, Suda T, Meno C, Côté JF, Nagasawa T, Fukui Y, DOCK180 is a Rac activator that regulates cardiovascular development by acting downstream of CXCR4., Circ. Res., 107:1102-1105, 2010.10.
47. Gotoh K, Tanaka Y, Nishikimi A, Nakamura R, Yamada H, Maeda N, Ishikawa T, Hoshino K, Uruno T, Cao Q, Higashi S, Kawaguchi Y, Enjoji M, Takayanagi R, Kaisho T, Yoshikai Y, Fukui Y, Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation, J. Exp. Med., 207: 721-730, 2010.04, 形質細胞様樹状細胞(pDC)は、微生物由来の核酸を細胞内に存在するTLR7/TLR9を介して認識することで、炎症性サイトカインのみならず、大量のI型インターフェロン(IFN)を産生することから、近年脚光を集めている細胞である。pDC活性化におけるDOCK2の役割を解析する目的で、種々のTLRリガンドでpDCを刺激したところ、DOCK2欠損pDCではIL-12p40、IL-6といった炎症性サイトカインは正常に産生されるにも関わらず、I型IFNの産生が著しく低下することを見出した。このメカニズムを詳細に解析することで、TLRによる抗原認識とは独立してDOCK2-Racシグナル伝達系が作動し、IKK-alphaの活性化を介して、I型IFN産生を選択的に制御するという、新しい制御機構の存在を明らかにした。.
48. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H, Tanaka Y, Shibasaki M, Kanaho Y, Sasaki T, Frohman MA, Fukui Y, , Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis, Science, 324:384-387, 2009.04.
49. Gollmer K, Asperti-Boursin F, Tanaka Y, Okkenhaug K, Vanhaesebroeck B, Peterson JR, Fukui Y, Donnadieu E, Stein JV, CCL21 mediates CD4+ T cell costimulation via a DOCK2/Rac-dependent pathway, Blood, 114(3) : 580-588, 2009.03.
50. Gotoh K, Tanaka Y, Nishikimi A, Inayoshi A, Enjoji M, Takayanagi R, Sasazuki T, Fukui Y, Differential requirement for DOCK2 in migration of plasmacytoid dendritic cells versus myeloid dendritic cells, Blood, 111(6), 2973-2976, 2008.03.
51. Tanaka Y, Hamano S, Gotoh K, Murata Y, Kunisaki Y, Nishikimi A, Takii R, Kawaguchi M, Inayoshi A, Masuko S, Himeno K, Sasazuki T, Fukui Y, T helper type 2 differentiation and intracellular trafficking of the interleukin 4 receptor-α subunit controlled by the Rac activator Dock2., Nature Immunol., 8,1067-1075, 2007.09.
52. Nombela-Arrieta C, Mempel TR, Soriano SF, Mazo I, Wymann MP, Hirsch E, Martínez-A C, Fukui Y, von Andrian UH, Stein JV, A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediatsd egress, J. Exp. Med., 9: 121-128, 2007.03.
53. Handa Y, Suzuki M, Ohya K, Iwai H, Ishijima N, Koleske AJ, Fukui Y, Sasakawa C, Shignella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery., Nature Cell Biology, 9: 121-128, 2007.01.
54. García-Bernal D, Sotillo-Mallo E, Nombela-Arrieta C, Samaniego R, Fukui Y, Stein JV, Teixidó J, DOCK2 is required for chemokine-promoted human T lymphocyte adhesion under shear stress mediated by the integrin alpha4beta1., J. Immunol., 177: 5215-5225, 2006.10.
55. Kunisaki Y, Nishikimi A, Tanaka Y, Takii R, Noda M, Inayoshi A, Watanabe K, Sanematsu F, Sasazuki T, Sasaki T, Fukui Y, DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis., J. Cell Biol., 174: 647-652, 2006.04.
56. Kunisaki Y, Tanaka Y, Sanui T, Inayoshi A, Noda M, Nakayama T, Harada M, Taniguchi M, Sasazuki T, Fukui Y, DOCK2 is required in T cell precursors for development of Valpha14 natural killer T (NKT) cells., J. Immunol., 176: 4640-4645, 2006.04.
57. Shulman Z, Pasvolsky R, Woolf E, Grabovsky V, Feigelson SW, Erez N, Fukui Y, Alon R, DOCK2 regulates chemokine-triggered lateral lymphocyte motility but not transendothelial migration., Blood, 108: 2150-2158, 2006.04.
58. Sanui T, Inayoshi A, Noda M, Iwata E, Oike M, Sasazuki T, Fukui Y, DOCK2 is essential for antigen-induced translocation of TCR and lipid rafts, but not PKC-q and LFA-1, in T cells, Immunity, 10.1016/S1074-7613(03)00169-9, 19, 1, 119-129, 19:119-129, 2003.01.
59. Sanui T, Inayoshi A, Noda M, Iwata E, Stein JV, Sasazuki T, Fukui Y, DOCK2 regulates Rac activation and cytoskeletal reorganization through the interaction with ELMO1, Blood, 10.1182/blood-2003-01-0173, 102, 8, 2948-2950, 102: 2948-2950, 2003.01.
60. Kunisaki T, Masuko S, Noda M, Inayoshi A, Sanui T, Harada M, Sasazuki T, Fukui Y., Defective fetal liver erythropoiesis and T-lymphopoiesis in mice lacking phosphatidylserine receptor, Blood, 10.1182/blood-2003-09-3245, 103, 9, 3362-3364, 103:119-129, 2004.05.
61. Nombela-Arrieta C, Lacalle RA, Montoya M, Kunisaki Y, Megilas D, Marques M, Carrera AC, Manes S, Fukui Y, Martines-A C, Stein JV, Differential requirements of DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing, Immunity, 10.1016/j.immuni.2004.07.012, 21, 3, 429-441, 21: 429-441, 2004.09.
62. Jiang H, Pan F, Erickson LM, Jang MS, Sanui T, Kunisaki Y, Sasazuki T, Fukui Y, Deletion of DOCK2, a regulator of the actin cytoskeleton in lymphocytes, suppresses cardiac allograft rejection, J. Exp. Med, 10.1084/jem.20050911, 202, 8, 1121-1130, 202: 1121-1130, 2005.10.
63. Fukui Y, Hashimoto O, Sanui T, Oono T, Koga H, Abe M, Inayoshi A, Noda M, Oike M, Shirai T, Sasazuki T, Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration, Nature, 10.1038/35090591, 412, 6849, 826-831, 412: 826-831, 2001.01.
64. Oono T, Fukui Y, Masuko S, Hashimoto O, Ueno T, Sanui T, Inayoshi A, Noda M, Sata M, Sasazuki T, Organ-specific autoimmunity in mice whose T cell repertoire is shaped by a single antigenic peptide., J. Clin. Invest, 10.1172/JCI13256, 108, 11, 1589-1596, 108: 1589-1596, 2001.01.
65. Fukui Y, Oono T, Cabaniols JP, Nakao K, Hirokawa K, Inayoshi A, Sanui T, Kanellopoulos J, Iwata E, Noda M, Katsuki M, Kourilsky P, Sasazuki T, Diversity of T cell repertoire shaped by a single peptide ligand is critically affected by its amino acid residue at a T cell receptor-contact., Proc. Natl. Acad. Sci. USA, 10.1073/pnas.250470797, 97, 25, 13760-13765, 97:13760-13765, 2000.01.
66. Fukui Y, Ishimoto T, Utsuyama M, Gyotoku T, Koga T, Nakao K, Hirokawa K, Katsuki M, Sasazuki,, Positive and negative CD4+ thymocyte selection by a single MHC class II/peptide ligand affected by its expression level in the thymus, Immunity, 10.1016/S1074-7613(00)80283-6, 6, 4, 401-410, 6: 401-410, 1997.01.
67. Fukui Y, Hashimoto O, Inayoshi A, Gyotoku T, Sano T, Koga T, Gushima T, Sasazuki T, Highly restricted T cell repertoire shaped by a single major histocompatibility complex-peptide ligand in the presence of a single rearranged T cell receptor b chain., J. Exp. Med., 10.1084/jem.188.5.897, 188, 5, 897-907, 188:897-907, 1998.01.
68. Gapin L, Fukui Y, Kanellopoulos J, Sano T, Casrouge A, Malier V, Beaudoing E, Gautheret D, Claverie JM, Sasazuki T, Kourilsky P, Quantitative analysis of the T-cell repertoire by a single peptide/MHC complex, J. Exp. Med., 187: 1871-1883, 1998.01.
69. Todd JA, Fukui Y, Kitagawa T, Sasazuki T, The A3 allele of the HLA-DQA1 locus in associated with susceptibility to type 1 diabetes in Japanese. , Proc.Natl. Acad. Sci., 10.1073/pnas.87.3.1094, 87, 3, 1094-1098, 87:1094-1098, 1990.01.
70. Yamamoto K, Fukui Y, Esaki Y, Inamitsu T, Sudo T, Yamane K, Kamikawaji N, Kimura A, Sasazuki T, Functional interaction between human histocompatibility leukocyte antigen (HLA) class II and mouse CD4 molecule in antigen recognition by T cells in HLA-DR and DQ transgenic mice., J. Exp. Med., 10.1084/jem.180.1.165, 180, 1, 165-171, 180: 165-171, 1994.01.
主要総説, 論評, 解説, 書評, 報告書等
1. Kunimura K, Fukui Y , The molecular basis for IL-31 production and IL-31-mediated itch transmission : from biology to durg development., Int. Immunology, 33:731-736, 2021, 2021.11.
2. Kunimura K, Uruno T, Fukui Y, DOCK-family proteins:key players in immune surveillance mechanisms., Int. Immunology, 32:5-15, 2020, 2020.01.
3. Furue M, Yamamura K, Kido-Nakahara M, Nakahara T, Fukui Y, Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis., Allergy, 73:29-36, 2018, 2018.01.
主要学会発表等
1. 福井 宣規, Immune regulatory functions of DOCK family proteins in health and disease., Germany-Japan Immunology Seminar, 2013.12.
2. 福井 宣規, Immune regulatory functions of DOCK family proteins in health and disease, Post-GCOE Symposium and Retreat in Singapore, 2013.03.
3. 福井 宣規, 免疫細胞の遊走・活性化におけるDOCKファミリー分子の役割とその制御, さきがけ 領域会議 特別講演, 2013.01.
4. 福井宣規, 免疫系細胞高次機能を司るCDMファミリー分子DOCK2-その分子基盤と創薬への応用-, 平成23年度ターゲットタンパク研究プログラム公開シンポジウム, 2012.03.
5. 福井宣規, 樹状細胞の遊走・活性化におけるDOCKファミリー分子の役割とその制御, 第32回和漢医薬学総合研究所特別セミナー「和漢薬治療のターゲットとしての粘膜免疫機構」, 2011.12.
6. Fukui Y, Sanematsu F, Nishikimi A, Role of phospholipid in DOCK family protein-mediated cellular functions, 第10回日本生化学会JBSバイオフロンティアシンポジウム, 2011.11.
7. Fukui Y, Immune regulatory functions of DOCK2 in health and disease., ESF-JSPS Frontier Science Conference Series for Young Researchers, 2011.03.
8. Fukui Y, Immune regulatory functions of DOCK2 in health and disease., 7th Global COE International Symposium, 2011.02.
9. Fukui Y, Regulation of leukocyte migration and activation by the CDM family protein DOCK2 -From the molecular basis to its clinical application-, The 2010 Fall Conference of The Korean Association of Immunologists, 2010.11.
10. 福井宣規, 細胞骨格制御シグナルを標的とした免疫難病治療の新戦略, CREST「免疫機構」研究領域・第一回シンポジウム, 2010.10.
11. Fukui Y, Signaling and function of the CDM family protein DOCK2., 第8回日独シンポジウム「免疫応答の制御と疾患」, 2010.09.
12. 福井宣規, CDMファミリー分子を介した細胞運動の制御とその機能的意義, がん特定研究5領域合同シンポジウム, 2010.01.
13. 福井宣規, 免疫系細胞高次機能を司るCDMファミリー分子DOCK2, 第1回膜生物学Global COE Students-Organized Symposium, 2009.11.
14. Fukui Y, Critical roles of the CDM family protein DOCK2 in the immune system, The First CSI/JSI/KAI Joint Symposium on Immunology, 2009.11.
15. Fukui Y, Molecular mechanism controlling intracellular DOCK2 dynamics during neutrophil chemotaxis, The 3rd Global COE International Symposium, 2009.02.
16. 福井宣規, 免疫難病治療の新しい分子標的としてのDOCK2, 第58回日本アレルギー学会秋季学術大会, 2008.11.
17. Fukui Y, Immune regulatory function of DOCK2 in health and disease, Japan-German Immunology Seminar 2008, 2008.11.
18. 福井宣規, 自然免疫システムにおけるDOCK2の役割, 第32回阿蘇シンポジウム, 2008.08.
19. 福井宣規, 免疫系細胞高次機能を司るDOCK2シグナルネットワーク, 第4回ゲノムネットワークプロジェクト公開シンポジウム, 2008.02.
20. 福井宣規, 免疫系細胞高次機能を司るCDMファミリー分子DOCK2, 第18回フォーラム・イン・ドージン「感染症をめぐる宿主の応答と微生物の戦略」, 2007.11.
21. 福井宣規、國崎祐哉、錦見昭彦, DOCK2 is a Rac activator critical for neutrophil chemotaxis, 第36回日本免疫学会総会, 2006.12.
22. 福井宣規, CDMファミリー分子DOCK2による好中球遊走の制御機構, 日本分子生物学会2006フォーラム, 2006.12.
23. Yoshinori Fukui, Remodeling of the actin cytoskeleton in the immune system, 8th FIMSA/IIS advanced immunology course, 2006.02.
24. 福井宣規, リンパ球細胞高次機能を司るCDMファミリー分子DOCK2, 日本蛋白質学会, 2005.07.
25. Fukui Y, Signaling and function of DOCK2, a regulator of the actin cytoskeleton in lymphocytes, German-Japan Immunology Symposium, 2003.12.
26. Fukui Y, Remodeling of the actin cytoskeleton by the CDM family protein DOCK2: its critical role in migration and function of lymphocytes, 日本免疫学会, 2003.12.
27. 福井 宣規, T細胞の分化・活性化を制御する抗原認識の分子基盤, 日本免疫学会, 2003.12.
28. 福井宣規、笹月健彦, MHCによるT細胞レパートリー選択の分子機構と自己免疫疾患, 日本医学会総会, 2003.05.
29. Fukui Y, Remodeling of actin cytoskeleton by the CDM family protein DOCK2: its critical role in migration and function of lymphocytes, International Symposium on Regulation of Immune Response in Health and Disease, 2003.02.
30. Fukui Y, Critical roles of the CDM family protein DOCK2 in migration and function of lymphoyctes., The Awaji International Forum on Infection and Immunity, 2002.08.
31. Fukui Y. and Sasazuki T, A novel cytoskeleton-regulating protein, DOCK2: its critical role in migration and function of lymphocytes, International Workshop Kyoto T cell Conference, 2002.04.
特許出願・取得
特許出願件数  5件
特許登録件数  0件
その他の優れた研究業績
2006.01, Nature/Alliance for Cell Signaling (AfCS)では、生体機能に重要と考えられるシグナル伝達分子を対象に、Molecular Pageと呼ばれるデータベースの構築を行っている。当該研究者は、Nature Publishing Groupeからの依頼を受け、DOCK2のMolecular Pageを担当している。.
学会活動
所属学会名
Kyoto T cell Conference
日本免疫学会
学協会役員等への就任
2006.10, 免疫学会, 評議員.
2003.04, Kyoto T cell Conference, 運営委員.
学会大会・会議・シンポジウム等における役割
2008.12.01~2008.12.03, 免疫学会, 座長(Chairmanship).
2006.12, 日本分子生物学会フォーラム, 座長(Chairmanship).
2003.12, 日本免疫学会, 座長(Chairmanship).
学会誌・雑誌・著書の編集への参加状況
2017.01~2020.01, International Immunology, 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2012年度      
2009年度      
2008年度      
2007年度      
2006年度    
2005年度        
2004年度        
2003年度        
2002年度        
その他の研究活動
海外渡航状況, 海外での教育研究歴
スタンフォード大学/ハワードヒューズ医学研究所, UnitedStatesofAmerica, 1993.04~1995.03.
外国人研究者等の受入れ状況
2006.10, 1ヶ月以上, China Aguricultural University, China, 文部科学省.
受賞
文部科学大臣表彰科学技術賞, 文部科学省, 2013.04.
日本免疫学会賞, 日本免疫学会, 2003.12.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2024年度~2026年度, 基盤研究(B), 代表, 免疫細胞特異的Rac活性化因子Dock2によるアレルギー性気道炎症制御の分子基盤.
2019年度~2021年度, 基盤研究(A), 代表, 硫酸基転移酵素SULT2B1bの発現制御機構と生体機能の統合的理解.
2016年度~2018年度, 基盤研究(A), 代表, リジン水酸化酵素Jmjd6を介したAire発現制御の分子基盤とその進化学的考察.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。