Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
HIROKI TAMAI Last modified date:2024.04.23

Associate Professor / Civil design and materials
Faculty of Engineering


Graduate School
Undergraduate School


E-Mail *Since the e-mail address is not displayed in Internet Explorer, please use another web browser:Google Chrome, safari.
Homepage
https://kyushu-u.elsevierpure.com/en/persons/hiroki-tamai
 Reseacher Profiling Tool Kyushu University Pure
Phone
092-802-3393
Academic Degree
Ph.D. (Engineering)
Country of degree conferring institution (Overseas)
No
Field of Specialization
Structural Engineering
ORCID(Open Researcher and Contributor ID)
0000-0001-7910-2066
Total Priod of education and research career in the foreign country
01years06months
Research
Research Interests
  • Development of reinforcement method for infrastructure structures using transparent resin
    keyword : transparent resin, polyurea resin, static, impact
    2023.04.
  • Study on the risk of peeling of cover concrete and cross-section restoration
    keyword : cover concrete, cross-section restoration, risk of peeling
    2020.04.
  • A study on characteristics of residual strength of PC members with corrosion
    keyword : corrosion, deterioration, PC member, residual performance
    2020.04.
  • Development of heat/water/structure interaction analysis method for evaluation of concrete failure due to ASR expansion
    keyword : ASR, concrete, fracture, numerical analysis
    2019.04.
  • Study on Failure Process and Ultimate State of Steel Bearing Under Combined Load
    keyword : earthquake, steel bearing, FEM analysis, fracture
    2016.07.
  • A study on impact mitigation characteristics of cushion material for PE pipe
    keyword : PE pipe, cushion material, impact
    2016.07.
  • A study on characteristics of residual strength of RC members with corrosion
    keyword : corrosion, deterioration, RC member, residual performance
    2014.04.
  • Development of analysis simulator for sediment movement and impact by particle-based method
    keyword : DEM, MPS, sediment, analysis
    2013.04~2016.03.
  • A study on dynamic behaviour and damage estimation of cocrete bridge by pounding effect
    keyword : pounding effect, damage
    2005.04~2008.03.
  • A study on evaluation of dynamic performance of bridge restrainer system with rubber cushion
    keyword : bridge restrainer, dynamic performance
    2011.04~2017.03.
  • Large deformation analysis for rubber fender
    keyword : rubber fender, large deformation
    2010.10~2013.03.
  • Development of diagnostic technic for steel plate jacketing concrete based on hammmering sound, surface vibration and elastic wave
    keyword : nondestructive test, steel plate jacketing
    2011.04~2013.03.
  • A study on FE modeling of quantitatively estimating impact response of RC members
    keyword : RC member, FEM, impact response
    2008.04~2012.03.
  • Assessment of residual strength of Reinforced Concrete structure under repeated impact loading
    keyword : residual performance, repeated impact, RC structure
    2005.04.
  • Development of impact response analysis code by using continuum damage mechanics
    keyword : continuum damage mechanics, impact, Reinforced concrete structure
    2003.04~2005.03.
  • Development of Impact response analysis method by using particle method
    keyword : particle method, impact, concrete structure
    2002.04~2003.10.
Academic Activities
Papers
1. Souphavanh Senesavath, Hiroki Tamai, Chi Lu, Yoshimi Sonoda, Strengthening of RC Beams with CFC Panels for Improving Impact Resistance, Applied Sciences, https://doi.org/10.3390/app131910625, 13, 19, 論文番号10625, 2023.10.
2. Yoshimi Sonoda, Hiroki Tamai, Tatsuya Ifuku, Masami Koshiishi, Reinforcing effect of polyurea resin coating on RC members subject to low-speed and medium-speed impact, Advances in Structural Engineering, https://doi.org/10.1177/13694332221088945, Volume: 25 issue: 7, page(s): 1609-1621, 2023.05.
3. Yoshimi Sonoda, Hiroki Tamai, Hirotsugu Ikeda, Seismic Performance of Dam Piers Retrofitted with Reinforced Polymer Cement Mortar, Applied Sciences, https://doi.org/10.3390/app11167255, Volume 11, Issue 16, 7255, 2021.08.
4. Tadaaki Nozawa, Yuki Kobayashi, Yoshimi Sonoda, Hiroki Tamai, A basic study on characteristics of RC beam using ESCON, Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, 10.1201/9780429279119-166, pp.1225-1231, 2021.04.
5. Hiroki Tamai, Chi Lu, Yoichi Yuki, New Design Concept for Bridge Restrainers with Rubber Cushion Considering Dynamic Action: A Preliminary Study, Applied Sciences, https://doi.org/10.3390/app10196847, Volume 10, Issue 19, 6847, 2020.09.
6. Hiroki Tamai, Yoshimi Sonoda, John E. Bolander, Impact resistance of RC beams with reinforcement corrosion: Experimental observations, Construction and Building Materials, 10.1016/j.conbuildmat.2020.120638, 263, 2020.12, Reinforcing steel corrosion is a serious problem that may negatively impact the safety and serviceability of reinforced concrete (RC) structures. To properly maintain and manage RC structures with corroded reinforcement, it is necessary to clarify the relationship between the degree of deterioration and the remaining load capacity. Most previous studies have focused on evaluating the load-bearing capacity of RC beams with corroded reinforcement subjected to quasi-static loads. In contrast, there are relatively few studies on the behavior of corroded RC beams subjected to impact loads, as might occur during natural disasters. In this study, RC beam specimens with varying degrees of reinforcement corrosion are subjected to quasi-static and falling-weight impact load tests. Electrolytical means are employed to induce corrosion. The test results are used to evaluate: 1) the impact resistance of RC beams deteriorated by reinforcement corrosion, including the effects of repetitive impact; and 2) the differing effects of corrosion on static load-carrying performance and impact resistance. The results indicate that, for corrosion degrees higher than 10%, the impact resistance is significantly reduced and the failure mode becomes more brittle. The brittleness can be attributed to, at least in part, interactions between flexural cracking caused by the loading and preexisting damage associated with the corrosion process. Furthermore, the results reveal that reinforcement corrosion has a greater influence on impact resistance than on quasi-static load capacity..
7. Hagere Alemayehu Gibe, Hiroki Tamai, Yoshimi Sonoda, Numerical Study on Failure Process and Ultimate State of Steel Bearing Under Combined Load, Heliyon, https://doi.org/10.1016/j.heliyon.2020.e03764, 6, 4, Heliyon 6 (2020) e03764, 2020.04.
8. Hiroki Tamai, Sota Jinkawa, Yoshimi Snoda, Damage evaluation and protection method of resin pipe for gas conduit subjected to impact load, International Journal of Protective Structures, https://doi.org/10.1177/2041419620902791, Volume 11, Issue 4, page 423-447, 2020.12.
9. 中山歩,玉井宏樹,園田佳巨,神川創太, 材種の異なるガス用樹脂管の耐衝撃性能に関する研究, 第12回構造物の衝撃問題に関するシンポジウム論文集, 2019.12.
10. 曾健恒,園田佳巨,玉井宏樹, CFパネル補強したRC 梁の耐衝撃性能に関する数値研究, 第12回構造物の衝撃問題に関するシンポジウム論文集, 2019.12.
11. Yamazaki Kazuki, Yoshimi Sonoda, Hiroki Tamai, Hiroyuki Yamada, Masahiro Haruguchi, Analytical Study on Dynamic Behavior of Reinforced Dam Pier under Seismic Load, Modern Developments in Performance of Structures under Extreme Loading ~Proceedings of PROTECT 2019~, 944-955, ISBN 978-0-88865-341-3, 2019.09.
12. Hiroki Tamai, Yoshimi Sonoda, A Study on Impact Resistance Performance of RC Member Deteriorated by Reinforcement Corrosion, Modern Developments in Performance of Structures under Extreme Loading ~Proceedings of PROTECT 2019~, 352-363, ISBN 978-0-88865-341-3, 2019.09.
13. Hiroki Tamai, Sota Jinkawa, Yoshimi Sonoda, Ayumi Nakayama, A Comparative Study on Impact Resistance of Plastic Gas Pipes with Different Materials, Modern Developments in Performance of Structures under Extreme Loading ~Proceedings of PROTECT 2019~, 364-374, ISBN 978-0-88865-341-3, 2019.09.
14. Lu Chi, Hiroki Tamai, Yoshimi Sonoda, An Evaluation Method for the Impact Load Carrying Capacity of RC Beam Members under the Influence of ASR, Modern Developments in Performance of Structures under Extreme Loading ~Proceedings of PROTECT 2019~, 277-287, ISBN 978-0-88865-341-3, 2019.09.
15. 山崎航希, 玉井宏樹, 園田佳巨, 鉄筋とポリマーセメントモルタルにより補強された扁平状RC 梁の曲げ耐荷性状に関する研究, コンクリート工学年次論文集, 第41巻, 第2号, 1267-1272, 2019.07.
16. 曾健恒, 玉井宏樹, 園田佳巨, 小尾 博俊, NUMERICAL STUDY ON FAILURE BEHAVIOR OF RC BEAM RETROFITTED BY CFC PANEL UNDER IMPACT LOAD, コンクリート工学年次論文集, 第41巻, 第2号, 703-708, 2019.07.
17. Hiroki Tamai, Yoshimi Sonoda, Impact resistant capacity and failure behaviour of RC slab with corroded reinforcement, Proceedings of the 5th International Conference on Protective Structures, 551-556, ISBN: 978-83-89333-71-1 (e-version), 2018.08.
18. Yoshimi Sonoda, Kazuki Fukunaga, Hiroki Tamai , Impact resistance performance assessment of wire ring net guard fence using full scale test and numerical analysis, Proceedings of the 5th International Conference on Protective Structures, 502-505, ISBN: 978-83-89333-71-1 (e-version), 2018.08.
19. Hiroki Tamai, Chi Lu, Yoshimi Sonoda, An Experimental Study on the Impact Resistance of RC Members with Reinforcement Corrosion, Proceedings of 6th Annual International Conference on Architecture and Civil Engineering, 10.5176/2301-394X_ACE18.128, 336-340, 2018.05.
20. Yoshimi Sonoda, Mari Okamura, Hiroki Tamai, A Fundamental Study on Hammering Sound Test of Deteriorated Concrete Structures, Proceedings of 6th Annual International Conference on Architecture and Civil Engineering, 10.5176/2301-394X_ACE18.118, 89-94, 2018.05.
21. Chi Lu, Hiroki Tamai, Yoshimi Sonoda, A Numerical Study on the Impact Resistant Capacity of RC Beams with Corroded Reinforcement, Procedia Engineering, https://doi.org/10.1016/j.proeng.2017.11.086, 341-348, Volume 210, 2017, Pages 341-348, 2017.12, To evaluate the remaining service life and determine the appropriate timing and method for repair and reinforcement for the reinforced concrete (RC) structures, it is important to quantitatively evaluate the residual load capacity of RC structures deteriorated by rebar corrosion due to chloride attack or neutralization. There have been many studies on the load capacity during static loadings. However, for disaster-prone areas, the evaluation of the residual load should be conducted also against the dynamic and impact loads. In this study, to clarify the impact resistance of the RC beam members with rebar corrosion, a falling weight impact experiment is conducted on the RC beam specimen with accelerated deterioration. Based on the experimental results, the relationship between the degree of deterioration and impact resistance is clarified. To numerically simulate the rebar corrosion by FEM, FE modelling of RC beam with corroded rebar is proposed focusing on the following 3 factors related to the mass loss ratio of the rebar: the reduction of the cross-sectional area of the reinforcement is reproduced by adjusting the parameters of the rebar material; an interface element is defined to describe the reduction of the bond strength; the cracks are generated by subjecting expansion pressure to the concrete. Uneven corrosion model is introduced to simulate the actual corrosion result. By comparing the analytical result with the experimental result, it can be found that the experimental result is accurately reproduced..
22. Hiroki Tamai, Yoshimi Sonoda, A Study on Impact Resistant Capacity of RC Slab with Corroded Reinforcement and its retrofitting method, Proceedings of 6th International Conference on Design and Analysis of Protective Structures, 559-564, 2017.11, The reinforcement corrosion of RC structures due to chloride attack or neutralization is a serious problem to shorten the service life of them. In order to properly maintain and manage the RC structure with corroded reinforcement, it is necessary to clarify the relationship between the degree of deterioration and the remaining loading capacity. However the existing studies mainly focused on the evaluation of the load bearing capacity of RC beams subjected to static load, and there are few studies on the impact loads involved in natural disasters. Considering the fact that the large-scale natural disasters happened more frequently in recent years, it is important to quantitatively evaluate the impact behavior and resistance of the RC structures with corroded reinforcement for disaster-prone countries like Japan. In this study, to clarify the impact resistance of the RC slabs with corroded reinforcement under medium velocity impact by a rigid projectile, a horizontal impact test was conducted on the RC slab specimen with corroded reinforcement made by electrolytic corrosion method. In a series of impact tests, an air-acceleration type horizontal impact test machine like a launcher was used, and a flat nose projectile of a mass of 3kg and a RC slab with 600 mm x 600 mm in length and width, 80 mm in depth were used. Impact velocity was set to 15m/s. Through the impact tests, the difference of impact response and fracture pattern between the RC slabs without and with corroded reinforcement was clarified as a fundamental information. The relationship between the degree of corrosion and impact resistance of the slabs was also clarified. In addition, we tried to clarify the impact resistance improvement effect of RC slab retrofitted by continuous fiber composite panel (CFC panel) which has already been applied to repair and reinforcement such as renewal of tunnel lining and seismic reinforcement of pillar parts..
23. Yang Sun, Hiroki Tamai, Yoshimi Sonoda and Hirotoshi Obi, Experimental study on impact resistance of corroded rc beams reinforced by CFC plate, Proceedings of the 12th International Conference on Shock & Impact Loads on Structures, 978-981-11-2850-9, 409-418, 2017.06, In recent years, as the aging of existing reinforced concrete (RC) structures is progressing, research on reinforcement and repair methods has become a concern. However, most of these researches mainly focus on the study of static behaviour for RC structures. Therefore, it is necessary to clarify the decrement of the impact resistance of the protective structure that is expected to be subjected to impact loads due to deterioration damage. It is important to provide an appropriate repairing and reinforcing method. From these backgrounds, in this research, we first attempted to corrode the rebar by electrolytic corrosion and to do the drop weight impact test to clarify the decrement of the impact resistance of the RC beam due to deterioration. Furthermore, by doing the same test, we tried to clarify the impact improvement effect of RC beam reinforced by continuous fiber composite panel (CFC panel) which has already been applied to repair and reinforcement such as renewal of tunnel lining and seismic reinforcement of pillar parts. As a result, we could get some findings. Firstly, reinforcement with CFC panel can greatly improve the
impact resistance of the RC beam by reinforcing the bottom surface or three surfaces of the RC beam, and it was confirmed that this tendency does not depend on the deterioration degree before reinforcement. Second, although the upper surface reinforcement does not exert much effects on the deformation of the RC beam, it was found that it is effective for preventing the compressive failure of the collision surface..
24. Chi Lu, HIROKI TAMAI, YOSHIMI SONODA, A STUDY ON IMPACT COMPRESSIVE PROPERTIES OF CUSHION RUBBER FOR CABLE BRIDGE RESTRAINERS, 4th International Conference on Protective Structures, 476-485, 2016.10.
25. Yoichi Yuki, HIROKI TAMAI, Hironori Ishii, YOSHIMI SONODA, Toshihiro Kasugai, Weight-drop tests of bridge restrainers under large weights, 11th German Japanese Bridge Symposium, 2016.08.
26. HIROKI TAMAI, ISAO KUWAHARA, YOSHIMI SONODA, A STUDY ON THE EFFECT OF CORROSION RATE OF REINFORCING STEEL ON ITS EXPANSION PRESSURE AND LOAD BEARING CAPACITY OF RC BEAM, 41st Conference on OUR WORLD IN CONCRETE & STRUCTURES, 275-284, 2016.08.
27. ISAO KUWAHARA, HIROKI TAMAI, YOSHIMI SONODA, Experimental Study on Impact Load Resistance of RC Beam with Corroded Reinforcement, MATEC Web of Conferences, 47, 02004-p1-02004-p7, 2016.04.
28. Hariyadi, HIROKI TAMAI, Enhancing the performance of porous concrete by utilizing the pumice aggregate, Elsevier: Procedia Engineering, 125, 732-738, 2015.11.
29. HIROKI TAMAI, ISAO KUWAHARA, YOSHIMI SONODA, An experimental study on static and impact load resistance of RC beam with corroded reinforcement, Proceedings of 40th Conference on OUR WORLD IN CONCRETE & STRUCTURES, 467-474, 2015.08.
30. HIROKI TAMAI, YOSHIMI SONODA, Evaluation of cumulative damage of RC members under repeated impact loading, Applied Mechanics and Materials, 784, 500-507, 2015.07.
31. HIROKI TAMAI, YOICHI YUKI, YOSHIMI SONODA, TOSHIHIRO KASUGAI, A study on shock absorbing properties of rubber pieces for bridge seismic restrainers, Proceedings of the Fifth International Workshop on Performance, Protection & Strengthening of Structures Under Extreme Loading (PROTECT 2015), 27-35, 2015.06.
32. Kozo Onoue, HIROKI TAMAI, Hendro Suseno, Shock-absorbing capability of lightweight concrete utilizing volcanic pumice aggregate, Elsevier: Construction and Building Materials, 83, 261-274, 2015.05.
33. HIROKI TAMAI, LU CHI, YOSHIMI SONODA, FUNDAMENTAL STUDY ON EVALUATION OF IMPACT LOAD OF COLLAPSED SOIL BY EXTENDED DISTINCT ELEMENT METHOD, Proceedings of 11th International Conference on Shock & Impact Loads on Structures, 27-35, 2015.05.
34. YOSHIMI SONODA, HIROKI TAMAI, Damage evaluation of the existing PC bridge by vehicle collision using numerical analysis, Proceedings of the 3rd International Conference on Protective Structures ICPS3, 550-560, 2015.02.
35. Shinobu Sano, HIROKI TAMAI, Yoshihiko Murata, YOSHIMI SONODA, Numerical study on a thermal crack control effect of concrete structures using delayed-setting mortar, Proceedings of 39th conference on Our World in Concrete & Structures, XXXⅢ, 425-434, 2014.08.
36. HIROKI TAMAI, Mariko Uno, Yoichi Yuki, YOSHIMI SONODA, Toshihiro Kasugai, A Study on the Effectiveness of Energy Absorbing Rubber in Pin-Fixed Cable Restrainer of a Bridge, International Journal of Protective Structures, 5, 2, 219-237, 2014.06, The Japanese specifications for highway bridges require unseating
prevention devices to be installed on bridges as necessary. Recently, a
new type of cable restrainer was developed where the assembly allows
the cable to rotate without restriction on the brackets’ mounting angle.
Cylindrical rubber pieces are inserted around pins to absorb impact
forces. However, no standard design method has been established for
the shock absorbers so far. This paper presents the impact-resisting
characteristics of a pin-fixed cable device; design indications for shock
absorbers were acquired based on the results of impact tests on bracket
models of actual restrainers. The results showed that the pin-fixed
restrainers had sufficient impact resistance for all tested sizes and that
the maximum impact load showed consistent trends. Finite element
analysis was also performed on the device assuming hyper-elastic
bodies for rubber pieces. The numerical results sufficiently represented
the impact response trend obtained from the experimental results..
37. Yoichi Yuki, HIROKI TAMAI, Naoki Wada, YOSHIMI SONODA, Toshihiro Kasugai, A Fundamental Study on the Shock Cushioning Characteristics of a Novel pin-Fixed Aseismatic Connector for Bridges, Applied Mechanics and Materials, 566, 637-642, 2014.06, This paper presents a novel pin-fixed aseismatic connector for bridges. A feature of this device is that the anchorage areas of both ends are connected with hinges; thus, there are no restrictions with respect to their mounting angles. Additionally, the PC cable of this device is given an appropriate amount of sag; thus, within the range of the sag the structure is capable of absorbing the amount of displacement because of temperature changes and live loads. In addition, this device has a certain shock-cushioning effect because of the rubber material surrounding the hinge pins. However, there is no quantitative evaluation method on the shock-cushioning effect of this device. Therefore, in this study, the shock-cushioning effect of the novel pin-fixed aseismatic connector for bridges is investigated using impact load tests and numerical analysis. It is found that the shock-cushioning effect of this device is almost equal to similar aseismatic connectors. Furthermore, it is also confirmed that their effects can be quantitatively evaluated using impact response analysis..
38. Mariko Uno, HIROKI TAMAI, Yoichi Yuki, YOSHIMI SONODA, Toshihiro Kasugai, A study on the impact resistance of pin fixed cable restrainers for bridges, Proceedings of 10th International conference on Shock and Impact Loads on Structures, 471-480, 2013.11, The Japanese Specification for Highway Bridges requires the installation of unseating prevention device on bridges identified as necessary. Recently, a new type of cable restrainer was developed, whose assembly allows the cable to rotate and creates no restriction to their brackets’ mounting angle. Cylindrical rubbers are inserted around pins to absorb impact forces. However, no standard design method of the shock absorber has been established yet. This paper presents the study of the impact resisting characteristics of the pin-fixed cable device with a goal of developing the appropriate design method of the shock absorbing rubbers by conducting impact load tests on bracket models of the actual restrainers. As a result, it was observed that pin fixed restrainer has sufficient impact resistance and that there are some trends with maximum impact load. We have also conducted FE analyses on the device assuming the hyper-elastic behaviour of three-parameter Mooney-Rivlin model. The analyses could nearly demonstrate the impact response trend obtained from the conducted experiments..
39. HIROKI TAMAI, Seongbong Cheon, Satoshi Goya, YOSHIMI SONODA, Case study of damage of PC bridge by vehicle collision and its numerical analysis, Proceedings of 10th International conference on Shock and Impact Loads on Structures, 451-460, 2013.11, Accidental collisions occur frequently between bridge superstructures and over-height vehicles passing under the bridges. In order to keep the damaged bridge in a serviceable state, it is important to conduct quantitative evaluation of its damage level and residual performance. In this study, we performed FE simulation of an actual collision accident between PC girder and container truck, and confirmed that the simulation reproduced the condition of damage from the actual incident such as cracks and deformation. In addition, we conducted the collision analyses assuming various collision cases and also static vertical loading analyses of PC girder received collision. The analyses elucidate the effect of collision speed, collision angle, gross vehicle weight on the damage of PC girder. Based on results of each analysis, the correlation of damage and residual performance is assessed..
40. YOICHI YUKI, HIROKI TAMAI, NAOKI WADA, YOSHIMI SONODA, TOSHIHIRO KASUGAI, A fundamental study on the shock cushioning characteristic of a new pin fixed aseismatic connector for bridges, Proceedings of the 8th International Symposium on Impact Engineering, 2013.08.
41. HIROKI TAMAI, YOSHIMI SONODA, A fundamental study on the impact resistance of damaged RC slab under single and repeated low-velocity impact, Proceedings of 4th International Workshop on Performance, Protection, and Strengthening of Structures under Extreme Loading-PROTECT2013, 2013.08.
Presentations
1. Yin Yifan,園田 佳巨,玉井 宏樹, A FUNDAMENTAL STUDY ON RISK ASSESSMENT BY USING HAMMERING SOUND TEST ON CONCRETE STRUCTURE UNDER REPEATED IMPACT, 土木学会第76回年次学術講演会, 2021.09.
2. Gibe Hagere, 玉井 宏樹, 園田 佳巨, NUMERICAL STUDY ON FAILURE PROCESS AND ULTIMATE STATE OF STEEL BEARING UNDER COMBINED LOAD, 土木学会第74回年次学術講演会, 2019.09.
3. 曾 健恒, 玉井 宏樹, 園田 佳巨, 小尾 博俊, 池山 正和, Experimental Study on Impact Resistance of RC beam Reinforced by CF Panel and Polyurea Resin, 土木学会第74回年次学術講演会, 2019.09.
4. ZENG JIANHENG, Hiroki Tamai, Yoshimi Sonoda, Numerical Study on Failure behavior of RC Beam Retrofitted by CFC Panel under Impact Load, 第6回九州橋梁・構造工学研究会シンポジウム, 2018.12.
5. GIBE HAGERE, Yoshimi Sonoda, Hiroki Tamai, Kohei Noda, Numerical study on failure process and ultimate state of steel bearing under combined load, 第6回九州橋梁・構造工学研究会シンポジウム, 2018.12.
6. Chi Lu, Yoshimi Sonoda, Hiroki Tamai, An evaluation method for the impact load carrying capacity of RC beam members under the influence of ASR, 第6回九州橋梁・構造工学研究会シンポジウム, 2018.12.
7. Chi Lu, Hiroki Tamai, Yoshimi Sonoda, Isao Kuwahara, A study on the load bearing capacity and impact resistance of RC beams with corroded reinforcement by FEM, 平成29年度土木学会全国大会第72回年次学術講演会, 2017.09, In disaster-prone Japan, the number of the reinforced concrete
(RC) structures with reinforcement corrosion are increasing,
which makes it important for the evaluation of the residual load
capacity of these structures to be conducted against not only the
static loads but also the dynamic and impact loads. In this study,
a FEM model for the RC beams with reinforcement corrosion is
proposed, then the influence of reinforcement corrosion on load
bearing capacity and impact resistance is numerically evaluated..
8. Hiroki Tamai, Yang Sun, Yoshimi Sonoda, Hirotoshi Obi, A BASIC STUDY ON IMPACT RESISTANCE OF RC BEAMS REINFORCED BY CONTINUOUS FIBER COMPOSITE PANEL, 平成29年度土木学会全国大会第72回年次学術講演会, 2017.09, In recent years, as the aging of existing RC structures is
progressing, research on reinforcement and repair methods
has become a concern. However, most of these researches
mainly focus on the study of static behavior for RC
structures. Therefore, it is necessary to clarify the
decrement of the impact resistance of the protective
structure that is expected to be subjected to impact loads
due to deterioration damage. It is important to provide an
appropriate repairing and reinforcing method. From these
backgrounds, in this research, we first attempted to corrode
the rebar by electrolytic corrosion and to do the drop
weight impact test to clarify the decrement of the impact
resistance of the beam due to deterioration. Furthermore,
by doing the same test, we tried to clarify the impact
improvement effect of the beam reinforced by continuous
fiber composite panels (CFC panel) which has already
been applied to repair and reinforcement such as renewal
of tunnel lining and seismic reinforcement of pillar parts..
9. Hamidun Mohd Noh, 園田 佳巨, 玉井 宏樹, 桑原 功旺, A Coupling Analysis of Chemical-Mechanical Damage In Reinforced Concrete Beams, 第4回九州橋梁・構造工学研究会シンポジウム, 2016.12.
10. 路 馳, 玉井 宏樹, 園田 佳巨, A study on flow and impact loading characterisitics of collapsed soil dy Extended DEM, 2015年度土木学会全国大会第70回年次学術講演会, 2015.09.
11. 路 馳, 玉井 宏樹, 園田 佳巨, Fundamental study on impact loading characteristic of collapsed soil by Extended Distinct Element Method, 平成26年度土木学会西部支部研究発表会, 2015.03.
12. 宇野 まり子, 玉井 宏樹, 園田 佳巨, 結城 洋一, 春日井 敏博, AN EXPERIMENTAL STUDY OF THE EFFECT OF SURROUNDING CONFINEMENT ON IMPACT RESISTANCE OF SHOCK-ABSORBING RUBBER, Korea-Japan-Taiwan 2014 Joint Seminar on Civil Engineering, 2014.08.
13. HIROKI TAMAI, Seongbong Cheon, SATOSHI GOYA, YOSHIMI SONODA, Case study of damage of PC bridge by vehicle collision and its numerical analysis, 10th International conference on Shock and Impact Loads on Structures, 2013.11, Accidental collisions occur frequently between bridge superstructures and over-height vehicles passing under the bridges. In order to keep the damaged bridge in a serviceable state, it is important to conduct quantitative evaluation of its damage level and residual performance. In this study, we performed FE simulation of an actual collision accident between PC girder and container truck, and confirmed that the simulation reproduced the condition of damage from the actual incident such as cracks and deformation. In addition, we conducted the collision analyses assuming various collision cases and also static vertical loading analyses of PC girder received collision. The analyses elucidate the effect of collision speed, collision angle, gross vehicle weight on the damage of PC girder. Based on results of each analysis, the correlation of damage and residual performance is assessed..
14. HIROKI TAMAI, SATOSHI GOYA, YOSHIMI SONODA, A fundamental study on the impact resistance of damaged RC slab under single and repeated low-velocity impact, 4th International Workshop on Performance, Protection, and Strengthening of Structures under Extreme Loading-PROTECT2013, 2013.08, Recently, in Japan, there has been an increase of research to develop the performance-based design code for protective structures. Especially, as a basic research, many researchers have investigated numerical and experimental method, to evaluate dynamic behavior of RC members under single and repeated impact loading. We also have tried to develop the FE analysis method based on continuum damage mechanics to quantitatively evaluate the impact behavior and the cumulative damage of RC members under single and repeated impact loading. However, those many studies focused on newly constructed RC members are not taking account for initial damage due to aging deterioration such as rebar corrosion and effects of previous impacts. Since the number of aged RC structures continue to increase in Japan, quantitative evaluation for load-carrying capacity and impact resistance of damaged RC structure is of considerable significance. In this study, to quantitatively evaluate the impact resistance of damaged RC members by using numerical technique, we used a FEM approach. This approach consists of strain-rate effect and cumulative damage for concrete in order to appropriately evaluate dynamic response of RC members under low velocity impact loading. In addition, we tried to construct a FE modeling for damaged RC members due to rebar corrosion by decreasing of effective cross section area and degrading of bond performance. We conducted impact response analyses of damaged RC members under single and repeated impact loading by using this approach, and we investigated the differences of dynamic response and impact resistance compared to newly constructed RC members..
Membership in Academic Society
  • Kyushu Society for Engineering Education
  • International Association of Protective Structures
Educational
Educational Activities
Provides guidance and assistance for master's research and graduation research. In undergraduate classes, I am mainly in charge of classroom lectures for the KIKAN education ”Fundamentals of Mechanics”, the required specialized courses "Structural Mechanics I", as well as the specialized education "Civil Engineering Practice (in charge of multiple themes in the structural and concrete fields)", "Basic Civil Engineering Exercises (Structural Mechanics)", and "Project Manufacturing Exercises". At graduate school, I teach the subject of "Advanced Structural Analysis".