Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Takashi Baba Last modified date:2020.09.28

Associate Professor / Sex differences (Molecular Biology)
Department of Molecular Biology
Faculty of Medical Sciences

Graduate School

E-Mail *Since the e-mail address is not displayed in Internet Explorer, please use another web browser:Google Chrome, safari.
 Reseacher Profiling Tool Kyushu University Pure
Lab web site .
Academic Degree
Ph. D
Country of degree conferring institution (Overseas)
Field of Specialization
Molecular Biology
Total Priod of education and research career in the foreign country
Outline Activities
My research interest is to elucidate the molecular mechanism underlying the regulation of energy metabolism by nuclear receptors.
Research Interests
  • Elucidation of sex-specific functions of adrenal cortex cells.
    keyword : Adrenal cortex, Sex difference
  • Elucidation of the mechanism inducing sex differences in energy metabolism in skeletal muscle.
    keyword : Skeletal muscle, sex difference
  • Identification of sex differences in chromatin structure established by histone demethylases encoded by sex chromosomes.
    keyword : sex chromosome, histone demethylase (Utx, Uty, Smcx, Smcy)
  • Energy metabolism regulated by a nuclear receptor, Ad4BP.
    keyword : Metabolism
  • Regulation of cellular energy production by nuclear receptor, Ad4BP/SF-1.
    keyword : glycolysis, regulation of gene expression, energy production
  • Identification of mechanism of the establishment of sex differences
    keyword : Chromatin modification, sex difference
Academic Activities
1. Soyun Han, Takashi Baba, Shogo Yanai, Dong Jun Byun, Ken-Ichirou Morohashi, Jae-Hong Kim, Man Ho Choi , GC-MS-based metabolic signatures reveal comparative steroidogenic pathways between fetal and adult mouse testes., Andrology, 10.1111/andr.12893., PMID: 32810374, 2020.08, Background: Previous studies on gonadal steroidogenesis have not compared metabolic pathways between fetal and adult mouse testes to date.
Objectives: To evaluate comparative metabolic signatures of testicular steroids between fetus and adult mice using gas chromatography-mass spectrometry (GC-MS)-based steroid profiling.
Materials and methods: GC-MS with molecular-specific scan modes was optimized for selective and sensitive detection of 23 androgens, 7 estrogens, 14 progestogens, and 13 corticoids from mouse testes with a quantification limit of 0.1-5.0 ng/mL and reproducibility (coefficient of variation: 0.3%-19.9%). Based on 26 steroids quantitatively detected in testes, comparative steroid signatures were analyzed for mouse testes of 8 fetuses on embryonic day 16.5 and 8 adults on postnatal days 56-60.
Results: In contrast to large amounts of steroids in adult testes (P < .0002), all testicular levels per weight unit of protein were significantly increased in fetal testes (P < .002, except 6β-hydroxytestosterone of P = .065). Both 11β-hydroxyandrostenedione and 7α-hydroxytestosterone were only measurable in fetal testes, and metabolic ratios of testosterone to androstenediol and androstenedione were also increased in fetal testes (P < .05 for both).
Discussion and conclusion: Testicular steroid signatures showed that both steroidogenic Δ4 and Δ5 pathways in the production of testosterone were activated more during prenatal development. Both 7α- and 11β-hydroxylations were predominant, while hydroxylations at C-6, C-15, and C-16 of testosterone and androstenedione were decreased in the fetus. The present GC-MS-based steroid profiling may facilitate understanding of the development of testicular steroidogenesis..
2. Yokoyama, Chikako; Chigi, Yuta; Baba, Takashi; Ohshitanai, Atsushi; Harada, Yumi; Takahashi, Fumiya; Morohashi, Ken-ichirou, Three populations of adult Leydig cells in mouse testes revealed by a novel mouse HSD3B1-specific rat monoclonal antibody, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 10.1016/j.bbrc.2019.02.100, 511, 4, 916-920, 2019.04.
3. Katoh-Fukui, Yuko; Baba, Takashi; Sato, Tetsuya; Otake, Hiroyuki; Nagakui-Noguchi, Yuko; Shindo, Miyuki; Suyama, Mikita; Ohkawa, Yasuyuki; Tsumura, Hideki; Morohashi, Ken-ichirou; Fukami, Maki, Mouse polycomb group gene Cbx2 promotes osteoblastic but suppresses adipogenic differentiation in postnatal long bones, BONE, 10.1016/j.bone.2018.10.021, 120, 219-231, 2019.03.
4. Inoue M, Baba T, Morohashi KI., Recent progress in understanding the mechanisms of Leydig cell differentiation, Molecular and Cellular Endocrinology, 10.1016, 15;468:39-46, 2018.06.
5. Baba T, Otake H, Inoue M, Sato T, Ishihara Y, Moon JY, Tsuchiya M, Miyabayashi K, Ogawa H, Shima Y, Wang L, Sato R, Yamazaki T, Suyama M, Nomura M, Choi MH, Ohkawa Y, Morohashi KI., Ad4BP/SF-1 regulates cholesterol synthesis to boost the production of steroids, Communications Biology, 10.1038/s42003-018-0020-z, 18, 2018.02.
6. Shu JS, 馬場 崇, Huang JY, Ogawa H, Hsieh CH, Hu JX, Chen TY, Lin TC, Tsuchiya M, Ken-ichirou Morohashi, Huang BM, Lu FL, Wang CY, Lysosomal activity maintains glycolysis and cyclin E1 expression by mediating Ad4BP/SF-1 stability for proper steroidogenic cell growth, SCIENTIFIC REPORTS, 10.1038/s41598-017-00393-4, 7, 2017.03.
7. 宍戸祐里菜, 馬場 崇, Sato Tetsuya, Shima Y, Miyabayashi K, 井上 実紀, Akiyama H, Kimura H, Kanai Y, Ishihara Y, Haraguchi S, Miyazaki A, Rozman D, Yamazaki T, Choi MH, Ohkawa, Y, M. Suyama, Ken-ichirou Morohashi, Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells, SCIENTIFIC REPORTS, 10.1038/srep41912, 7, 2017.02.
8. Igarashi M, Takasawa K, Hakoda A, Kanno J, Takada S, Miyado M, 馬場 崇, Ken-ichirou Morohashi, Tajima T, Hata K, Nakabayashi K, Matsubara Y, Sekido R, Ogata T, Kashimada K, Fukami M, Identical NR5A1 Missense Mutations in Two Unrelated 46,XX Individuals with Testicular Tissues, HUMAN MUTATION, 10.1002/humu.23116, 38, 1, 39-42, 2017.01.
9. 井上実紀, 馬場 崇, 諸橋 憲一郎, Isolation and characterization of fetal Leydig progenitor cells of male mice., Endocrinology, 157, 1222-1233, 2016.01.
10. Katoh-Fukui, Yuko; Igarashi, Maki; Nagasaki, Keisuke; Horikawa, Reiko; Nagai, Toshiro; Tsuchiya, Takayoshi; Suzuki, Erina; Miyado, Mami; Hata, Kenichiro; Nakabayashi, Kazuhiko; Hayashi, Keiko; Matsubara, Yoichi; Baba, Takashi; Morohashi, Ken-ichirou; Igarashi, Arisa; Ogata, Tsutomu; Takada, Shuji; Fukami, Maki, Testicular dysgenesis/regression without campomelic dysplasia in patients carrying missense mutations and upstream deletion of SOX9, Mol. Genet. Genom. Med., 10.1002/mgg3.165, 3, 6, 550-557, 2015.11.
11. Shima, Yuichi; Matsuzaki, Sawako; Miyabayashi, Kanako; Otake, Hiroyuki; Baba, Takashi; Kato, Shigeaki; Huhtaniemi, Ilpo; Morohashi, Ken-ichirou, Fetal Leydig Cells Persist as an Androgen-Independent Subpopulation in the Postnatal Testis, MOLECULAR ENDOCRINOLOGY, 10.1210/me.2015-1200, 29, 11, 1581-1593, 2015.11.
12. Miyabayashi, Kanako; Tokunaga, Kaori; Otake, Hiroyuki; Baba, Takashi; Shima, Yuichi; Morohashi, Ken-ichirou, Heterogeneity of Ovarian Theca and Interstitial Gland Cells in Mice, PLOS ONE, 10.1371/journal.pone.0128352, 10, 6, 2015.06.
13. Yokoyama, Atsushi; Igarashi, Katsuhide; Sato, Tetsuya; Takagi, Kiyoshi; Otsuka, Maky, I; Shishido, Yurina; Baba, Takashi; Ito, Ryo; Kanno, Jun; Ohkawa, Yasuyuki; Morohashi, Ken-ichirou; Sugawara, Akira, Identification of Myelin Transcription Factor 1 (MyT1) as a Subunit of the Neural Cell Type-specific Lysine-specific Demethylase 1 (LSD1) Complex, J. Biol. Chem., 10.1074/jbc.M114.566448, 289, 26, 18152-18162, 2014.06, Regulation of spatiotemporal gene expression in higher eukaryotic cells is critical for the precise and orderly development of undifferentiated progenitors into committed cell types of the adult. It is well known that dynamic epigenomic regulation (including chromatin remodeling and histone modifications by transcriptional coregulator complexes) is involved in transcriptional regulation. Precisely how these coregulator complexes exert their cell-type and developing stage-specific activity is largely unknown. In this study, we aimed to isolate the histone demethylase LSD1 complex from neural cells by biochemical purification. In so doing, we identified MyT1 as a novel LSD1 complex component. MyT1 is a neural cell-specific zinc finger factor and it forms a stable multiprotein complex with LSD1 through direct interaction. Target gene analysis using microarray and ChIP assays revealed that the Pten gene was directly regulated by the LSD1-MyT1 complex. Knockdown of either LSD1 or MyT1 derepressed the expression of endogenous target genes and inhibited cell proliferation of a neuroblastoma cell line, Neuro2a. We propose that formation of tissue-specific combinations of coregulator complexes is a critical mechanism for tissue-specific transcriptional regulation..
14. Baba, Takashi; Otake, Hiroyuki; Sato, Tetsuya; Miyabayashi, Kanako; Shishido, Yurina; Wang, Chia-Yih; Shima, Yuichi; Kimura, Hiroshi; Yagi, Mikako; Ishihara, Yasuhiro; Hino, Shinjiro; Ogawa, Hidesato; Nakao, Mitsuyoshi; Yamazaki, Takeshi; Kang, Dongchon; Ohkawa, Yasuyuki; Suyama, Mikita; Chung, Bon-Chu; Morohashi, Ken-Ichirou, Glycolytic genes are targets of the nuclear receptor Ad4BP/SF-1, NATURE COMMUNICATIONS, 10.1038/ncomms4634, 5, 2014.04, Genetic deficiencies in transcription factors can lead to the loss of certain types of cells and tissue. The steroidogenic tissue-specific nuclear receptor Ad4BP/SF-1 (NR5A1) is one such gene, because mice in which this gene is disrupted fail to develop the adrenal gland and gonads. However, the specific role of Ad4BP/SF-1 in these biological events remains unclear. Here we use chromatin immunoprecipitation sequencing to show that nearly all genes in the glycolytic pathway are regulated by Ad4BP/SF-1. Suppression of Ad4BP/SF-1 by small interfering RNA reduces production of the energy carriers ATP and nicotinamide adenine dinucleotide phosphate, as well as lowers expression of genes involved in glucose metabolism. Together, these observations may explain tissue dysgenesis as a result of Ad4BP/SF-1 gene disruption in vivo. Considering the function of estrogen-related receptor α, the present study raises the possibility that certain types of nuclear receptors regulate sets of genes involved in metabolic pathways to generate energy carriers..
15. Miyabayashi, Kanako; Katoh-Fukui, Yuko; Ogawa, Hidesato; Baba, Takashi; Shima, Yuichi; Sugiyama, Noriyuki; Kitamura, Kunio; Morohashi, Ken-ichirou, Aristaless Related Homeobox Gene, Arx, Is Implicated in Mouse Fetal Leydig Cell Differentiation Possibly through Expressing in the Progenitor Cells, PLoS One., 10.1371/journal.pone.0068050, 8, 6, 2013.06, Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage..
16. Shima, Yuichi; Miyabayashi, Kanako; Haraguchi, Shogo; Arakawa, Tatsuhiko; Otake, Hiroyuki; Baba, Takashi; Matsuzaki, Sawako; Shishido, Yurina; Akiyama, Haruhiko; Tachibana, Taro; Tsutsui, Kazuyoshi; Morohashi, Ken-ichirou, Contribution of Leydig and Sertoli Cells to Testosterone Production in Mouse Fetal Testes, Mol. Endocrinol., 10.1210/me.2012-1256, 27, 1, 63-73, 2013.01.
17. Shima, Yuichi; Miyabayashi, Kanako; Baba, Takashi; Otake, Hiroyuki; Katsura, Yukako; Oka, Sanae; Zubair, Mohamad; Morohashi, Ken-inchirou, Identification of an Enhancer in the Ad4BP/SF-1 Gene Specific for Fetal Leydig Cells (vol 153, pg 417, 2012), Endocrinology, 10.1210/en.2012-1948, 153, 11, 5686-5686, 2012.11.
18. Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T, Shima Y, Kidokoro T, Kanai Y, Schedl A, Wilhelm D, Koopman P, Okuno Y, Morohashi K., Cbx2, a polycomb group gene, is required for Sry gene expression in mice, Endocrinology, 10.1210/en.2011-1055, 153, 913-924, 2012.01.
19. Keiko Nohara, Takashi Baba, Hikari Murai, Yayoi Kobayashi, Takehiko Suzuki, Yukiyo Tateishi, Michiyo Matsumoto, Noriko Nishimura, and Tomoharu Sano, Genomic DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex- and a dietary-fat-content-dependent manner, Arch. Toxicol., 85, 653-661, 2011.01.
20. Kusaka, Masatomo; Katoh-Fukui, Yuko; Ogawa, Hidesato; Miyabayashi, Kanako; Baba, Takashi; Shima, Yuichi; Sugiyama, Noriyuki; Sugimoto, Yukihiko; Okuno, Yasushi; Kodama, Ryuji; Iizuka-Kogo, Akiko; Senda, Takao; Sasaoka, Toshikuni; Kitamura, Kunio; Aizawa, Shinichi; Morohashi, Ken-ichirou, Abnormal Epithelial Cell Polarity and Ectopic Epidermal Growth Factor Receptor (EGFR) Expression Induced in Emx2 KO Embryonic Gonads, Endocrinology, 10.1210/en.2010-0915, 151, 12, 5893-5904, 2010.12.
21. Sato, Yuko; Baba, Takashi; Zubair, Mohamad; Miyabayashi, Kanako; Toyama, Yoshiro; Maekawa, Mamiko; Owaki, Akiko; Mizusaki, Hirofumi; Sawamura, Tatsuya; Toshimori, Kiyotaka; Morohashi, Ken-Ichirou; Kato-Fukui, Yuko, Importance of forkhead transcription factor Fkhl18 for development of testicular vasculature, Mol. Reprod. Dev., 10.1002/mrd.20888, 75, 9, 1361-1371, 2008.09.
22. Fukami, Maki; Wada, Yuka; Okada, Michiyo; Kato, Fumiko; Katsumata, Noriyuki; Baba, Takashi; Morohashi, Ken-ichirou; Laporte, Jocelyn; Kitagawa, Motoo; Ogata, Tsutomu, Mastermind-like domain-containing 1 (MAMLD1 or CXorf6) transactivates the Hes3 promoter, augments testosterone production, and contains the SF1 target sequence, J. Biol. Chem., 283, 9, 5525-5532, 2008.02.
23. Kurokawa H, Saito D, Nakamura S, Fukui-katoh Y, Ohta K, Baba T, Morohashi KI, *Tanaka M, Germ Cells are essential for sexually dimorphic gonadogenesis, Proc. Natl. Acad. Sci. USA, 104, 16958-16953, 2007.10.
24. Baba, T; Mimura, J; Nakamura, N; Harada, N; Yamamoto, M; Morohashi, K; Fujii-Kuriyama, Y, Intrinsic function of the aryl hydrocarbon (Dioxin) receptor as a key factor in female reproduction, Mol. Cell. Biol., 10.1128/MCB.25.22.10040-10051.2005, 25, 22, 10040-10051, 2005.11.
25. Baba, T; Mimura, J; Gradin, K; Kuroiwa, A; Watanabe, T; Matsuda, Y; Inazawa, J; Sogawa, K; Fujii-Kuriyama, Y, Structure and expression of the Ah receptor repressor gene, J. Biol. Chem., 276, 35, 33101-33110, 2001.08.
26. Baba, T.; Shima, Y.; Owaki, A.; Mimura, J.; Oshima, M.; Fujii-Kuriyama, Y.; Morohashi, K. -i., Disruption of aryl hydrocarbon receptor (AhR) induces regression of the seminal vesicle in aged male mice, Sex. Dev., 10.1159/000117714, 2, 1, 1-11.
27. Morohashi, K.; Baba, T.; Tanaka, M., Steroid Hormones and the Development of Reproductive Organs, Sex. Dev., 10.1159/000342272, 7, 1-3, 61-79, It has been more than 150 years since the physiological function of androgen was reported for the first time in fowl. This finding has served as a basis for many studies focusing on steroid hormones from various aspects. These studies have significantly enhanced our knowledge about the structures of steroid hormones, their synthetic pathways, enzymes involved in the synthetic pathways, steroid hormone-specific receptors, actions of steroid hormones through receptor binding, and the differentiation of steroidogenic cells. However, there are still many attractive and important issues in these areas, some of which are currently being addressed. In this review, we trace the history and findings of the previous studies on steroid hormones, summarize our present understanding in this area, and discuss issues that remain to be elucidated..
28. 宮林 香奈子, Yuichi Shima, 井上 実紀, Sato Tetsuya, 馬場 崇, Ohkawa, Y, M. Suyama, Ken-ichirou Morohashi, Alterations in Fetal Leydig Cell Gene Expression during Fetal and Adult Development, SEXUAL DEVELOPMENT, 10.1159/000453323, 11, 2, 53-63.
29. Li B, 馬場 崇, Miyabayashi K, Sato Tetsuya, Shima Y, Ichinose T, Miura D, Ohkawa, Y, M. Suyama, Ken-ichirou Morohashi, Role of Ad4-binding protein/steroidogenic factor 1 in regulating NADPH production in adrenocortical Y-1 cells, ENDOCRINE JOURNAL, 64, 3, 315-324.
1. Takashi Baba, Hiroyuki Otake, Miki Inoue, Kanako Miyabayashi, Yuichi Shima, Tetsuya Sato, Yasuyuki Ohkawa, Mikita Suyama, Ken-ichirou Morohashi., ORCHESTRATION OF HOUSEKEEPING AND CELL-SPECIFIC METABOLISM FOR STEROID HORMONE SYNTHESIS BY A SINGLE TRANSCRIPTION FACTOR, Ad4BP/SF-1., 8th International Symposium on the Biology of Vertebrate Sex Determination, 2018.04.
2. 馬場 崇、Bing Li、諸橋 憲一郎, Role of Ad4-Binding Protein/Steroidogenic Factor-1 (Ad4BP/SF-1) in regulating NADPH production in adrenocortical Y-1 cells, Asian Sex Differentiation Network (7th Gonad Biology Joint Meeting), 2017.10.
3. 馬場 崇, 諸橋 憲一郎, Regulation of de novo cholesterol synthesis by a nuclear receptor Ad4BP/SF-1, XVIIth Adrenal Cortex Conference, 2016.03.
4. 馬場 崇, Nuclear receptor and metabolism -Rediscovery of the "Regulon" system-, 19th International Conference on Cytochrome P450, 2015.06.
5. 馬場 崇, Identification of Ad4BP/SF-1 target genes by mRNA-seq and ChIP-seq in Y-1 adrenocortical cells, 6th International Symposium on the Biology of Vertebrate Sex Determination, 2012.04.
Membership in Academic Society
  • American Society for Biochemistry and Molecular Biology
  • The Japan Endocrine Society
  • Dr. Baba gave a presentation entitled “Nuclear Receptors and Metabolism” in the 19th. International Symposium on Cytochrome P450 and received this award.