Updated on 2025/04/03

Information

 

写真a

 
MASUDA TAKAHIRO
 
Organization
Medical Institute of Bioregulation Medical Research Center for High Depth Omics Professor
Graduate School of Medical Sciences Department of Medical Sciences(Concurrent)
Graduate School of Medical Sciences Department of Medicine(Concurrent)
Title
Professor
Contact information
メールアドレス

Research Areas

  • Life Science / Pharmacology

  • Life Science / Neuroscience-general

  • Life Science / Clinical pharmacy

  • Life Science / Immunology

Degree

  • Ph.D.

Research History

  • Kyushu University  Distinguished professor 

    2024.10 - Present

      More details

  • Kyushu University Medical Institute of Bioregulation Professor 

    2023.1 - Present

      More details

  • Kyushu University 大学院薬学研究院 Associate Professor 

    2021.6 - 2022.12

      More details

  • 2015.5-2017.5 University of Freiburg (Germany), Visiting Scientist(日本学術振興会・海外特別研究員) 2017.6-2020.2 University of Freiburg (Germany), Postdoc   

Research Interests・Research Keywords

  • Research theme: 脳境界生物学

    Keyword: 脳境界生物学

    Research period: 2024

  • Research theme: CNS border-associated macrophages

    Keyword: CNS border-associated macrophages

    Research period: 2024

  • Research theme: 脳内免疫

    Keyword: 脳内免疫

    Research period: 2024

  • Research theme: Neurodegenerative disorder

    Keyword: Neurodegenerative disorder

    Research period: 2024

  • Research theme: 発生

    Keyword: 発生

    Research period: 2024

  • Research theme: 1細胞解析

    Keyword: 1細胞解析

    Research period: 2024

  • Research theme: Microglia

    Keyword: Microglia

    Research period: 2024

  • Research theme: Understanding the nature of CNS macrophages

    Keyword: microglia, CAMs, central nervous system

    Research period: 2020.3

Awards

  • 第7回日本医療研究開発大賞 AMED理事長賞

    2025.1   内閣府  

     More details

  • 第20回(令和5年度)日本学術振興会賞

    2023.12   日本学術振興会   脳内マクロファージの統合的理解に向けた多角的研究

     More details

    研究業績「脳内マクロファージの統合的理解に向けた多角的研究」において、第20回日本学術振興会賞受賞者に選ばれた。

  • 2023年度日本神経化学会 優秀賞

    2023.7   日本神経化学会   脳内マクロファージの統合的理解に向けた研究

  • 第1回 石館・上野賞

    2022.11   公益財団法人 中外創薬科学財団   脳内マクロファージの統合的理解と研究基盤の創出

     More details

    受賞者・増田は、脳内マクロファージとして知られるミクログリア細胞および脳境界マクロファージの研究に取り組み、その発生・正常分布メカニズム・多様性・生理機能および病態発症における役割に関する卓越した研究成果を上げてきた(PNAS, 2009; Cell Rep, 2012, 2020; Nature Commun, 2014, 2016; Nature, 2019, 2022; Nature Immunol, 2020; Science 2022など38報)。特に、1細胞解析等の最新技術を駆使した研究では、中枢神経系疾患特異的に出現するヒトミクログリアサブセットを世界で初めて同定した。こうした疾患治療標的の創出に直結する顕著な研究成果が高く評価され、令和3年度 科学技術部門の文部科学大臣表彰若手科学者賞を受賞しました。さらに、当該研究領域のレベルを格段に向上させる汎用性の高い細胞機能操作ツールの独自開発にも成功し、これまでの概念を覆す脳境界マクロファージの発生学的な特徴を明らかにした。今後これらの研究基盤をさらに発展させ、画期的な成果を上げることが期待される。

  • 令和3年度文部科学大臣表彰 若手科学者賞

    2021.4   文部科学省   科学技術に関する研究開発、理解増進等において顕著な成果を収めた者に授与される科学技術分野の文部科学大臣表彰 研究課題:脳内免疫細胞ミクログリアの存在意義解明に向けた包括的研究

     More details

    近年、脳内免疫細胞であるミクログリアが、様々な中枢神経系疾患の発症に関与することが明らかになってきた。そのため、新たな創薬ターゲットとして注目されているが、その存在意義や多様性などの基盤情報、特には ヒトにおける解析データは国際的にみても乏しかった。
    増田隆博 氏は、最先端の網羅的11 細胞解析技術等を駆使して、実験モデル動物のみならず、ヒト脳組織内におけるミクログリアの機能や多様性等に関する包括的な研究を世界に先駆けて取り組んだ。
    本研究成果は、ミクログリアの生命原理の理解に直結する重要な基盤情報であり、ミクログリアの機能的側面および多様性に関する理解を大きく前進させた。今後、ミクログリアを標的とした新規治療薬の創出が加速するものと期待される。

  • 2014年度日本神経化学会奨励賞

    2014.9   日本神経化学会   賞の内容:将来の発展を期待される若手神経化学研究者個人に対して授与する 研究課題:IRF転写因子ファミリーによる活性化ミクログリアの表現型制御

  • Best Poster Prize

    2014.7   Purine2014   VNUT contributes to the pathogenesis of neuropathic pain after nerve injuryという演題での発表における受賞

  • Poster of the day (Poster award)

    2012.6   Purine2012   IRF Family Transcription Factor Axis Governs Gene Expression Program in Microglia Gating Neuropathic Pain

  • Poster Presentation Award

    2010.10   The 29th Naito Conference- GLIA WORLD- Dynamic function of Glial cells in the Brain   Interferon regulatory factor-8 in spinal microglia is a transcription factor crucial for the development of neuropathic pain

     More details

    Neuropathic pain occurs after several diseases accompanied by nerve damage, which is characterized by abnormal sensory perception such as tactile allodynia (nocuous response to innocuous mechanical stimuli). This debilitating pain condition arises as a consequence of excessive excitability of neurons in the spinal dorsal horn, and the neuronal hyperexcitability involves signaling from activated spinal microglia that have induced or enhanced expression of various genes including proinflammatory cytokines. However, a key transcription factor regulating gene expression and neuropathic pain states is not identified. Here we report that interferon regulatory factor-8 (IRF-8), a member of IRF family transcription factor, controls gene expression in activated microglia responsible for tactile allodynia. Peripheral nerve injury (PNI) increased the expression of IRF-8 in spinal microglia in a cell type-specific manner. Furthermore, IRF-8-deficient mice (irf8-/-) exhibited a marked reduction in allodynia after PNI compared with wild-type mice without affecting normal pain sensitivity. In contrast, these mice showed a similar pain behavior in an inflammatory chronic pain model. Interestingly, irf8-/- mice failed to increase the expression of genes crucial for producing pain hypersensitivity in the spinal cord following PNI. Together, our present findings suggest that IRF-8 is the crucial intermediary for upregulating pain-related molecules and subsequent neuropathic pain.

  • Best Poster Award

    2009.7   第36回国際生理学会世界大会サテライトシンポジウム   Interferon-gamma receptor signals are required for spinal microglia activation and neuropathic pain after peripheral nerve injuryに関する発表

  • 第82回薬理学会年会優秀発表賞

    2009.3   日本薬理学会   Lyn tyrosine kinase is essential for interferon-γ-dependent spinal microglia activation driving neuropathic painに関する発表

  • Poster Award

    2008.7   The 3rd Asian Pain Symposium   Role of interferon-γ in spinal microglia activation and neuropathic pain after peripheral nerve injuryに関する発表

  • 学会奨励賞

    2007.5   The 3rd CHIBA NEURORESEARCH MEETING   Intrathecal administration of interferon-γ activates spinal microglia and causes long-lasting tactile allodynia という演題での発表で受賞

▼display all

Papers

  • IRF8 and MAFB drive distinct transcriptional machineries in different resident macrophages of the central nervous system Reviewed

    Ayato Yamasaki, Iroha Imanishi, Kaori Tanaka, Yasuyuki Ohkawa, Makoto Tsuda, Takahiro Masuda

    Communications Biology   7 ( 1 )   896   2024.7   eISSN:2399-3642

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Communications Biology  

    The central nervous system (CNS) includes anatomically distinct macrophage populations including parenchyma microglia and CNS-associated macrophages (CAMs) localized at the interfaces like meninges and perivascular space, which play specialized roles for the maintenance of the CNS homeostasis with the help of precisely controlled gene expressions. However, the transcriptional machinery that determines their cell-type specific states of microglia and CAMs remains poorly understood. Here we show, by myeloid cell-specific deletion of transcription factors, IRF8 and MAFB, that both adult microglia and CAMs utilize IRF8 to maintain their core gene signatures, although the genes altered by IRF8 deletion are different in the two macrophage populations. By contrast, MAFB deficiency robustly affected the gene expression profile of adult microglia, whereas CAMs are almost independent of MAFB. Our data suggest that distinct transcriptional machineries regulate different macrophages in the CNS.

    DOI: 10.1038/s42003-024-06607-6

    Web of Science

    Scopus

    PubMed

    researchmap

  • Mechanisms of myeloid cell entry to the healthy and diseased central nervous system. Reviewed International coauthorship International journal

    Lukas Amann, Takahiro Masuda, Marco Prinz

    Nature immunology   24 ( 3 )   393 - 407   2023.3   ISSN:1529-2908 eISSN:1529-2916

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Nature Immunology  

    Myeloid cells in the central nervous system (CNS), such as microglia, CNS-associated macrophages (CAMs), dendritic cells and monocytes, are vital for steady-state immune homeostasis as well as the resolution of tissue damage during brain development or disease-related pathology. The complementary usage of multimodal high-throughput and high-dimensional single-cell technologies along with recent advances in cell-fate mapping has revealed remarkable myeloid cell heterogeneity in the CNS. Despite the establishment of extensive expression profiles revealing myeloid cell multiplicity, the local anatomical conditions for the temporal- and spatial-dependent cellular engraftment are poorly understood. Here we highlight recent discoveries of the context-dependent mechanisms of myeloid cell migration and settlement into distinct subtissular structures in the CNS. These insights offer better understanding of the factors needed for compartment-specific myeloid cell recruitment, integration and residence during development and perturbation, which may lead to better treatment of CNS diseases.

    DOI: 10.1038/s41590-022-01415-8

    Web of Science

    Scopus

    PubMed

    researchmap

  • Specification of CNS macrophage subsets occurs postnatally in defined niches Reviewed International coauthorship International journal

    Masuda T, Amann L, Monaco G, Sankowski R, Staszewski O, Krueger M, Del Gaudio F, He L, Paterson N, Nent E, Fernández-Klett F, Yamasaki A, Frosch M, Fliegauf M, Bosch LFP, Ulupinar H, Hagemeyer N, Schreiner D, Dorrier C, Tsuda M, Grothe C, Joutel A, Daneman R, Betsholtz C, Lendahl U, Knobeloch KP, Lämmermann T, Priller J, Kierdorf K, Prinz M

    Nature   604 ( 7907 )   740 - 748   2022.4   ISSN:0028-0836 eISSN:1476-4687

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Nature  

    All tissue-resident macrophages of the central nervous system (CNS)-including parenchymal microglia, as well as CNS-associated macrophages (CAMs1) such as meningeal and perivascular macrophages2-7-are part of the CNS endogenous innate immune system that acts as the first line of defence during infections or trauma2,8-10. It has been suggested that microglia and all subsets of CAMs are derived from prenatal cellular sources in the yolk sac that were defined as early erythromyeloid progenitors11-15. However, the precise ontogenetic relationships, the underlying transcriptional programs and the molecular signals that drive the development of distinct CAM subsets in situ are poorly understood. Here we show, using fate-mapping systems, single-cell profiling and cell-specific mutants, that only meningeal macrophages and microglia share a common prenatal progenitor. By contrast, perivascular macrophages originate from perinatal meningeal macrophages only after birth in an integrin-dependent manner. The establishment of perivascular macrophages critically requires the presence of arterial vascular smooth muscle cells. Together, our data reveal a precisely timed process in distinct anatomical niches for the establishment of macrophage subsets in the CNS.

    DOI: 10.1038/s41586-022-04596-2

    Web of Science

    Scopus

    PubMed

    researchmap

  • A spinal microglia population involved in remitting and relapsing neuropathic pain Reviewed International coauthorship International journal

    Kohno K, Shirasaka R, Yoshihara K, Mikuriya S, Tanaka K, Takanami K, Inoue K, Sakamoto H, Ohkawa Y, Masuda T, Tsuda M

    Science   376 ( 6588 )   86 - 90   2022.4   ISSN:0036-8075 eISSN:1095-9203

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Association for the Advancement of Science ({AAAS})  

    Neuropathic pain is often caused by injury and diseases that affect the somatosensory system. Although pain development has been well studied, pain recovery mechanisms remain largely unknown. Here, we found that CD11c-expressing spinal microglia appear after the development of behavioral pain hypersensitivity following nerve injury. Nerve-injured mice with spinal CD11c+ microglial depletion failed to recover spontaneously from this hypersensitivity. CD11c+ microglia expressed insulin-like growth factor-1 (IGF1), and interference with IGF1 signaling recapitulated the impairment in pain recovery. In pain-recovered mice, the depletion of CD11c+ microglia or the interruption of IGF1 signaling resulted in a relapse in pain hypersensitivity. Our findings reveal a mechanism for the remission and recurrence of neuropathic pain, providing potential targets for therapeutic strategies.

    DOI: 10.1126/science.abf6805

    Web of Science

    Scopus

    PubMed

    researchmap

  • Novel Hexb-based tools for studying microglia in the CNS Reviewed International coauthorship

    Takahiro Masuda, Lukas Amann, Roman Sankowski, Ori Staszewski, Maximilian Lenz, Paolo d´Errico, Nicolas Snaidero, Marta Joana Costa Jordão, Chotima Böttcher, Katrin Kierdorf, Steffen Jung, Josef Priller, Thomas Misgeld, Andreas Vlachos, Melanie Meyer-Luehmann, Klaus-Peter Knobeloch, Marco Prinz

    Nature Immunology   21 ( 7 )   802 - 815   2020.7

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41590-020-0707-4

  • Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Reviewed International coauthorship

    Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar, Scheiwe C, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Prinz M

    Nature   2019.2

     More details

    Authorship:Lead author   Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41586-019-0924-x

  • Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Reviewed International coauthorship

    Masuda T, Ozono Y, Mikuriya S, Kohro Y, Tozaki-Saitoh H, Iwatsuki K, Uneyama H, Ichikawa R, Salter MW, Tsuda M, Inoue K

    Nature communications   7   2016.8

     More details

    Authorship:Lead author   Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/ncomms12529

  • Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain. Reviewed International coauthorship

    Masuda T, Iwamoto S, Yoshinaga R, Tozaki-Saitoh H, Nishiyama A, Mak TW, Tamura T, Tsuda M, Inoue K

    Nature communications   5   2014.5

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/ncomms4771

  • Interleukin-4 induces CD11c+ microglia leading to amelioration of neuropathic pain in mice

    Keita Kohno, Ryoji Shirasaka, Keita Hirose, Takahiro Masuda, Makoto Tsuda

    2025.2

  • Understanding stress‐induced transmission of peripherally derived factors into the brain and responses in non‐neuronal cells

    Mikiko Kudo, Shota Yamamoto, Shin‐ichiro Hiraga, Takahiro Masuda

    Journal of Neurochemistry   169 ( 1 )   e16262   2025.1   ISSN:0022-3042 eISSN:1471-4159

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Journal of Neurochemistry  

    Stress is a significant cause of mental disorders, for which effective treatments remain limited due to an insufficient understanding of its pathogenic mechanisms. Recent research has increasingly focused on non-neuronal cells to elucidate the molecular mechanisms underlying psychopathology. In this review, we summarize the current knowledge on how non-neuronal cells in the central nervous system, including microglia, astrocytes, and oligodendrocytes, respond to peripherally derived stress-related factors and how these responses contribute to the development of mental disorders. A more comprehensive understanding of stress-induced alterations, with careful consideration of the type and timing of stress exposure, will provide fundamental insights into the pathogenesis of diverse stress-related mental disorders. (Figure presented.).

    DOI: 10.1111/jnc.16262

    Web of Science

    Scopus

    PubMed

    researchmap

  • Extrasinusoidal macrophages are a distinct subset of immunologically active dural macrophages

    Lukas Amann, Amelie Fell, Gianni Monaco, Roman Sankowski, Huang Zie Quann Wu, Marta Joana Costa Jordão, Katharina Borst, Maximilian Fliegauf, Takahiro Masuda, Alberto Ardura-Fabregat, Neil Paterson, Elisa Nent, James Cook, Ori Staszewski, Omar Mossad, Thorsten Falk, Antoine Louveau, Igor Smirnov, Jonathan Kipnis, Tim Lämmermann, Marco Prinz

    Science Immunology   9 ( 102 )   eadh1129   2024.12   ISSN:2470-9468

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Science Immunology  

    Although macrophages in the meningeal compartments of the central nervous system (CNS) have been comprehensively characterized under steady state, studying their contribution to physiological and pathological processes has been hindered by the lack of specific targeting tools in vivo. Recent findings have shown that the dural sinus and its adjacent lymphatic vessels act as a neuroimmune interface. However, the cellular and functional heterogeneity of extrasinusoidal dural macrophages outside this immune hub is not fully understood. Therefore, we comprehensively characterized these cells using single-cell transcriptomics, fate mapping, confocal imaging, clonal analysis, and transgenic mouse lines. Extrasinusoidal dural macrophages were distinct from leptomeningeal and CNS parenchymal macrophages in terms of their origin, expansion kinetics, and transcriptional profiles. During autoimmune neuroinflammation, extrasinusoidal dural macrophages performed efferocytosis of apoptotic granulocytes. Our results highlight a previously unappreciated myeloid cell diversity and provide insights into the brain’s innate immune system.

    DOI: 10.1126/sciimmunol.adh1129

    Web of Science

    Scopus

    PubMed

    researchmap

  • Redefining the ontogeny of hyalocytes as yolk sac-derived tissue-resident macrophages of the vitreous body. Reviewed International coauthorship International journal

    Dennis-Dominik Rosmus, Jana Koch, Annika Hausmann, Aude Chiot, Franz Arnhold, Takahiro Masuda, Katrin Kierdorf, Stefanie Marie Hansen, Heidrun Kuhrt, Janine Fröba, Julian Wolf, Stefaniya Boneva, Martin Gericke, Bahareh Ajami, Marco Prinz, Clemens Lange, Peter Wieghofer

    Journal of neuroinflammation   21 ( 1 )   168 - 168   2024.7   eISSN:1742-2094

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Journal of Neuroinflammation  

    BACKGROUND: The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS: In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION: Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.

    DOI: 10.1186/s12974-024-03110-x

    Web of Science

    Scopus

    PubMed

    researchmap

  • Spatiotemporal dynamics of the CD11c+ microglial population in the mouse brain and spinal cord from developmental to adult stages. Reviewed International journal

    Kohei Nomaki, Risako Fujikawa, Takahiro Masuda, Makoto Tsuda

    Molecular brain   17 ( 1 )   24 - 24   2024.5   eISSN:1756-6606

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Molecular Brain  

    CD11c-positive (CD11c+) microglia have attracted considerable attention because of their potential implications in central nervous system (CNS) development, homeostasis, and disease. However, the spatiotemporal dynamics of the proportion of CD11c+ microglia in individual CNS regions are poorly understood. Here, we investigated the proportion of CD11c+ microglia in six CNS regions (forebrain, olfactory bulb, diencephalon/midbrain, cerebellum, pons/medulla, and spinal cord) from the developmental to adult stages by flow cytometry and immunohistochemical analyses using a CD11c reporter transgenic mouse line, Itgax-Venus. We found that the proportion of CD11c+ microglia in total microglia varied between CNS regions during postnatal development. Specifically, the proportion was high in the olfactory bulb and cerebellum at postnatal day P(4) and P7, respectively, and approximately half of the total microglia were CD11c+. The proportion declined sharply in all regions to P14, and the low percentage persisted over P56. In the spinal cord, the proportion of CD11c+ microglia was also high at P4 and declined to P14, but increased again at P21 and thereafter. Interestingly, the distribution pattern of CD11c+ microglia in the spinal cord markedly changed from gray matter at P4 to white matter at P21. Collectively, our findings reveal the differences in the spatiotemporal dynamics of the proportion of CD11c+ microglia among CNS regions from early development to adult stages in normal mice. These findings improve our understanding of the nature of microglial heterogeneity and its dynamics in the CNS.

    DOI: 10.1186/s13041-024-01098-2

    Web of Science

    Scopus

    PubMed

    researchmap

  • Common principles of macrophage biology in blood–tissue barriers Invited Reviewed

    Shin‐ichiro Hiraga, Takahiro Masuda

    Clinical and Experimental Neuroimmunology   15 ( 4 )   203 - 214   2024

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Clinical and Experimental Neuroimmunology  

    Blood–tissue barriers play crucial roles in specialized tissues such as the central nervous system (CNS), eye, testis, and placenta. Tissue-resident macrophages in these tissues are indispensable for maintaining tissue homeostasis and responding to pathological conditions. Recent advances in high-throughput and high-dimensional single-cell analysis techniques, coupled with fate-mapping tools, have revealed a remarkable diversity of tissue-resident macrophages at the blood–tissue barrier. However, while comprehensive expression profiling has revealed the heterogeneity of macrophages within individual tissues, the commonalities of macrophages across anatomically similar structures like blood–tissue barriers remain poorly understood. This review focuses on the diversity and functional specialization of macrophages in tissues with blood–tissue barriers, highlighting recent insights into their anatomical distribution, developmental origins, phenotypic characteristics, and roles in maintaining tissue homeostasis. These findings may deepen our understanding of macrophage adaptation mechanisms in tissues with blood–tissue barriers, potentially leading to improved therapies for related disorders. Furthermore, examining the similarities and differences of macrophages across tissues may elucidate the molecular underpinnings of tissue-specific adaptation mechanisms and functional specialization.

    DOI: 10.1111/cen3.12812

    Scopus

    researchmap

  • Direct neuronal conversion of microglia/macrophages reinstates neurological function after stroke. Reviewed International coauthorship International journal

    Takashi Irie, Taito Matsuda, Yoshinori Hayashi, Kanae Matsuda-Ito, Akihide Kamiya, Takahiro Masuda, Marco Prinz, Noriko Isobe, Jun-Ichi Kira, Kinichi Nakashima

    Proceedings of the National Academy of Sciences of the United States of America   120 ( 42 )   e2307972120   2023.10   ISSN:0027-8424 eISSN:1091-6490

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Proceedings of the National Academy of Sciences of the United States of America  

    Although generating new neurons in the ischemic injured brain would be an ideal approach to replenish the lost neurons for repairing the damage, the adult mammalian brain retains only limited neurogenic capability. Here, we show that direct conversion of microglia/macrophages into neurons in the brain has great potential as a therapeutic strategy for ischemic brain injury. After transient middle cerebral artery occlusion in adult mice, microglia/macrophages converge at the lesion core of the striatum, where neuronal loss is prominent. Targeted expression of a neurogenic transcription factor, NeuroD1, in microglia/macrophages in the injured striatum enables their conversion into induced neuronal cells that functionally integrate into the existing neuronal circuits. Furthermore, NeuroD1-mediated induced neuronal cell generation significantly improves neurological function in the mouse stroke model, and ablation of these cells abolishes the gained functional recovery. Our findings thus demonstrate that neuronal conversion contributes directly to functional recovery after stroke.

    DOI: 10.1073/pnas.2307972120

    Web of Science

    Scopus

    PubMed

    researchmap

  • A comparative analysis of microglial inducible Cre lines Reviewed International coauthorship International journal

    Travis E Faust, Philip A Feinberg, Ciara O'Connor, Riki Kawaguchi, Andrew Chan, Hayley Strasburger, Maximilian Frosch, Margaret A Boyle, @Takahiro Masuda, Lukas Amann, Klaus-Peter Knobeloch, Marco Prinz, Anne Schaefer, Dorothy P Schafer

    Cell Reports   42 ( 9 )   113031 - 113031   2023.8   ISSN:2211-1247

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Cell Reports  

    Cre/loxP technology has revolutionized genetic studies and allowed for spatial and temporal control of gene expression in specific cell types. Microglial biology has particularly benefited because microglia historically have been difficult to transduce with virus or electroporation methods for gene delivery. Here, we investigate five of the most widely available microglial inducible Cre lines. We demonstrate varying degrees of recombination efficiency, cell-type specificity, and spontaneous recombination, depending on the Cre line and inter-loxP distance. We also establish best practice guidelines and protocols to measure recombination efficiency, particularly in microglia. There is increasing evidence that microglia are key regulators of neural circuits and major drivers of a broad range of neurological diseases. Reliable manipulation of their function in vivo is of utmost importance. Identifying caveats and benefits of all tools and implementing the most rigorous protocols are crucial to the growth of the field and the development of microglia-based therapeutics.

    DOI: 10.1016/j.celrep.2023.113031

    Web of Science

    Scopus

    PubMed

    researchmap

  • Lipid in microglial biology - from material to mediator. Invited Reviewed International journal

    Shota Yamamoto, Takahiro Masuda

    Inflammation and regeneration   43 ( 1 )   38 - 38   2023.7   ISSN:1880-9693 eISSN:1880-8190

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Inflammation and Regeneration  

    Microglia are resident macrophages in the central nervous system (CNS) that play various roles during brain development and in the pathogenesis of CNS diseases. Recently, reprogramming of cellular energetic metabolism in microglia has drawn attention as a crucial mechanism for diversification of microglial functionality. Lipids are highly diverse materials and crucial components of cell membranes in every cell. Accumulating evidence has shown that lipid and its metabolism are tightly involved in microglial biology. In this review, we summarize the current knowledge about microglial lipid metabolism in health and disease.

    DOI: 10.1186/s41232-023-00289-z

    Web of Science

    Scopus

    PubMed

    researchmap

  • Preface Invited

    Masuda Takahiro

    Folia Pharmacologica Japonica   158 ( 4 )   297 - 297   2023.7   ISSN:00155691 eISSN:13478397

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publisher:The Japanese Pharmacological Society  

    DOI: 10.1254/fpj.22153

    PubMed

    CiNii Research

  • Cellular and molecular heterogeneity of CNS macrophages in health and disease Invited

    Masuda Takahiro

    Folia Pharmacologica Japonica   158 ( 4 )   308 - 311   2023.7   ISSN:00155691 eISSN:13478397

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publisher:The Japanese Pharmacological Society  

    <p>The central nervous system (CNS) is a highly complex collection of various cell-types, such as neurons, glial cells, vascular cells, and immune cells, and their complex and dynamic interactions enable to achieve highly sophisticated functions of the CNS. Among such CNS cells are microglia, which are well-known primary CNS macrophages localized in the CNS parenchyma and play a pivotal role in the maintenance of tissue homeostasis. Besides microglia, there are anatomically distinct macrophage populations at the border of the CNS, such as meninge, and perivascular space, called CNS-associated macrophages (CAMs). Recent studies have given novel insights into the nature of CAMs. In this review, I will discuss our current knowledge of the origins, the cellular properties of CNS macrophages.</p>

    DOI: 10.1254/fpj.22152

    Scopus

    PubMed

    CiNii Research

  • Lineage tracing identifies in vitro microglia-to-neuron conversion by NeuroD1 expression. Reviewed International coauthorship International journal

    Takashi Irie, Kanae Matsuda-Ito, Taito Matsuda, Takahiro Masuda, Marco Prinz, Noriko Isobe, Kinichi Nakashima

    Genes to cells : devoted to molecular & cellular mechanisms   28 ( 7 )   526 - 534   2023.7   ISSN:1356-9597 eISSN:1365-2443

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Genes to Cells  

    Neuronal regeneration to replenish lost neurons after injury is critical for brain repair. Microglia, brain-resident macrophages that have the propensity to accumulate at the site of injury, can be a potential source for replenishing lost neurons through fate conversion into neurons, induced by forced expression of neuronal lineage-specific transcription factors. However, it has not been strictly demonstrated that microglia, rather than central nervous system-associated macrophages, such as meningeal macrophages, convert into neurons. Here, we show that NeuroD1-transduced microglia can be successfully converted into neurons in vitro using lineage-mapping strategies. We also found that a chemical cocktail treatment further promoted NeuroD1-induced microglia-to-neuron conversion. NeuroD1 with loss-of-function mutation, on the other hand, failed to induce the neuronal conversion. Our results indicate that microglia are indeed reprogrammed into neurons by NeuroD1 with neurogenic transcriptional activity.

    DOI: 10.1111/gtc.13033

    Web of Science

    Scopus

    PubMed

    researchmap

  • Microglial diversity in neuropathic pain Invited Reviewed

    Makoto Tsuda, Takahiro Masuda, Keita Kohno

    Trends in Neurosciences   46 ( 7 )   597 - 610   2023.7   ISSN:0166-2236 eISSN:1878-108X

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    Microglia play pivotal roles in controlling CNS functions in diverse physiological and pathological contexts, including neuropathic pain, a chronic pain condition caused by lesions or diseases of the somatosensory nervous system. In this review article, we summarize evidence primarily from basic research on the role of microglia in the development and remission of neuropathic pain. The identification of a subset of microglia that emerged after pain development and that was necessary for remission of neuropathic pain highlights the highly divergent and dynamic nature of microglia in the course of neuropathic pain. Understanding microglial diversity in terms of gene expression, physiological states, and functional roles could lead to new strategies that aid in the diagnosis and management of neuropathic pain, and that may not have been anticipated from the viewpoint of targeting all microglia uniformly.

    DOI: 10.1016/j.tins.2023.05.001

    Web of Science

    Scopus

    PubMed

    researchmap

  • Ⅱ. CNS-Associated Macrophages and Immune System in the CNS Invited

    Masuda T.

    Gan to kagaku ryoho. Cancer &amp; chemotherapy   50 ( 6 )   690 - 693   2023.6   ISSN:03850684

     More details

    Authorship:Lead author, Last author, Corresponding author   Publisher:Gan to kagaku ryoho. Cancer &amp; chemotherapy  

    Scopus

  • Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation Reviewed International coauthorship

    Eichler, A; Kleidonas, D; Turi, Z; Fliegauf, M; Kirsch, M; Pfeifer, D; Masuda, T; Prinz, M; Lenz, M; Vlachos, A

    JOURNAL OF NEUROSCIENCE   43 ( 17 )   3042 - 3060   2023.4   ISSN:0270-6474 eISSN:1529-2401

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Journal of Neuroscience  

    Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor a (TNFa) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10Hz stimulation in the absence of microglia. Consistent with these findings, in vivo depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.

    DOI: 10.1523/JNEUROSCI.2226-22.2023

    Web of Science

    Scopus

    PubMed

  • Recent topics regarding macrophage in the central nervous system Invited Reviewed

    Takahiro Masuda

    The Journal of Biochemistry   173 ( 3 )   139 - 143   2023.3   ISSN:0021-924X eISSN:1756-2651

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Journal of Biochemistry  

    The central nervous system (CNS) is a highly complex collection of neurons with a variety of stromal cells, such as glia cells, immune cells, vascular cells and fibroblasts. Microglia are a resident macrophage and a type of glial cells located in the parenchyma of the CNS and play a pivotal role in the maintenance of tissue homeostasis. They are early responders to the abnormality of the CNS, leading to the adaptation of their phenotypes by virtue of their plasticity, after which they give an impact on neuronal functions. Besides microglia, there are anatomically and phenotypically distinct macrophage populations at the border of the CNS, such as meninge, perivascular space and choroid plexus, where they show distinct morphology and gene expression profiles when compared with microglia. This review will summarize the recent advance in our knowledge regarding their heterogeneity, plasticity, ontogenetic relationship of these CNS-resident macrophage populations.

    DOI: 10.1093/jb/mvac093

    Web of Science

    Scopus

    PubMed

    researchmap

  • Lineage tracing identifies in vitro microglia-to-neuron conversion by NeuroD1 expression Reviewed International coauthorship International journal

    #Irie T, @Matsuda-Ito K, @Matsuda T, @Masuda T, @Prinz M, @Isobe N, @Nakashima K.

    Genes to Cells   2023.3

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  • CD206+ macrophages transventricularly infiltrate the early embryonic cerebral wall to differentiate into microglia. Reviewed International coauthorship International journal

    Yuki Hattori, Daisuke Kato, Futoshi Murayama, Sota Koike, Hisa Asai, Ayato Yamasaki, Yu Naito, Ayano Kawaguchi, Hiroyuki Konishi, Marco Prinz, Takahiro Masuda, Hiroaki Wake, Takaki Miyata

    Cell reports   42 ( 2 )   112092 - 112092   2023.2   ISSN:2211-1247

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Cell Reports  

    The relationships between tissue-resident microglia and early macrophages, especially their lineage segregation outside the yolk sac, have been recently explored, providing a model in which a conversion from macrophages seeds microglia during brain development. However, spatiotemporal evidence to support such microglial seeding in situ and to explain how it occurs has not been obtained. By cell tracking via slice culture, intravital imaging, and Flash tag-mediated or genetic labeling, we find that intraventricular CD206+ macrophages, which are abundantly observed along the inner surface of the mouse cerebral wall, frequently enter the pallium at embryonic day 12. Immunofluorescence of the tracked cells show that postinfiltrative macrophages in the pallium acquire microglial properties while losing the CD206+ macrophage phenotype. We also find that intraventricular macrophages are supplied transepithelially from the roof plate. This study demonstrates that the "roof plate→ventricle→pallium" route is an essential path for microglial colonization into the embryonic mouse brain.

    DOI: 10.1016/j.celrep.2023.112092

    Web of Science

    Scopus

    PubMed

    researchmap

  • A comparative analysis of microglial inducible Cre lines. International coauthorship

    Faust TE, Feinberg PA, O'Connor C, Kawaguchi R, Chan A, Strasburger H, Masuda T, Amann L, Knobeloch KP, Prinz M, Schaefer A, Schafer DP

    bioRxiv : the preprint server for biology   2023.1

     More details

    Language:English  

    DOI: 10.1101/2023.01.09.523268

    PubMed

  • Microglia states and nomenclature: A field at its crossroads Reviewed International coauthorship

    Paolicelli, RC; Sierra, A; Stevens, B; Tremblay, ME; Aguzzi, A; Ajami, B; Amit, I; Audinat, E; Bechmann, I; Bennett, M; Bennett, F; Bessis, A; Biber, K; Bilbo, S; Blurton-Jones, M; Boddeke, E; Brites, D; Brône, B; Brown, GC; Butovsky, O; Carson, MJ; Castellano, B; Colonna, M; Cowley, SA; Cunningham, C; Davalos, D; De Jager, PL; de Strooper, B; Denes, A; Eggen, BJL; Eyo, U; Galea, E; Garel, S; Ginhoux, F; Glass, CK; Gokce, O; Gomez-Nicola, D; González, B; Gordon, S; Graeber, MB; Greenhalgh, AD; Gressens, P; Greter, M; Gutmann, DH; Haass, C; Heneka, MT; Heppner, FL; Hong, S; Hume, DA; Jung, S; Kettenmann, H; Kipnis, J; Koyama, R; Lemke, G; Lynch, M; Majewska, A; Malcangio, M; Malm, T; Mancuso, R; Masuda, T; Matteoli, M; McColl, BW; Miron, VE; Molofsky, AV; Monje, M; Mracsko, E; Nadjar, A; Neher, JJ; Neniskyte, U; Neumann, H; Noda, M; Peng, B; Peri, F; Perry, VH; Popovich, PG; Pridans, C; Priller, J; Prinz, M; Ragozzino, D; Ransohoff, RM; Salter, MW; Schaefer, A; Schafer, DP; Schwartz, M; Simons, M; Smith, CJ; Streit, WJ; Tay, TL; Tsai, LH; Verkhratsky, A; von Bernhardi, R; Wake, H; Wittamer, V; Wolf, SA; Wu, LJ; Wyss-Coray, T

    NEURON   110 ( 21 )   3458 - 3483   2022.11   ISSN:0896-6273 eISSN:1097-4199

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Neuron  

    Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as “resting versus activated” and “M1 versus M2.” This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.

    DOI: 10.1016/j.neuron.2022.10.020

    Web of Science

    Scopus

    PubMed

  • Novel insights into the origin and development of CNS macrophage subsets Invited Reviewed International coauthorship

    Takahiro Masuda, Lukas Amann, Marco Prinz

    Clinical and Translational Medicine   12 ( 11 )   e1096   2022.11   ISSN:2001-1326

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Clin Transl Med  

    DOI: 10.1002/ctm2.1096

    Web of Science

    PubMed

    researchmap

  • Mapping the origin and fate of myeloid cells in distinct compartments of the eye by single-cell profiling Reviewed International coauthorship International journal

    Wieghofer P, Hagemeyer N, Sankowski R, Schlecht A, Staszewski O, Amann L, Gruber M, Koch J, Hausmann A, Zhang P, Boneva S, Masuda T, Hilgendorf I, Goldmann T, Boettcher C, Priller J, Rossi FMV, Lange C, Prinz M

    EMBO JOURNAL   40 ( 6 )   2021.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.15252/embj.2020105123

  • Diet-dependent regulation of TGFβ impairs reparative innate immune responses after demyelination Reviewed International coauthorship International journal

    Bosch-Queralt M, Cantuti-Castelvetri L, Damkou A, Schifferer M, Schlepckow K, Alexopoulos I, Lütjohann D, Klose C, Vaculčiaková L, Masuda T, Prinz M, Monroe KM, Di Paolo G, Lewcock JW, Haass C, Simons M

    Nature Metabolism   2021.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury Reviewed International coauthorship International journal

    Elke Ydens, Lukas Amann, Bob Asselbergh, Charlotte L Scott, Liesbet Martens, Dorine Sichien, Omar Mossad, Thomas Blank, Sofie De Prijck, Donovan Low, @Takahiro Masuda, Yvan Saeys, Vincent Timmerman, Ralf Stumm, Florent Ginhoux, Marco Prinz, Sophie Janssens , Martin Guilliams

    Nature Neuroscience   2020.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41593-020-0618-6

  • Comparative analysis of CreER transgenic mice for the study of brain macrophages: A case study Reviewed International journal

    Louise Chappell-Maor, Masha Kolesnikov, Jung-Seok Kim, Anat Shemer, Zhana Haimon, Jonathan Grozovski, Sigalit Boura-Halfon, @Takahiro Masuda, Marco Prinz, Steffen Jung

    European Journal of Immunology   2020.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/eji.201948342

  • Mapping microglia states in the human brain through the integration of high-dimensional techniques Reviewed

    Roman Sankowski, Chotima Böttcher, Takahiro Masuda, Laufey Geirsdottir, Sagar, Elena Sindram, Tamara Seredenina, Andreas Muhs, Christian Scheiwe, Mukesch Johannes Shah, Dieter Henrik Heiland, Oliver Schnell, Dominic Grün, Josef Priller, Marco Prinz

    Nature Neuroscience   2019.12

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41593-019-0532-y

  • A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves Reviewed International journal

    Julia Kolter, Reinhild Feuerstein, Patrice Zeis, Nora Hagemeyer, Neil Paterson, Paolo d'Errico, Sebastian Baasch, Lukas Amann, @Takahiro Masuda, Anne Lösslein, Kourosh Gharun, Melanie Meyer-Luehmann, Claudia Waskow, Claus-Werner Franzke, Dominic Grün, Tim Lämmermann, Marco Prinz, Philipp Henneke

    Immunity   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.immuni.2019.05.009

  • Macrophage centripetal migration drives spontaneous healing process after spinal cord injury Reviewed International journal

    @Kazu Kobayakawa, @Yasuyuki Ohkawa, @Shingo Yoshizaki, @Tetsuya Tamaru, @Takeyuki Saito, @Ken Kijima, @Kazuya Yokota, @Masamitsu Hara, @Kensuke Kubota, @Yoshihiro Matsumoto, @Katsumi Harimaya, Keiko Ozato, @Takahiro Masuda, @Makoto Tsuda, Tomohiko Tamura, @Kazuhide Inoue, V Reggie Edgerton, Yukihide Iwamoto, @Yasuharu Nakashima, @Seiji Okada

    Science Advances   2019.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    <jats:p>Traumatic spinal cord injury (SCI) brings numerous inflammatory cells, including macrophages, from the circulating blood to lesions, but pathophysiological impact resulting from spatiotemporal dynamics of macrophages is unknown. Here, we show that macrophages centripetally migrate toward the lesion epicenter after infiltrating into the wide range of spinal cord, depending on the gradient of chemoattractant C5a. However, macrophages lacking interferon regulatory factor 8 (IRF8) cannot migrate toward the epicenter and remain widely scattered in the injured cord with profound axonal loss and little remyelination, resulting in a poor functional outcome after SCI. Time-lapse imaging and P2X/YRs blockade revealed that macrophage migration via IRF8 was caused by purinergic receptors involved in the C5a-directed migration. Conversely, pharmacological promotion of IRF8 activation facilitated macrophage centripetal movement, thereby improving the SCI recovery. Our findings reveal the importance of macrophage centripetal migration via IRF8, providing a novel therapeutic target for central nervous system injury.</jats:p>

    DOI: 10.1126/sciadv.aav5086

  • Transcription factor MafB contributes to the activation of spinal microglia underlying neuropathic pain development. Reviewed

    Tozaki-Saitoh H, Masuda J, Kawada R, Kojima C, Yoneda S, Masuda T, Inoue K, Tsuda M

    Glia   67 ( 4 )   729 - 740   2018.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/glia.23570

  • Silencing of TGFβ signalling in microglia results in impaired homeostasis. Reviewed

    Zöller T, Schneider A, Kleimeyer C, Masuda T, Potru PS, Pfeifer D, Blank T, Prinz M, Spittau B

    Nature communications   2018.10

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41467-018-06224-y

  • Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia Reviewed

    Takahiro Masuda

    Nature Communications   7   2016.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/ncomms13102

  • A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Reviewed

    Matsumura Y, Yamashita T, Sasaki A, Nakata E, Kohno K, Masuda T, Tozaki-Saitoh H, Imai T, Kuraishi Y, Tsuda M, Inoue K

    Scientific reports   6   2016.8

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/srep32461

  • Transcription factor IRF1 is responsible for IRF8-mediated IL-1β expression in reactive microglia. Reviewed

    Masuda T, Iwamoto S, Mikuriya S, Tozaki-Saitoh H, Tamura T, Tsuda M, Inoue K

    Journal of pharmacological sciences   128 ( 4 )   216 - 220   2015.8

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jphs.2015.08.002

  • Chemokine (C-C motif) receptor 5 is an important pathological regulator in the development and maintenance of neuropathic pain. Reviewed

    Matsushita K, Tozaki-Saitoh H, Kojima C, Masuda T, Tsuda M, Inoue K, Hoka S

    Anesthesiology   120 ( 6 )   1491 - 1503   2014.6

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1097/aln.0000000000000190

  • IRF8 is a transcriptional determinant for microglial motility. Reviewed

    Masuda T, Nishimoto N, Tomiyama D, Matsuda T, Tozaki-Saitoh H, Tamura T, Kohsaka S, Tsuda M, Inoue K

    Purinergic signalling   10 ( 3 )   515 - 521   2014.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Microglia, the resident immune cells of the central nervous system, are constitutively mobile cells that undergo rapid directional movement toward sites of tissue disruption. However, transcriptional regulatory mechanisms of microglial motility remain unknown. In the present study, we show that interferon regulatory factor-8 (IRF8) regulates microglial motility. We found that ATP and complement component, C5a, induced chemotaxis of IRF8 wild-type microglia. However, these responses were markedly suppressed in microglia lacking IRF8 (Irf8 (-/-)). In a consistent manner, phosphorylation of Akt (which plays a crucial role in ATP-induced chemotaxis) was abolished in Irf8 (-/-)microglia. Real-time polymerase chain reaction analysis revealed that motility-related microglial genes such as P2Y(12) receptor were significantly suppressed in Irf8 (-/-)microglia. Furthermore, Irf8 (-/-)microglia exhibited a differential expression pattern of nucleotide-degrading enzymes compared with their wild-type counterparts. Overall, our findings suggest that IRF8 may regulate microglial motility via the control of microglial gene expression.

    DOI: 10.1007/s11302-014-9413-8

  • IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Reviewed

    Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, Inoue K

    Cell reports   1 ( 4 )   334 - 340   2012.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Microglia become activated by multiple types of damage in the nervous system and play essential roles in neuronal pathologies. However, how microglia transform into reactive phenotypes is poorly understood. Here, we identify the transcription factor interferon regulatory factor 8 (IRF8) as a critical regulator of reactive microglia. Within the spinal cord, IRF8 expression was normally low; however, the expression was markedly upregulated in microglia, but not in neurons or astrocytes, after peripheral nerve injury (PNI). IRF8 overexpression in cultured microglia promoted the transcription of genes associated with reactive states; conversely, IRF8 deficiency prevented these gene expressions in the spinal cord following PNI. Furthermore, IRF8-deficient mice were resistant to neuropathic pain, a common sequela of PNI, and transferring IRF8-overexpressing microglia spinally to normal mice produced pain. Therefore, IRF8 may activate a program of gene expression that transforms microglia into a reactive phenotype. Our findings provide a newly observed mechanism for microglial activation.

    DOI: 10.1016/j.celrep.2012.02.014

  • Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. Reviewed

    Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T, Boddeke H, Inoue K

    The EMBO journal   30 ( 9 )   1864 - 1873   2011.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Up-regulation of P2X4 receptors in spinal cord microglia is crucial for tactile allodynia, an untreatable pathological pain reaction occurring after peripheral nerve injury. How nerve injury in the periphery leads to this microglia reaction in the dorsal horn of the spinal cord is not yet understood. It is shown here that CCL21 was rapidly expressed in injured small-sized primary sensory neurons and transported to their central terminals in the dorsal horn. Intrathecal administration of a CCL21-blocking antibody diminished tactile allodynia development in wildtype animals. Mice deficient for CCL21 did not develop any signs of tactile allodynia and failed to up-regulate microglial P2X4 receptor expression. Microglia P2X4 expression was enhanced by CCL21 application in vitro and in vivo. A single intrathecal injection of CCL21 to nerve-injured CCL21-deficient mice induced long-lasting allodynia that was undistinguishable from the wild-type response. This effect of CCL21 injection was strictly dependent on P2X4 receptor function. Since neuronal CCL21 is the earliest yet identified factor in the cascade leading to tactile allodynia, these findings may lead to a preventive therapy in neuropathic pain. The EMBO Journal (2011) 30, 1864-1873. doi:10.1038/emboj.2011.89; Published online 25 March 2011

    DOI: 10.1038/emboj.2011.89

  • IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain. Reviewed

    Makoto Tsuda, Takahiro Masuda, Junko Kitano, Hiroshi Shimoyama, Hidetoshi Tozaki-Saitoh, Kazuhide Inoue, These authors contributed equally to this work

    Proceedings of the National Academy of Sciences of the United States of America (PNAS)   106 ( 19 )   8032 - 8037   2009.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain.

    DOI: 10.1073/pnas.0810420106

  • Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Reviewed

    Tsuda M, Toyomitsu E, Komatsu T, Masuda T, Kunifusa E, Nasu-Tada K, Koizumi S, Yamamoto K, Ando J, Inoue K

    Glia   56 ( 5 )   579 - 585   2008.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We have previously shown that activation of the ATP-gated ion channel subtype P2X(4) receptors (P2X(4)Rs) in the spinal cord, the expression of which is upregulated in microglia after nerve injury, is necessary for producing neuropathic pain. The upregulation of P2X(4)Rs in microglia is, therefore, a key process in neuropathic pain, but the mechanism remains unknown. Here, we find a fibronectin/integrin-dependent mechanism in the upregulation of P2X(4)Rs. Microglia cultured on dishes coated with fibronectin, an extracellular matrix molecule, expressed a higher level of P2X(4)R protein when compared with those cultured on control dishes. The increase was suppressed by echistatin, a peptide that selectively blocks beta(1) and beta(3)-containing integrins, and with a function-blocking antibody of beta(1) integrin. In in vivo studies, the upregulation of P2X(4)Rs in the spinal cord after spinal nerve injury was significantly suppressed by intrathecal administration of echistatin. Tactile allodynia in response to nerve injury and intrathecal administration of ATP- and fibronectin-stimulated microglia was inhibited by echistatin. Furthermore, intrathecal administration of fibronectin in normal rats increased the level of P2X(4)R protein in the spinal cord and produced tactile allodynia. Moreover, the fibronectin-induced allodynia was not observed in mice lacking P2X(4)R. Taken together with the results of our previous study showing an increase in the spinal fibronectin level after nerve injury, the present results suggest that the fibronectin/integrin system participates in the upregulation of P2X(4)R expression after nerve injury and subsequent neuropathic pain. (C) 2008 Wiley-Liss, Inc.

    DOI: 10.1002/glia.20641

  • Lyn tyrosine kinase is required for P2X(4) receptor upregulation and neuropathic pain after peripheral nerve injury. Reviewed

    Tsuda M, Tozaki-Saitoh H, Masuda T, Toyomitsu E, Tezuka T, Yamamoto T, Inoue K

    Glia   56 ( 1 )   50 - 58   2008.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Neuropathic pain, a debilitating chronic pain following nerve damage, is a reflection of the aberrant functioning of a pathologically altered nervous system. One hallmark is abnormal pain hypersensitivity to innocuous stimuli (tactile allodynia), for which effective therapy is lacking, and the underlying mechanisms of which remain to be determined. Here we show that Lyn, a member of the Src family kinases (SFKs), plays an important role in the pathogenesis of neuropathic pain. Nerve injury, but not peripheral inflammation, increased immunoreactivity for active SFKs that were autophosphorylated in the kinase domain (phospho-SFKIR) in spinal microglia. In spinally derived microglial cells, we identified Lyn as the predominant SFK among the five members (Src, Fyn, Yes, Lck, and Lyn) known to be expressed in the CNS. Lyn expression in the spinal cord was highly restricted to microglia, and its level was increased after nerve injury. We found that mice lacking lyn (lyn(-/-)) exhibit a striking reduction in the levels of phospho-SFK-IR and tactile allodynia after nerve injury, without any change in basal mechanical sensitivity or inflammatory pain. Importantly, lyn(-/-) mice displayed impaired upregulation of the ionotropic ATP receptor subtype P2X(4) receptors (P2X(4)R) in the spinal cord after nerve injury, which is crucial for tactile allodynia. Microglial cells from lyn(-/-) mice showed a deficit in their ability to increase P2X4R expression in response to fibronectin, a factor implicated as a microglial P2X4R upregulator in allodynia. Together, our findings suggest that Lyn may be a critical kinase mediating nerve injury-induced P2X4R upregulation and neuropathic pain. (c) 2007 Wiley-Liss, Inc.

    DOI: 10.1002/glia.20591

  • Reduced pain behaviors and extracellular signal-related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking platelet-activating factor receptor Reviewed

    Makoto Tsuda, Satoshi Ishii, Takahiro Masuda, Shigeo Hasegawa, Koji Nakamura, Kenichiro Nagata, Tomohiro Yamashita, Hidemasa Furue, Hidetoshi Tozaki-Saitoh, Megumu Yoshimura, Schuichi Koizumi, Takao Shimizu, Kazuhide Inoue

    JOURNAL OF NEUROCHEMISTRY   102 ( 5 )   1658 - 1668   2007.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Peripheral tissue injury causes the release of various mediators from damaged and inflammatory cells, which in turn activates and sensitizes primary sensory neurons and thereby produces persistent pain. The present study investigated the role of platelet-activating factor (PAF), a phospholipid mediator, in pain signaling using mice lacking PAF receptor (pafr-/-mice). Here we show that pafr-/- mice displayed almost normal responses to thermal and mechanical stimuli but exhibit attenuated persistent pain behaviors resulting from tissue injury by locally injecting formalin at the periphery as well as capsaicin pain and visceral inflammatory pain without any alteration in cytoarchitectural or neurochemical properties in dorsal root ganglion (DRG) neurons and a defect in motor function. However, pafr-l- mice showed no alterations in spinal pain behaviors caused by intrathecally administering agonists for N- m ethyl- D-aspartate (NMDA) and neurokinin, receptors. A PAFR agonist evoked an intracellular Ca (2+) response predominantly in capsaicin-sensitive DRG neurons, an effect was not observed in pafr-l- mice. By contrast, the PAFR agonist did not affect C- or A delta-evoked excitatory postsynaptic currents in substantia gelatinosa neurons in the dorsal horn. Interestingly, mice lacking PAFR showed reduced phosphorylation of extracellular signal-related protein kinase (ERK), an important kinase for the sensitization of primary sensory neurons, in their DRG neurons after formalin injection. Furthermore, U0126, a specific inhibitor of the ERK pathway suppressed the persistent pain by formalin. Thus, PAFR may play an important role in both persistent pain and the sensitization of primary sensory neurons after tissue injury.

    DOI: 10.1111/j.1471-4159.2007.04796.x

▼display all

Books

  • 実験医学「脳をしなやかに制御するミクログリアと脳内免疫系」 脳実質ミクログリアと脳境界マクロファージ

    @増田隆博(Role:Joint author)

    羊土社  2022.11 

     More details

    Language:Japanese   Book type:Scholarly book

  • 実験医学「脳をしなやかに制御するミクログリアと脳内免疫系」 概論:多様なミクログリアの機能と細胞特性

    @増田隆博(Role:Joint author)

    羊土社  2022.11 

     More details

    Language:Japanese   Book type:Scholarly book

  • 「特集」ミクログリアと脳内免疫系/ファージ療法

    増田, 隆博

    羊土社  2022.11    ISBN:9784758125611

     More details

    Total pages:p2926-3046   Language:Japanese  

    CiNii Books

    researchmap

  • 臨床免疫・アレルギー科 特集Ⅱマクロファージの多様性「多様な脳内マクロファージからみる正常脳と中枢神経系疾患」

    @増田隆博(Role:Joint author)

    科学評論社  2022.8 

     More details

    Responsible for pages:第78巻 第2号   Language:Japanese   Book type:Scholarly book

  • 実験医学「神経免疫 メカニズムと疾患 神経系と免疫系を結ぶ分子機構の解明からバイオマーカー・治療標的の探索まで」

    @増田隆博(Role:Joint author)

    羊土社  2021.9 

     More details

    Responsible for pages:Vol.39 No.15, 総論 脳内マクロファージの新時代―多様性が映す中枢性疾患と神経免疫   Language:Japanese   Book type:Scholarly book

  • 実験医学「脳の半分を占める グリア細胞 脳と心と体をつなぐ“膠」

    @増田隆博(Role:Joint author)

    羊土社  2019.10 

     More details

    Responsible for pages:Vol.37 No.17, 単一細胞解析により明らかになったミクログリアの時空間的多様性   Language:Japanese   Book type:Scholarly book

  • 癌と化学療法 Central Nervous System Tumor 脳腫瘍 脳腫瘍と免疫システムUpdate ⅱ脳境界マクロファージと脳免疫システム

    @増田隆博(Role:Joint author)

    癌と化学療法社  2023.6 

     More details

    Language:Japanese   Book type:Scholarly book

  • 炎症と免疫 特集〈Basic Science〉間質リテラシーと疾患:中枢神経系の間質に常在する脳内マクロファージと疾患

    増田隆博(Role:Joint author)

    先端医学社  2023.1 

     More details

    Language:Japanese   Book type:Scholarly book

  • 「特集」ミクログリアと脳内免疫系/ファージ療法

    増田 隆博

    羊土社  2022    ISBN:9784758125611

     More details

    Language:Japanese  

    CiNii Books

  • Peripheral Nerve Injury: a Mouse Model of Neuropathic Pain

    @Takahiro Masuda, @Yuta Kohro, @Kazuhide Inoue, @Makoto Tsuda(Role:Joint author)

    Bio-protocol  2017.5 

     More details

    Responsible for pages:Vol 7, Issue 9   Language:English   Book type:Scholarly book

    DOI: https://doi.org/10.21769/BioProtoc.2252

    Other Link: https://bio-protocol.org/e2252

  • 月刊「細胞」 特集「ミクログリアと疼痛」 ミクログリアと神経障害性疼痛

    @増田隆博、@津田誠、@齋藤秀俊、@山下智大、@高露雄太、@井上和秀(Role:Joint author)

    月刊「細胞」  2016.8 

     More details

    Language:Japanese   Book type:Scholarly book

  • Microglia: Lentiviral transduction of cultured microglia

    @Takahiro Masuda, @Makoto Tsuda, @Hidetoshi Tozaki-Saitoh, @Kazuhide Inoue(Role:Joint author)

    2013.8 

     More details

    Language:English   Book type:Scholarly book

  • Microglia: Intrathecal infusion of microglia cells

    @Takahiro Masuda, @Makoto Tsuda, @Hidetoshi Tozaki-Saitoh, @Kazuhide Inoue(Role:Joint author)

    2013.8 

     More details

    Language:English   Book type:Scholarly book

▼display all

Presentations

  • 脳内マクロファージの多様性と中枢神経系疾患

    @増田隆博

    第44回日本炎症・再生医学会  2023.7 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:大阪   Country:Japan  

  • 脳内マクロファージの分化や機能制御

    @増田隆博

    第35回日本神経免疫学会学術集会  2023.9 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:東京   Country:Japan  

  • 多様な脳内マクロファージの発生と機能

    @増田隆博

    第96回日本生化学会大会  2023.10 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • Microglia and CNS border-associated macrophages-similar but different-

    @増田隆博

    第46回日本分子生物学会  2023.12 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:神戸   Country:Japan  

  • Understanding diverse macrophages in the central nervous system

    @増田隆博

    第97回日本薬理学会年会  2023.12 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:神戸   Country:Japan  

  • Unraveling the characteristics of macrophages by single-cell analysis

    @増田隆博

    第97回日本薬理学会年会  2023.12 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:神戸   Country:Japan  

    Repository Public URL: https://hdl.handle.net/2324/7174513

  • Novel insights into the ontogeny and diversity of CNS macrophages Invited International conference

    @Takahiro Masuda

    The 9th Japan-China Joint Meeting of Basic and Clinical Pharmacology  2023.7 

     More details

    Event date: 2024.4

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:上海   Country:China  

  • Diverse macrophages sense and govern brain environment Invited International conference

    @Takahiro Masuda

    16th International Society of Neuroimmunology (ISNI)  2023.8 

     More details

    Event date: 2024.4

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Quebec city   Country:Canada  

  • 脳内免疫系による健やかな脳の形成・維持と破綻 Invited

    @増田隆博

    国立大学附置研究所・センター会議特別シンポジウム  2023.12 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:東京   Country:Japan  

  • 脳実質と末梢循環系を繋ぐ脳境界領域の形成維持と免疫細胞の特性 Invited

    @増田隆博

    第12回AAA研究会  2024.1 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

  • Diverse macrophages in the central nervous system Invited

    @Takahiro Masuda

    第52回日本免疫学会総会・学術集会  2024.1 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:千葉   Country:Japan  

  • シングルセル解析によって明らかになった脳内マクロファージの多様性と細胞特性 Invited

    @増田隆博

    文部科学省認定 共同利用・共同研究拠点 横浜市立大学先端医科学研究センター「マルチオミックスによる遺伝子発現制御の先端的医学共同研究拠点」  2024.2 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:横浜   Country:Japan  

  • 脳境界マクロファージの発生と維持メカニズム

    @増田隆博

    第129回日本解剖学会総会・全国学術集会  2024.3 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:沖縄   Country:Japan  

  • Macrophages in the central nervous system: ontogeny and function in health and disease Invited International conference

    @Takahiro Masuda

    第9回Neuroscience Network in Kobe  2023.2 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:神戸   Country:Japan  

  • 脳内マクロファージと脳の発達

    @増田隆博

    第76回日本薬理学会年会  2022.12 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:横浜   Country:Japan  

  • Diversity of brain macrophages in health and disease Invited International conference

    @Takahiro Masuda

    5th Japan-UK Neuroscience Symposium  2022.9 

     More details

    Event date: 2022.9

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Karuizawa   Country:Japan  

  • 多様な脳内マクロファージから紐解く中枢神経系疾患

    @増田隆博

    第43回日本炎症・再生医学会  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:淡路島   Country:Japan  

  • Diverse macrophages govern brain environment

    @Takahiro Masuda

    Neuro2022  2022.8 

     More details

    Event date: 2022.6 - 2022.7

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:沖縄   Country:Japan  

  • Decoding brain environment through single-cell analysis of microglia

    @Takahiro Masuda

    第99回日本生理学会大会  2022.3 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • 正常時および病態時における中枢神経系マクロファージの多様性

    @増田隆博

    第95回日本薬理学会年会  2022.3 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡国際会議場   Country:Japan  

  • 脳実質ミクログリアと脳境界マクロファージ Invited

    @増田隆博

    第43回日本疼痛学会  2021.12 

     More details

    Event date: 2022.1

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • マウスおよびヒト脳内におけるミクログリアの多様性および可塑性 Invited

    @増田隆博

    第94回日本生化学会大会  2021.11 

     More details

    Event date: 2022.1

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • Diversity and plasticity of microglia in mice and human Invited

    @Takahiro Masuda

    第50回 日本免疫学会学術集会  2021.12 

     More details

    Event date: 2022.1

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:奈良春日野国際フォーラム(奈良)   Country:Japan  

  • Single-cell analysis reveals spatial and temporal heterogeneity of microglia in human and mice Invited International conference

    @Takahiro Masuda

    第63回日本神経化学会大会  2020.9 

     More details

    Event date: 2020.9

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • Microglia heterogeneity and plasticity revealed by single cell analysis Invited

    @増田隆博

    第42回日本分子生物学会年会  2019.12 

     More details

    Event date: 2019.12

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡   Country:Japan  

  • 脳境界免疫細胞を標的とした疾患研究の可能性 Invited

    @増田隆博

    AMED精神・神経疾患領域/早期ライフ連携推進ワークショップ  2023.8 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • 脳内マクロファージの多様性と機能 Invited

    @増田隆博

    次世代薬理学セミナー2023(日本薬理学会西南部会)  2023.10 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • Diverse macrophages and brain development Invited International conference

    @Takahiro Masuda

    Young Glia  2023.10 

     More details

    Event date: 2024.4

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Genetic tools for studying diverse macrophages in the CNS International conference

    @Takahiro Masuda

    The 50th Naito Conference  2023.10 

     More details

    Event date: 2024.4

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • Similar but different: Diverse macrophages in the central nervous system Invited International conference

    @Takahiro Masuda

    The 32th Hot Spring Harbor International Symposium  2023.9 

     More details

    Event date: 2024.4

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • 脳内マクロファージの細胞特性や機能を解く Invited

    @増田隆博

    第8回日本骨免疫学会ウィンタースクール  2024.1 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:長野   Country:Japan  

  • 多様な脳内マクロファージの細胞特性を理解する

    @増田隆博

    第13回日本マーモセット研究会大会  2024.2 

     More details

    Event date: 2024.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:東京   Country:Japan  

  • Ontogeny and function of diverse brain macrophages Invited

    @Takahiro Masuda

    International Biomedical Research Seminars  2023.5 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:熊本   Country:Japan  

  • 多様なマクロファージから脳を知り、制御する Invited

    @増田隆博

    Scientific Innovation through Collaborations and Understandings  2022.10 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Japan  

  • 多様な脳内マクロファージから脳の形成と異常を理解する Invited

    @増田隆博

    第16大阪大学ニコンイメージングセンター シリーズセミナー  2023.2 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:大阪   Country:Japan  

  • 多様な脳内マクロファージから見る脳の形成と機能 Invited

    @増田隆博

    第15回 CBIR/ONSA/大学院セミナー共催 若手インスパイアシンポジウム  2023.2 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Japan  

  • 多様な脳内マクロファージの成り立ちとその後の変化 Invited

    @増田隆博

    令和4年度「感染・免疫・がん・炎症」全国共同研究拠点シンポジウム  2023.3 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:北海道   Country:Japan  

  • 脳内マクロファージの多様性と中枢神経系疾患

    @増田隆博

    合田パネル第3回創発の場  2023.3 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 多様な脳内マクロファージから見る脳形成と中枢神経系疾患 Invited

    @増田隆博

    第10回神経と免疫を語る会  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 脳の中に存在する多様なマクロファージを知る Invited

    増田隆博

    第22回NCU Life Science Seminar  2022.8 

     More details

    Event date: 2022.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:名古屋市立大学   Country:Japan  

  • 多様な脳内マクロファージと治療標的としての可能性 Invited

    @増田隆博

    第2回SAMURAI研究会  2022.2 

     More details

    Event date: 2022.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Japan  

  • IRF family transcription factor axis regulates gene expression program in microglia that gates neuropathic pain

    増田 隆博, 津田 誠, 吉永遼平, 田村智彦, 井上 和秀

    第34回日本疼痛学会  2012.7 

     More details

    Event date: 2012.7

    Language:Japanese  

    Venue:熊本   Country:Japan  

  • IRF Family Transcription Factor Axis Governs Gene Expression Program in Microglia Gating Neuropathic Pain International conference

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Nao Nishimoto, Shosuke Iwamoto, Hidetoshi Tozaki-Saitoh, Tomohiko Tamura, Kazuhide Inoue

    Purine2012  2012.6 

     More details

    Event date: 2012.5 - 2012.6

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Fukuoka   Country:Japan  

  • IRF family transcription factor axis governs gene expression program in microglia that drives neuropathic pain.

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Nao Nishimoto, Shosuke Iwamoto, Tomohiko Tamura, Kazuhide Inoue

    第85回日本薬理学会年会  2012.3 

     More details

    Event date: 2012.3

    Language:English   Presentation type:Oral presentation (general)  

    Venue:京都   Country:Japan  

    Following peripheral nerve injury (PNI), spinal microglia transform into reactive phenotypes and are implicated in producing neuropathic pain. However, the molecular mechanisms that regulate gene expression program in microglia remains to be elucidated. We have previously shown that interferon regulatory factor-8 (IRF8), a transcription factor that is upregulated in spinal microglia after PNI, plays a critical role in switching to reactive microglia. Here we identified IRF5 as a crucial mediator required for IRF8-dependent gene expression in reactive microglia. We found that forced expression of IRF8 in cultured microglia markedly increased expression of IRF5 in a manner that depended on its ability to bind DNA. Furthermore, mice lacking IRF8 failed to increase the expression of IRF5 in the spinal microglia after PNI, indicating IRF8-dependent expression of IRF5 in microglia in vivo. Interestingly, in IRF8-overexpressing microglial cells, knockdown of IRF5 expression resulted in suppressing IRF8-promoted transcription of genes associated with a reactive state of microglia. Altogether, the IRF8-IRF5 axis activates a program of gene expression that transforms microglia into reactive phenotypes crucial for neuropathic pain.

  • 転写因子IRF8を介したミクログリアATP受容体発現制御および神経障害性疼痛における役割

    増田隆博、津田誠、吉永遼平、齊藤秀俊、田村智彦、井上和秀

    プリン研究会  2011.10 

     More details

    Event date: 2011.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡崎   Country:Japan  

    神経障害などに伴った中枢性疾患発症時、ミクログリアはATP受容体や細胞内シグナル分子を過剰発現させ、炎症性サイトカインなどの生理活性液性因子を過剰産生・放出するなど、劇的にfunctional phenotype shiftを遂げ、「過活動」状態へと移行する。こうした過活動ミクログリアは、神経障害性疼痛発症においても重要な役割を果たしていることは明らかになっているが、ミクログリアの過活動状態への移行を司る遺伝子発現メカニズムは未だ明らかになっていない。本研究で、我々はInterferon regulatory factor-8(IRF8)がミクログリアの過活動状態への移行に重要な役割を果たしていることを見出した。
    末梢神経損傷後、脊髄内でミクログリア特異的にIRF8の顕著な発現増加が観察された。一方、培養ミクログリア細胞にIRF8を強制発現させたところ、P2X4受容体やP2Y12受容体の顕著な発現増加が観察されるなど、過活動状態ミクログリアに見られる特徴的変化を示した。しかし、DNA結合能力の消失した変異型IRF8を遺伝子導入した際には、こうした変化は見られなかった。また、IRF8欠損マウスにおいては、野生型マウスと比較して、末梢神経損傷後に観察されるミクログリア関連分子(P2X4受容体やP2Y12受容体など)の発現増加および疼痛症状が有意に抑制された。以上の結果から、末梢神経損傷後に脊髄ミクログリアで発現増加したIRF8は、ミクログリアの過活動状態への移行に関与し、神経障害性疼痛発症に重要な役割を果たしていると考えられる。

  • Interferon regulatory factor-8 in spinal microglia is a transcription factor crucial for switching to a reactive phenotype after nerve injury

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Hidetoshi Tozaki-Saitoh, Tomohiko Tamura, Kazuhide Inoue

    第54回日本神経化学会大会  2011.9 

     More details

    Event date: 2011.9

    Language:English   Presentation type:Oral presentation (general)  

    Venue:石川   Country:Japan  

    The interferon regulatory factor (IRF) family of transcription factors consists of nine members, which are expressed in peripheral immune cells and play important roles in gene expression and cellular development. Recent studies have shown that some members of the IRF family are also observed in the central nervous system (CNS). However, the functional relevance of IRFs in the CNS remains unknown. Microglia cells, the resident immune-related cells of the CNS, are crucial for sensing pathological alterations in the nervous system. As a consequence of injury to the nervous system, they transform to reactive states through a series of molecular changes including expression of various genes such as cell-surface receptors and proinflammatory cytokines, which are implicated in the pathogenesis of the CNS diseases such as neuropathic pain. However, the molecular mechanisms by which microglia switch to reactive phenotypes are poorly understood. Here we report that the IRF member IRF8 plays a crucial role in converting normal microglia into a reactive phenotype. Within the spinal cord, expression of IRF8 is normally low; however, expression was specifically upregulated in microglia after peripheral nerve injury (PNI). Forced IRF8 expression in cultured microglia promoted expression of genes associated with reactive phenotypes, depending on its ability to bind to DNA. IRF8 deficiency prevented the expression of these microglial genes in the spinal cord after PNI. We also found that mice lacking IRF8 exhibited resistance to PNI-induced pain hypersensitivity. Moreover, spinal transfer of IRF8-overexpressing microglia to normal mice produced pain hypersensitivity. Together, our present findings suggest IRF8 acts as a critical transcription factor involved in converting microglia to a reactive state that drives neuropathic pain.

  • IRF8 transcription factor directs microglia to be a hyperactive phenotype driving neuropathic pain International conference

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Hidetoshi Tozaki-Saitoh, Tomohiko Tamura, Kazuhide Inoue

    EuroGlia 2011  2011.9 

     More details

    Event date: 2011.9

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:プラハ   Country:Czech Republic  

    Microglia are the CNS immune-related cells and associated with the pathogenesis of several types of neurological diseases. Following peripheral nerve injury (PNI), spinal microglia become hyperactive and have crucial roles in producing neuropathic pain. However, the key factor of microglia controlling their phenotype remains to be elucidated. Here, we found that interferon regulatory factor-8 (IRF8), a transcription factor, is specific to microglia in the spinal cord, whose expression is normally low, but markedly upregulated after PNI. Forced IRF8 expression in primary cultures of microglia with lentiviral vectors promoted transcription of various genes that enhance microglial activity or neuronal excitability. Intrathecal transferring of IRF8-expressing microglia to normal animals produced allodynic behavior (hypersensitivity to innocuous stimuli). These responses depend on its DNA binding domain. In a model of neuropathic pain, IRF8 deficiency prevented expression of microglial genes implicated in pain hypersensitivity and alleviated tactile allodynia without affecting proliferative activity of microglia. Together, IRF8 activates a program of nerve injury-dependent gene expression that converts microglia to be a hyperactive phenotype that gates neuropathic pain.

  • 転写因子IRF8によるミクログリアの活動性制御および神経障害性疼痛における役割 Invited

    増田隆博、津田誠、吉永遼平、齊藤秀俊、田村智彦、井上和秀

    生理研研究会・グリア細胞機能から迫る脳機能解明  2011.6 

     More details

    Event date: 2011.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡崎   Country:Japan  

    神経損傷などに伴う中枢性疾患発症時、ミクログリアは細胞機能を司る受容体や細胞内シグナル分子を過剰発現させ、炎症性サイトカインなどの生理活性液性因子を過剰産生・放出するなど、劇的にfunctional phenotype shiftを遂げ、「過活動」状態になる。こうしたミクログリアは、神経障害性疼痛発症においても重要な役割を果たしていることは明らかになっているが、ミクログリアを過活動状態へと移行させる遺伝子発現メカニズムは未だ明らかになっていない。今回、我々はInterferon regulatory factor-8(IRF8)がミクログリアの過活動状態への移行に重要な役割を果たしていることを見出した。
    末梢神経損傷後、脊髄内でミクログリア特異的にIRF8の発現増加が観察された。一方、レンチウィルスベクターを用いて培養ミクログリア細胞にIRF8を強制発現させたところ、機能分子の発現増加など、過活動状態ミクログリアに見られる特徴的変化を示した。しかし、DNA結合能力の消失した変異体IRF8を遺伝子導入した際には、こうした変化は見られなかった。また、IRF8欠損マウスにおいては、野生型マウスと比較して、神経損傷後のミクログリア関連分子の発現増加および疼痛症状が有意に抑制された。以上の結果から、末梢神経損傷後に脊髄ミクログリアで発現増加したIRF8は、ミクログリアの過活動状態への移行に関与し、神経障害性疼痛発症に重要な役割を果たしていると考えられる。

  • IRF8 transcription factor governs gene expression program in microglia that drives neuropathic pain after peripheral nerve injury

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Tomohiko Tamura, Kazuhide Inoue

    第84回日本薬理学会年会  2011.3 

     More details

    Event date: 2011.3

    Language:English  

    Country:Japan  

  • 転写因子interferon regulatory factor-8 (IRF8) の神経障害性疼痛における役割

    増田隆博

    第6回九大痛みの研究会  2011.2 

     More details

    Event date: 2011.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡   Country:Japan  

  • Interferon regulatory factor-8 in spinal microglia is a transcription factor crucial for the development of neuropathic pain International conference

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Tomohiko Tamura*, Kazuhide Inoue

    GLIA WORLD  2010.10 

     More details

    Event date: 2010.10

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:湘南   Country:Japan  

    Neuropathic pain occurs after several diseases accompanied by nerve damage, which is characterized by abnormal sensory perception such as tactile allodynia (nocuous response to innocuous mechanical stimuli). This debilitating pain condition arises as a consequence of excessive excitability of neurons in the spinal dorsal horn, and the neuronal hyperexcitability involves signaling from activated spinal microglia that have induced or enhanced expression of various genes including proinflammatory cytokines. However, a key transcription factor regulating gene expression and neuropathic pain states is not identified. Here we report that interferon regulatory factor-8 (IRF-8), a member of IRF family transcription factor, controls gene expression in activated microglia responsible for tactile allodynia. Peripheral nerve injury (PNI) increased the expression of IRF-8 in spinal microglia in a cell type-specific manner. Furthermore, IRF-8-deficient mice (irf8-/-) exhibited a marked reduction in allodynia after PNI compared with wild-type mice without affecting normal pain sensitivity. In contrast, these mice showed a similar pain behavior in an inflammatory chronic pain model. Interestingly, irf8-/- mice failed to increase the expression of genes crucial for producing pain hypersensitivity in the spinal cord following PNI. Together, our present findings suggest that IRF-8 is the crucial intermediary for upregulating pain-related molecules and subsequent neuropathic pain.

  • Interferon regulatory factor-8はミクログリア由来疼痛関連分子の発現を誘導する転写因子である

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Tomohiko Tamura, Kazuhide Inoue

    Neuro 2010  2010.9 

     More details

    Event date: 2010.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神戸   Country:Japan  

    Neuropathic pain occurs after several diseases accompanied by nerve damage, which is characterized by abnormal sensory perception such as tactile allodynia (hypersensitivity to innocuous mechanical stimuli). This debilitating pain condition arises as a consequence of excessive excitability of neurons in spinal dorsal horn, and the neuronal hyperexcitability involves signaling from activated spinal microglia that induce or enhance expression of various genes including proinflammatory cytokines. However, a key transcription factor regulating gene expression and neuropathic pain states is not identified. In the present study, we examined the role of interferon regulatory factor-8 (IRF-8), a member of IRF family transcription factor, in regulating tactile allodynia. We found that peripheral nerve injury (PNI) increased the expression of IRF-8 in spinal microglia in a cell type-specific manner. Furthermore, mice lacking IRF-8 (irf8-/-) exhibited a marked reduction in allodynia after PNI compared with wild-type mice without affecting normal pain sensitivity or responses to cold stimuli. In contrast, these mice showed a similar pain behavior in an inflammatory chronic pain model. Interestingly, irf8-/- mice failed to increase the expression of genes crucial for producing pain hypersensitivity in the spinal cord following PNI. Together, our present findings suggest that IRF-8 critically contributes to the pathogenesis of neuropathic pain but not of inflammatory pain.

  • Role of interferon regulatory factor-8 in the pathogenesis of neuropathic pain International conference

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Tomohiko Tamura, Kazuhide Inoue

    Purine 2010  2010.6 

     More details

    Event date: 2010.5 - 2010.6

    Language:English   Presentation type:Oral presentation (general)  

    Venue:タラゴナ   Country:Spain  

    Neuropathic pain is a debilitating pain condition that arises as a consequence of excessive excitability of neurons in spinal dorsal horn after peripheral nerve injury (PNI). This pathological abnormality of neurotransmission involves signaling from activated spinal microglia that induce or enhance expression of various genes including purinoceptors and proinflammatory cytokines. However, a key transcription factor regulating gene expression and neuropathic pain states is not identified. In the present study, we examined the role of interferon regulatory factor-8 (IRF-8), a member of IRF family transcription factor, in regulating tactile allodynia (hypersensitivity to innocuous mechanical stimuli). We found that PNI increased the expression of IRF-8 in the spinal microglia in a cell-specific manner. Furthermore, mice lacking IRF-8 (irf8-/-) exhibited a marked reduction in allodynia after PNI compared with wild-type mice without affecting normal pain sensitivity or responses to cold stimuli. In contrast, these mice showed a similar pain behavior in an inflammatory pain model. Interestingly, irf8-/- mice failed to increase the expression of genes crucial for producing pain hypersensitivity (such as P2X7 and P2Y12) in the spinal cord following PNI. Together, our present findings suggest that IRF-8 critically contributes to the pathogenesis of neuropathic pain but not of inflammatory pain.

  • 神経障害性疼痛におけるinterferon regulatory factor-8の役割

    Takahiro Masuda, Makoto Tsuda, Ryohei Yoshinaga, Tomohiko Tamura, Kazuhide Inoue

    第83回日本薬理学会年会  2010.3 

     More details

    Event date: 2010.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大阪   Country:Japan  

    Following peripheral nerve injury (PNI), spinal microglia become activated and are implicated in producing neuropathic pain. Activated microglia induce or enhance expression of various genes (such as proinflammatory cytokines), but a key transcriptional factor in spinal microglia that drives neuropathic pain is not identified. In the present study, we found that PNI increased the expression of interferon regulatory factor-8 (IRF-8), a transcription factor, in the spinal cord microglia. Furthermore, mice lacking IRF-8 exhibited a marked reduction in tactile allodynia (hypersensitivity to innocuous mechanical stimuli) after PNI compared to wild-type littermates without affecting basal pain sensitivity. Interestingly, these mice also failed to increase the expression of crucial factors for producing pain hypersensitivity in the spinal cord. Together, our present findings suggest that IRF-8 critically contributes to the pathogenesis of neuropathic pain after PNI.

  • Interferon-gamma receptor signals are required for spinal microglia activation and neuropathic pain after peripheral nerve injury International conference

    Takahiro Masuda, Makoto Tsuda, Kazuhide Inoue

    Fukuoka Purine 2009  2009.7 

     More details

    Event date: 2009.7

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡   Country:Japan  

    Neuropathic pain is a debilitating pain condition that occurs after neuronal damage induced by diabetes, infection, or physical injury. A hallmark of this pain is abnormal sensory perception of pain such as allodynia (hypersensitivity to innocuous light stimuli). Accumulating evidence shows that spinal microglia exhibiting activated form (proliferation, hypertrophied soma) have a crucial role in producing allodynia after peripheral nerve injury. However, the mechanisms of microglia activation remain unknown. In the present study, we show that in naïve rat spinal microglia express the receptor for interferon-γ (IFN-γR) in a cell-type-specific fashion and that stimulating this receptor by intrathecal IFN-γ administration converts microglia into activated form and produces long-lasting allodynia. Furthermore, mice lacking IFN-γR failed to display nerve injury-induced microglia activation in the ipsilateral dorsal horn and allodynic behavior without affecting microglia in the contralateral side or basal pain sensitivity. We also found that stimulating IFN-γR up-regulates the expression of Lyn tyrosine kinase and purinergic P2X4 receptor in spinal microglia, crucial events for neuropathic pain. Using Lyn-deficient mice (lyn-/-) and P2X4-deficient mice (p2xr4-/-), we found that spinal IFN-γ injection-evoked microglia activation was impaired in lyn-/- mice, but not in p2xr4-/- mice. On the other hand, IFN-γ-induced allodynia was strongly attenuated both in lyn-/- and p2xr4-/- mice. Together, our present findings suggest that the IFN-γ/IFN-γR system contributes to nerve injury-induced microglia activation via Lyn tyrosine kinase, and tactile allodynia through Lyn tyrosine kinase and P2X4 receptor.

  • Lyn tyrosine kinase is essential for interferon-γ-dependent spinal microglia activation driving neuropathic pain

    Takahiro Masuda, Makoto Tsuda, Kazuhide Inoue

    第82回日本薬理学会年会  2009.3 

     More details

    Event date: 2009.3

    Language:English   Presentation type:Oral presentation (general)  

    Venue:横浜   Country:Japan  

    After peripheral nerve injury, spinal microglia become activated form, which are critical for producing abnormal pain hypersensitivity, namely allodynia - a hallmark symptom of neuropathic pain. We have previously shown that in normal animals spinal microglia express interferon-γ (IFN-γ) receptors and that stimulating these receptors drive microglia to transform into activated ones and that mice lacking IFN-γ receptor exhibit impaired nerve injury-induced microglia activation and allodynia. However, the detailed mechanisms of IFN-γ-induced microglia activation remain unknown. In this study, we investigated the role of Lyn tyrosine kinase that is implicated in neuropathic pain. We found that intrathecal administration of IFN-γ upregulated the expression of Lyn in spinal microglia. In Lyn-deficient mice (lyn-/-), IFN-γ failed to activate microglia and to generate allodynic behavior. Furthermore, nerve injury-induced activation of microglia in the spinal dorsal horn was markedly suppressed in lyn-/- mice compared to wild-type mice. Together, our findings suggest that IFN-γ produces activation of microglia via Lyn kinase signaling, which in turn leads to allodynia after nerve injury.

  • Interferon-γ and Lyn tyrosine kinase are required for spinal microglia activation and neuropathic pain after peripheral nerve injury International conference

    Takahiro Masuda, Makoto Tsuda, Kazuhide Inoue

    Neuroscience 2008  2008.11 

     More details

    Event date: 2008.11

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:ワシントン   Country:United States  

    Neuropathic pain is a result of peripheral nerve injury in diabetes or cancer. A hallmark of this pain is abnormal sensory perception of pain such as allodynia (hypersensitivity to light stimuli). Spinal microglia exhibiting activated form (proliferation, hypertrophy of their cell bodies) have a crucial role in producing allodynia after nerve injury. We have previously shown that a single intrathecal administration of interferon-γ (IFN-γ) to normal animals produces progressive allodynia and spinal microglia activation and that mice lacking IFN-γ receptor display impaired nerve injury-induced microglia activation and allodynia. However, the detailed mechanisms of IFN-γ-dependent microglia activation remain unknown. In the present study, we examined the role of Lyn tyrosine kinase, upregulated in the spinal cord and involved in generating neuropathic allodynia after nerve injury. We found that intrathecal administration of IFN-γ upregulated the expression of Lyn in spinal microglia. In wild-type (WT) mice, intrathecal IFN-γ injection produced an increase in the number of microglia in the dorsal horn and allodynic behavior. In contrast, these changes were markedly suppressed in Lyn-deficient mice (lyn-/-). Furthermore, nerve injury-induced proliferation of microglia in the ipsilateral dorsal horn in WT mice was also attenuated in lyn-/- mice. Together, our findings suggest that IFN-γ produces the activation of microglia via Lyn kinase signaling, which in turn leads to allodynia after peripheral nerve injury.

  • 末梢神経損傷によるミクログリアの活性化と神経因性疼痛発症におけるIFN-γの役割

    Takahiro Masuda, Makoto Tsuda, Kazuhide Inoue

    福岡ペイン2008  2008.7 

     More details

    Event date: 2008.7

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Fukuoka   Country:Japan  

    癌や糖尿病などにより神経が損傷を受けることで、神経因性疼痛が発症する。この疼痛は、非侵害性刺激によって激烈な痛みを感じてしまうアロディニアが特徴的である。近年、我々は神経損傷後に脊髄内で活性化したミクログリアが神経因性疼痛発症に重要な役割を持つことを明らかにしてきた。しかし、これまでにミクログリア活性化の詳細なメカニズムは明らかになっていない。そこで本研究では、神経損傷後に脊髄内で発現増加することが報告されているインターフェロンγ(IFN-γ)に着目し、神経因性疼痛発症およびミクログリア活性化への関与について検討した。
    IFN-γリコンビナントタンパク質を脊髄腔内投与することにより、強力かつ持続的なアロディニア症状を呈した。また、脊髄内でのIFN-γ受容体mRNA発現細胞はミクログリアのみであったことから、IFN-γ処置動物の脊髄におけるミクログリアを免疫染色法で観察した。その結果、ミクログリアは異常な活性化(増殖・細胞体の肥大化)を起こしていることが明らかになった。
    続いて、IFN-γ受容体欠損マウスと用いて検討を行ったところ、野生型マウスに比べ、神経損傷後のアロディニア症状および損傷側脊髄後角でのミクログリア活性化に劇的な改善が観察された。
    以上のことより、末梢神経損傷により脊髄内で発現増加するIFN-γは直接ミクログリアに作用し、その活性化を介して神経因性疼痛発症に重要な役割を持つことが明らかになった。

  • Role of interferon-γ in spinal microglia activation and neuropathic pain after peripheral nerve injury International conference

    Takahiro Masuda, Makoto Tsuda, Kazuhide Inoue

    Asian Pain Symposium  2008.7 

     More details

    Event date: 2008.7

    Language:English  

    Venue:Fukuoka   Country:Japan  

    Neuropathic pain is a result of peripheral nerve injury in diabetes or cancer. A hallmark of this pain is abnormal sensory perception of pain such as allodynia (hypersensitivity to light stimuli). We have previously shown that spinal microglia exhibiting activated form have a crucial role in producing allodynia after nerve injury. However, the mechanisms of microglia activation remain unknown. In the present study, we examined the role of interferon-γ (IFN-γ), reported to be upregulated in the spinal cord of animal models of neuropathic pain, in microglial activation and neuropathic allodynia. We found that intrathecal administration of IFN-γ produced long-lasting allodynia. The expression of IFN-γ receptor mRNA in the spinal cord of naïve rats was present only in microglia. In the dorsal horn of IFN-γ-treated rats, microglia dramatically changed their morphology into hypertrophy and also proliferated, both of which are prominent features of activated microglia. We next examined the role of IFN-γ in tactile allodynia and microglia activation after peripheral nerve injury using mice lacking IFN-γ receptor (ifngr-/-). We found that ifngr-/- mice exhibited a marked reduction in tactile allodynia after nerve injury compared with wild-type (WT) mice. Furthermore, in WT mice, nerve injury increased the number of microglial cells with hypertrophic morphology in the ipsilateral dorsal horn. In contrast, these changes were markedly suppressed in ifngr-/- mice. Together, our present findings suggest that the IFN-γ/IFN-γ receptor system has crucial roles in activating microglia and producing tactile allodynia after nerve injury.

  • Interferon-γ signals were required in spinal microglia activation and neuropathic pain after peripheral nerve injury International conference

    Takahiro Masuda, Makoto Tsuda, Kazuhide Inoue

    Purine 2008  2008.7 

     More details

    Event date: 2008.6 - 2008.7

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:コペンハーゲン   Country:Denmark  

    Interferon-γ signals were required in spinal microglia activation and neuropathic pain after peripheral nerve injury

  • 脳内炎症制御の分子基盤 脳内マクロファージの分化や機能制御

    増田 隆博

    神経免疫学  2023.9  (一社)日本神経免疫学会

     More details

    Language:Japanese  

  • 神経-免疫および炎症性相互作用 CNSマクロファージのサブセットの特定は出生後に境界明瞭なニッチにおいて生じる(Neuro-immune and inflammatory interaction Specification of CNS macrophage subsets occurs postnatally in defined niches)

    Masuda Takahiro, Prinz Marco

    日本免疫学会総会・学術集会記録  2022.11  (NPO)日本免疫学会

     More details

    Language:English  

  • 炎症が引き起こす線維化と組織修復 KAI-JSI Joint Session 中枢神経系における多様なマクロファージ(Inflammation driven fibrosis and tissue repair: KAI-JSI Joint Session Diverse macrophages in the central nervous system)

    Masuda Takahiro

    日本免疫学会総会・学術集会記録  2023.12  (NPO)日本免疫学会

     More details

    Language:English  

  • ミクログリアによる脳情報デコード ミクログリアのシングルセル解析による脳環境デコーディング(Microglial decoding of brain information Decoding brain environment through single-cell analysis of microglia)

    Masuda Takahiro

    The Journal of Physiological Sciences  2022.12  (一社)日本生理学会

     More details

    Language:English  

  • グリア多様性の理解に基づく精神・神経変性疾患の機序解明と治療法開発 多様な脳内マクロファージの発生と機能

    増田 隆博

    日本生化学会大会プログラム・講演要旨集  2023.10  (公社)日本生化学会

     More details

    Language:Japanese  

  • グリア多様性の理解に基づく精神・神経変性疾患の機序解明と治療法開発 多様な脳内マクロファージの発生と機能

    増田 隆博

    日本生化学会大会プログラム・講演要旨集  2023.10  (公社)日本生化学会

     More details

    Language:Japanese  

  • 脳内炎症制御の分子基盤 脳内マクロファージの分化や機能制御

    増田 隆博

    神経免疫学  2023.9  (一社)日本神経免疫学会

     More details

    Language:Japanese  

  • 神経-免疫および炎症性相互作用 CNSマクロファージのサブセットの特定は出生後に境界明瞭なニッチにおいて生じる(Neuro-immune and inflammatory interaction Specification of CNS macrophage subsets occurs postnatally in defined niches)

    Masuda Takahiro, Prinz Marco

    日本免疫学会総会・学術集会記録  2022.11  (NPO)日本免疫学会

     More details

    Language:English  

  • 炎症が引き起こす線維化と組織修復 KAI-JSI Joint Session 中枢神経系における多様なマクロファージ(Inflammation driven fibrosis and tissue repair: KAI-JSI Joint Session Diverse macrophages in the central nervous system)

    Masuda Takahiro

    日本免疫学会総会・学術集会記録  2023.12  (NPO)日本免疫学会

     More details

    Language:English  

  • ミクログリアによる脳情報デコード ミクログリアのシングルセル解析による脳環境デコーディング(Microglial decoding of brain information Decoding brain environment through single-cell analysis of microglia)

    Masuda Takahiro

    The Journal of Physiological Sciences  2022.12  (一社)日本生理学会

     More details

    Language:English  

  • 脳内炎症制御の分子基盤 脳内マクロファージの分化や機能制御

    増田 隆博

    神経免疫学  2023.9  (一社)日本神経免疫学会

     More details

    Language:Japanese  

  • 神経-免疫および炎症性相互作用 CNSマクロファージのサブセットの特定は出生後に境界明瞭なニッチにおいて生じる(Neuro-immune and inflammatory interaction Specification of CNS macrophage subsets occurs postnatally in defined niches)

    Masuda Takahiro, Prinz Marco

    日本免疫学会総会・学術集会記録  2022.11  (NPO)日本免疫学会

     More details

    Language:English  

  • 炎症が引き起こす線維化と組織修復 KAI-JSI Joint Session 中枢神経系における多様なマクロファージ(Inflammation driven fibrosis and tissue repair: KAI-JSI Joint Session Diverse macrophages in the central nervous system)

    Masuda Takahiro

    日本免疫学会総会・学術集会記録  2023.12  (NPO)日本免疫学会

     More details

    Language:English  

  • ミクログリアによる脳情報デコード ミクログリアのシングルセル解析による脳環境デコーディング(Microglial decoding of brain information Decoding brain environment through single-cell analysis of microglia)

    Masuda Takahiro

    The Journal of Physiological Sciences  2022.12  (一社)日本生理学会

     More details

    Language:English  

  • グリア多様性の理解に基づく精神・神経変性疾患の機序解明と治療法開発 多様な脳内マクロファージの発生と機能

    増田 隆博

    日本生化学会大会プログラム・講演要旨集  2023.10  (公社)日本生化学会

     More details

    Language:Japanese  

  • Microglia-to-neuron conversion ameliorates neuronal dysfunction in mice with chronic ischemic injury(タイトル和訳中)

    Irie Takashi, Matsuda Taito, Masuda Takahiro, Isobe Noriko, Nakashima Kinichi

    臨床神経学  2024.10  (一社)日本神経学会

     More details

    Language:English  

  • Elucidation of the role of macrophage/microglia in neuroneurodegenerative disorders Origins and functions of diverse brain macrophages(タイトル和訳中)

    Masuda Takahiro

    臨床神経学  2024.10  (一社)日本神経学会

     More details

    Language:English  

▼display all

MISC

  • Lipid in microglial biology - from material to mediator. Reviewed

    @Yamamoto S, @Masuda T

    Inflammation and Regeneration   2023.7

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: 10.1186/s41232-023-00289-z

  • Mechanisms of myeloid cell entry to the healthy and diseased central nervous system Reviewed International coauthorship

    Amann L, Masuda T, Prinz M

    Nature Immunology   2023.3

     More details

    Authorship:Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • Novel insights into the origin and development of CNS macrophage subsets Reviewed International coauthorship

    @Masuda T, Amann L, Prinz M

    Clin Transl Med   2022.11

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • Microglia states and nomenclature: A field at its crossroads Reviewed International coauthorship

    Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai LH, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu LJ, Wyss-Coray T

    Neuron   2022.11

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:Neuron  

    DOI: 10.1016/j.neuron.2022.10.020.

    researchmap

  • Microglia and Central Nervous System-Associated Macrophages-From Origin to Disease Modulation Reviewed International coauthorship

    Prinz M, @Masuda T, Wheeler MA, Quintana FJ

    Annual Review of Immunology   2021.4

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: 10.1146/annurev-immunol-093019-110159

  • Microglia Heterogeneity in the Single-Cell Era Reviewed International coauthorship

    @Masuda T, Sankowski R, Staszewski O, Prinz M

    Cell Reports   2020.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: 10.1016/j.celrep.2020.01.010.

  • Macrophages at CNS interfaces: ontogeny and function in health and disease Reviewed International coauthorship

    Kierdorf K, @Masuda T, Jordao M, Prinz M

    Nature Reviews Neuroscience   2019.9

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: 10.1038/s41583-019-0201-x

  • Common principles of macrophage biology in blood-tissue barriers(タイトル和訳中)

    Hiraga Shin-ichiro, Masuda Takahiro

    Clinical and Experimental Neuroimmunology   15 ( 4 )   203 - 214   2024.11

     More details

    Language:English   Publisher:(一社)日本神経免疫学会  

  • 【ヒト疾患と免疫細胞サブセット 解像度をあげて見えてきた病態を規定する疾患のキープレーヤーと治療戦略】(第4章)疾患とのかかわり ミクログリアの機能と中枢神経系疾患への関与 Invited

    増田 隆博

    実験医学   42 ( 12 )   1944 - 1950   2024.8   ISSN:0288-5514

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publisher:(株)羊土社  

    脳や脊髄を含む中枢神経系は,全身機能を統括する重要組織であることは疑いようもないが,そのきわめて高度な機能の獲得や維持において欠かすことのできないのが本稿で取りあげるミクログリアである.脳内マクロファージの一種であるミクログリアは,死細胞の除去や組織炎症の制御など典型的な免疫機能のみならず,ほぼすべての脳内生理現象にかかわると考えられている.本稿では,ミクログリアの細胞特性や機能,特に中枢神経系疾患における役割やその機能的多様性について最新の知見を交えながら概説する.(著者抄録)

  • 【グリアは神経回路機能の主役か?】発生期のミクログリアの脳定着機構 Invited

    服部 祐季, 増田 隆博

    細胞   56 ( 8 )   571 - 574   2024.7   ISSN:1346-7557

     More details

    Authorship:Last author, Corresponding author   Language:Japanese   Publisher:(株)ニュー・サイエンス社  

    脳には,神経細胞の他にも免疫系の細胞であるミクログリアが存在し,脳の機能を支えている。成体脳におけるミクログリアの機能解明が進んできた一方,近年,胎生期や生後の脳においてもさまざまな役割を担うことが明らかになりつつある。ミクログリアは,ニューロンや他のグリア細胞とは起源が異なり,卵黄嚢から生じることが知られる。しかし,ミクログリアがいかにして脳に定着するかに関して,その詳細は不明である。最近筆者らは,マウスにおいて脳内のミクログリアは少なくとも二つの異なる定着ルートをたどる細胞集団からなることを見出した。胎生早期にミクログリアの性質を備えて脳に定着を開始する群に加えて,その後遅れて脳室から流入する群が存在することが分かった。本稿では,ミクログリアの脳定着プロセスの解明が性質・機能多様性の理解にどう役立つのかという点にフォーカスし,最新の研究を紹介しながら解説する。(著者抄録)

  • ミクログリアの細胞特性や機能と中枢神経系疾患発症への関与 Invited

    増田 隆博

    臨床免疫・アレルギー科   81 ( 4 )   359 - 365   2024.4   ISSN:1881-1930

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:(有)科学評論社  

    アストロサイトやオリゴデンドロサイトとともにグリア細胞に分類されるミクログリアは、脳内主要免疫細胞としても知られる脳内マクロファージであり、最近では「神経シナプスの剪定」や「髄鞘形成の促進」といった"免疫"の域にとどまらない機能が数多く報告されている。今回、ミクログリアの発生維持メカニズムや細胞特性、細胞機能、中枢神経疾患への関与などについて、これまでの知見を以下の項目に分けて概説した。1)ミクログリアの発生と脳内定着・維持。2)ミクログリアと脳境界マクロファージ。3)ミクログリアのアルツハイマー病への関与。4)多発性硬化症への関与。5)腸内細菌叢によるミクログリア機能の制御。

  • 脳内マクロファージの統合的理解に向けた研究 Invited

    増田 隆博

    神経化学   62 ( 2 )   38 - 41   2023.12   ISSN:0037-3796

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publisher:(一社)日本神経化学会  

  • 中枢神経系マクロファージをめぐる新展開 ミクログリア・脳境界マクロファージの分化,特性 Invited

    増田 隆博

    感染・炎症・免疫   53 ( 2 )   98 - 106   2023.10   ISSN:0387-1010

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:鳥居薬品(株)  

    脳と脊髄で構成される中枢神経系が全身機能を司る重要組織であることは周知の事実であるが,その組織環境や機能を維持するために欠かすことのできない存在として知られるのが中枢神経系マクロファージである.中枢神経系マクロファージは,分布領域の違いから,実質内に存在するミクログリアと,髄膜や血管周囲スペースなどの境界領域に存在する脳境界マクロファージに大別される.ミクログリアは死細胞の除去やシナプス剪定などさまざまな機能を担うことが明らかになっている一方で,脳境界マクロファージの存在意義や細胞特性にはいまだ不明な点が多く,またミクログリアと脳境界マクロファージを正確に分けて解析した報告も少ない.そのようななか,近年の研究技術の進歩や研究ツールの開発に伴って,両細胞種の分離機能解析が可能になってきた.本稿では,ミクログリアと脳境界マクロファージの細胞特性や機能に関して,最新の知見を交えて概説する.(著者抄録)

  • 【ミエロイド系細胞の新時代:発生機構から創薬標的としての可能性まで】正常時および病態時における中枢神経系マクロファージの多様性 Invited

    増田 隆博

    日本薬理学雑誌   158 ( 4 )   308 - 311   2023.7   ISSN:0015-5691

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:(公社)日本薬理学会  

    脳および脊髄を含む中枢神経系組織は,神経細胞やグリア細胞,血管系細胞や免疫細胞など多種多様な細胞によって構成され,それらの複雑かつダイナミックな相互作用によって高度な機能が維持されている.その中でも,中枢機能を正確に維持するために欠かすことのできない細胞が,著者らの研究対象である脳内マクロファージである.脳内マクロファージと聞いてまず思い浮かぶのが,脳内主要免疫細胞として知られるミクログリアではないかと思う.長年の研究から,ミクログリアの細胞特性や機能,他の免疫細胞との関係,中枢神経系疾患への関与などが明らかになってきている.一方,ミクログリアの傍らであまり目を向けられてこなかった第2の脳内マクロファージが存在する.それが,髄膜や血管周囲空間などの境界領域に存在する脳境界マクロファージ(CNS associated macrophages:CAMs)である.その存在は長年認知されてきたものの,CAMsはミクログリアと遺伝子プロファイルが非常に似ており,これまで両細胞種を正確に分けて解析した報告は少なかった.近年,CAMsに着目した研究も増加しつつあり,その理解もようやく進み始めた.本稿では,ミクログリアおよびCAMsに関して,その発生・維持メカニズムや細胞特性,またそれらを解析するための研究ツールについて,最新の知見を交えて概説する.(著者抄録)

  • ミクログリア生物学における脂質 材料からメディエーターへ(Lipid in microglial biology: from material to mediator)

    Yamamoto Shota, Masuda Takahiro

    Inflammation and Regeneration   43   1 of 6 - 6 of 6   2023.7   ISSN:1880-9693

     More details

    Language:English   Publisher:(一社)日本炎症・再生医学会  

  • Central Nervous System Tumor 脳腫瘍 脳腫瘍と免疫システムUpdate 脳境界マクロファージと脳免疫システム Invited

    増田 隆博

    癌と化学療法   50 ( 6 )   690 - 693   2023.6   ISSN:0385-0684

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:(株)癌と化学療法社  

  • Microglial diversity in neuropathic pain Reviewed

    Tsuda M, Masuda T, Kohno K

    Trends in Neuroscience   2023.5

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 中枢神経系のマクロファージに関する最近の話題(Recent topics regarding macrophage in the central nervous system) Invited Reviewed

    Masuda Takahiro

    The Journal of Biochemistry   173 ( 3 )   139 - 143   2023.3   ISSN:0021-924X

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:(公社)日本生化学会  

  • 【間質リテラシーと疾患】中枢神経系の間質に常在する脳内マクロファージと疾患 Invited

    増田 隆博

    炎症と免疫   31 ( 1 )   3 - 6   2022.12   ISSN:0918-8371

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:(株)先端医学社  

    脳や脊髄を含む中枢神経系は,無数に張り巡らされた神経細胞を基本骨格とした複雑な構造体である.その間質領域は,免疫細胞やグリア細胞,血管系細胞など多様な細胞によって満たされているが,それらは単なる組織の支持細胞ではなく,複雑かつダイナミックな相互作用を介して中枢神経系の高度な機能発現に積極的に関与している.本稿では,中枢神経系の間質における主要免疫細胞として知られる脳内マクロファージのうち,とくにミクログリアの細胞特性や疾患発症への関与について,最新の知見を交えて概説する.(著者抄録)

  • 精神科医に知ってもらいたい医学生物学の先端技術 一細胞解析が切り開く医学生物学研究 Invited

    増田 隆博

    臨床精神医学   51 ( 12 )   1441 - 1443   2022.12   ISSN:0300-032X

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:(株)アークメディア  

  • Recent topics regarding macrophage in the central nervous system Reviewed

    @Masuda T

    Journal of Biochemistry   2022.11

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 【脳をしなやかに制御するミクログリアと脳内免疫系 見えてきた起源と多様性、創薬標的の可能性】脳実質ミクログリアと脳境界マクロファージ Invited

    増田 隆博

    実験医学   40 ( 18 )   2961 - 2966   2022.11   ISSN:0288-5514

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:(株)羊土社  

    中枢神経系を構成する主要免疫細胞として君臨するミクログリアの傍らで,あまり目を向けられてこなかった第2の脳内マクロファージが存在する.それが,脳境界マクロファージ(CNS associated macrophages, CAMs)である.その存在は数十年前から認知されていたにもかかわらず,これまでミクログリアとCAMsを正確に分けて解析した報告は少ない.しかし,近年の研究技術の進歩に伴って,CAMsに着目した研究も増加しつつあり,その理解も進み始めた.本稿では,これまで明らかになっているCAMsの細胞特性や機能に関して,特にミクログリアとの類似・相違点という観点から概説する.(著者抄録)

  • Author Correction: Specification of CNS macrophage subsets occurs postnatally in defined niches (Nature, (2022), 604, 7907, (740-748), 10.1038/s41586-022-04596-2) Reviewed International coauthorship

    Masuda T., Amann L., Monaco G., Sankowski R., Staszewski O., Krueger M., Del Gaudio F., He L., Paterson N., Nent E., Fernández-Klett F., Yamasaki A., Frosch M., Fliegauf M., Bosch L.F.P., Ulupinar H., Hagemeyer N., Schreiner D., Dorrier C., Tsuda M., Grothe C., Joutel A., Daneman R., Betsholtz C., Lendahl U., Knobeloch K.P., Lämmermann T., Priller J., Kierdorf K., Prinz M.

    Nature   610 ( 7930 )   E1   2022.10   ISSN:00280836

     More details

    Language:English   Publisher:Nature  

    In the version of this article initially published online, there was a copy– paste duplication of values in the source data for Figure 1b, Parenchyma: Cx3cr1-GFP+. The correct values have been restored in the HTML version of this article.

    DOI: 10.1038/s41586-022-05361-1

    Scopus

    PubMed

  • 【マクロファージの多様性】多様な脳内マクロファージからみる正常脳と中枢神経系疾患 Invited

    増田 隆博

    臨床免疫・アレルギー科   78 ( 2 )   155 - 161   2022.8   ISSN:1881-1930

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:(有)科学評論社  

  • Author Correction: Mapping microglia states in the human brain through the integration of high-dimensional techniques (Nature Neuroscience, (2019), 22, 12, (2098-2110), 10.1038/s41593-019-0532-y) Reviewed International coauthorship

    Sankowski R., Böttcher C., Masuda T., Geirsdottir L., Sagar , Sindram E., Seredenina T., Muhs A., Scheiwe C., Shah M.J., Heiland D.H., Schnell O., Grün D., Priller J., Prinz M.

    Nature Neuroscience   25 ( 7 )   2022.7   ISSN:10976256

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:Nature Neuroscience  

    In the version of this article initially published, Fig.3b,c, Fig. 5a–d, Extended Data Fig. 1 and Supplementary Fig. 8b contained errors. Fig. 3b and c showed incorrect immunohistochemistry quantifications. Fig. 5a contained a duplicate image for the TMEM119 control sample, and panels b and c showed incorrect immunohistochemistry quantifications. Fig. 5d contained an incorrect image for the t-SNE map of P2RY12; it was a duplicate of the map for HLA-DRA. Extended Data Fig. 1 contained incorrect images in panel a for Pat 7 (TMEM119), Pat 12 (TMEM119, CD74) and Pat 15 (CD68) and in panel b for Pat 3 (GFAP), Pat 12 (TMEM119 and P2YR12) and Pat 13 (TMEM119). Supplementary Fig. 8b contained an incorrect image for the CSF2 t-SNE panel. In addition, the legend for Fig. 5b as well as the description of Fig. 1b in Methods incorrectly said that the test used was a paired t-test; it should read ‘unpaired t-test’ in both places. In the Results section, the sentence “Normalization for the number of IBA1+ cells revealed lower expression of the bona fide microglial markers P2RY12 and TMEM119, and higher expression of HLA-DR (Fig. 5c)” should read “no change of expression” instead of “lower expression”. The errors have been corrected in the HTML and PDF versions of the article.

    DOI: 10.1038/s41593-022-01089-3

    Scopus

  • 脳内免疫細胞ミクログリアの時空間的多様性 Reviewed

    @増田隆博

    神経化学トピックス   2019.6

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: DOI: 10.11481/topics107

  • Transcriptional regulation in microglia and neuropathic pain Reviewed

    @Masuda T, @Tsuda M, @Inoue K

    Pain Management   2016.4

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • Microglia: A Unique Versatile Cell in the Central Nervous System Reviewed

    @Masuda T, Prinz M

    ACS Chemical Neuroscience   2016.4

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: DOI: 10.1021/acschemneuro.5b00317

  • P2X4 receptors and neuropathic pain

    Makoto Tsuda, Takahiro Masuda, Hidetoshi Tozaki-Saitoh, Kazuhide Inoue

    Front Cell Neurosci.   2013.10

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    Neuropathic pain, a debilitating pain condition, is a common consequence of damage to the nervous system. Neuropathic pain is often resistant to currently available analgesics. A growing body of evidence indicates that spinal microglia react and undergo a series of changes that directly influence the establishment of neuropathic pain states. After nerve injury, P2X4 receptors (P2X4Rs) are upregulated in spinal microglia by several factors at the transcriptional and translational levels. Those include the CC chemokine CCL21 derived from damaged neurons, the extracellular matrix protein fibronectin in the spinal cord, and the transcription factor interferon regulatory factor 8 (IRF8) expressed in microglia. P2X4R expression in microglia is also regulated at the post-translational level by signaling from other cell-surface receptors such as CC chemokine receptor (CCR2). Importantly, inhibiting the function or expression of P2X4Rs and P2X4R-regulating molecules suppresses the aberrant excitability of dorsal horn neurons and neuropathic pain. These findings indicate that P2X4R-positive microglia are a central player in mechanisms for neuropathic pain. Thus, microglial P2X4Rs are a potential target for treating the chronic pain state.

  • Microglial regulation of neuropathic pain

    Makoto Tsuda, Takahiro Masuda, Hidetoshi Tozaki-Saitoh, Kazuhide Inoue

    Journal of Pharmacological Sciences   2013.1

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    Neuropathic pain is a highly debilitating chronic pain state that is a consequence of nerve injury or of diseases such as diabetes, cancer, infection, autoimmune disease, or trauma. Neuropathic pain is often resistant to currently available analgesics. There is a rapidly growing body of evidence indicating that signalings from spinal microglia play crucial roles in the pathogenesis of neuropathic pain. After peripheral nerve injury, microglia transform to reactive states through the expression of various genes such as cell-surface receptors (including purinergic receptors) and proinflammatory cytokines that enhance synaptic transmission in dorsal horn neurons. Inhibiting function or expression of these microglial molecules strongly suppresses pain hypersensitivity to innocuous mechanical stimuli (tactile allodynia), a hallmark symptom of neuropathic pain. A recent study also reveals that the transcription factor IRF8 (interferon regulatory factor 8) is a critical regulator of the nerve injury-induced gene expression in microglia. The present review article highlights the recent advances in our understanding of spinal microglia in neuropathic pain.

▼display all

Professional Memberships

▼display all

Academic Activities

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:13

    Number of peer-reviewed articles in Japanese journals:0

    Proceedings of International Conference Number of peer-reviewed papers:0

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:13

    Number of peer-reviewed articles in Japanese journals:0

    Proceedings of International Conference Number of peer-reviewed papers:0

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • Screening of academic papers

    Role(s): Peer review

    2021

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:11

    Number of peer-reviewed articles in Japanese journals:0

    Proceedings of International Conference Number of peer-reviewed papers:0

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • Frontiers in Cellular Neuroscience International contribution

    2020.9 - 2021.6

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:16

    Number of peer-reviewed articles in Japanese journals:0

    Proceedings of International Conference Number of peer-reviewed papers:0

    Proceedings of domestic conference Number of peer-reviewed papers:0

Research Projects

  • 令和6年度日本人独立研究者始動助成金/脳境界構成細胞を標的とした新規疾患制御ストラテジーの探索

    2024

      More details

    Grant type:Donation

  • 2023年度研究助成金/脳境界領域を取り巻く細胞群による脳機能制御メカニズムの解明と機能的介入法の確立

    2024

      More details

    Grant type:Donation

  • 脳内マクロファージの多様性と中枢神経系疾患

    2023 - 2030

    創発的研究支援事業

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • グリア細胞の生理機構解明とその遷移による中枢神経疾患に対する創薬戦略の国際共同開発

    2023 - 2028

    AMED 医療分野国際科学技術共同研究開発推進事業(先端国際共同研究推進プログラムASPIRE)

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • 非神経細胞のストレスエングラムから読み解く心的フレイルの統合的理解と診断的治療への応用

    2023 - 2028

    革新的先端研究開発支援事業(AMED-CREST)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • Elucidation of Mechanisms of the Centenarian Dynamic Resilience through Immune Systems

    2023 - 2027

    Wellcome LEAP- Dynamic Resilience program

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • 2023年度研究助成金/脳境界構成細胞を標的とした疾患発症メカニズムの統合的理解

    2023

      More details

    Grant type:Donation

  • 2023年度 ビジョナリーリサーチ継続助成(ホップ)/脳内マクロファージサブタイプの機能分離解析に基づく中枢神経系疾患発症メカニズムの理解と新規治療法の創出

    2023

      More details

    Grant type:Donation

  • PIセットアップ研究助成/脳内マクロファージを切り口とした中枢神経系疾患発症メカニズムの理解

    2023

      More details

    Grant type:Donation

  • 2023 年度助成金/中枢性疾患に関わる脳内マクロファージの統合的理解

    2023

      More details

    Grant type:Donation

  • 2023年度持田記念研究助成金/脳境界免疫を基軸とした中枢性疾患発症メカニズムの理解

    2023

      More details

    Grant type:Donation

  • 2023年度 研究助成⾦/脳境界マクロファージによる疾患制御メカニズムの解明

    2023

      More details

    Grant type:Donation

  • Establishment of interstitial literacy based on complex systems crosstalk

    Grant number:22H05060  2022.5 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Transformative Research Areas (B)

    佐藤 荘, 内藤 尚道, 石亀 晴道, 伊藤 美菜子, 七野 成之, 尾松 芳樹, 増田 隆博, 田井 育江

      More details

    Grant type:Scientific research funding

    本領域では血球系、神経系、血管・リンパ管系、間葉系という間質を主に構成している4領域の計画研究をA01-A04として設置し研究を進める。これらの計画研究を効率よく進め、相互連携を図るために、総括班に上記研究実施計画に記載した4つの解析支援センターを設置した(間質探索イメージングセンター、シングルセル解析センター、細胞間クロストークを繙くバイオインフォマティックスセンター、遺伝子改変動物支援センター)。また、今回全く異なる4つの分野の異分野融合が必須であるために、総括班に融合研究促進経費を確保し、班間の共同研究で促進すべきものと判断した場合には、速やかに研究費を補充し融合研究をより一層推進する。

    CiNii Research

  • 神経系疾患発症に紐づく間質性細胞間クロストークの包括的理解

    Grant number:22H05062  2022 - 2024

    Japan Society for the Promotion of Science・Ministry of Education, Culture, Sports, Science and Technology  Grants-in-Aid for Scientific Research  Grant-in-Aid for Transformative Research Areas (B)

    増田 隆博, 石亀 晴道

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    本研究では神経系を構成する間質性細胞を包括的に解析し、実質細胞の機能異常に紐づく間質組織変容の解明を進める(神経系間質リテラシー)。特に様々な最新技術を駆使し、脳発達期における間質性細胞ネットワークの理解を進め、その異常がもたらす疾患発症メカニズムの解明を目指すと同時に、中枢神経系疾患モデルマウスを用いて、複雑性間質性細胞クロストークが齎す実質細胞の機能変容という観点から新たな疾患発症メカニズムの解明を目指す。

    CiNii Research

  • 新規細胞機能操作ツールを用いた中枢性疾患発症メカニズムの理解

    Grant number:23K21383  2021.4 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    増田 隆博

      More details

    Grant type:Scientific research funding

    本研究計画は、中枢神経系疾患発症における脳境界マクロファージの存在意義に迫るという、これまで全く未開拓の研究領域である。そのため、本研究課題で得られた成果は脳境界マクロファージが持つ生理機能の全貌解明に大きく貢献することが予想される。また、それらはアルツハイマー病や多発性硬化症などの脳神経・免疫疾患の発症メカニズムの解明および治療法開発にも波及的に貢献する可能性があると考えられ、新たな”ドラッガブル”な細胞標的の創出につながることも期待される。

    CiNii Research

  • 新規細胞機能操作ツールを用いた中枢性疾患発症メカニズムの理解

    Grant number:21H02752  2021 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 慢性ストレス・老化による脳機能変容の炎症性機序の解明

    2021 - 2024

    AMED 脳とこころの研究推進プログラム(精神・神経疾患メカニズム解明プロジェクト)

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • 精神疾患発症における脳内免疫細胞CAMsの可能性

    Grant number:21H00204  2021 - 2022

    Japan Society for the Promotion of Science・Ministry of Education, Culture, Sports, Science and Technology  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    増田 隆博

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    本研究課題で得られた成果は、CAMs が持つ生理機能の全貌解明に大きく貢献することが予想され、またCAMs の異常活性化や機能不全が齎す新たな中枢神経系疾患”CAMs 病”の発見に繋がる可能性もあり、精神疾患に対する新たな”ドラッガブル”な細胞標的の創出につながることも期待される。

    CiNii Research

  • 武田科学振興財団 ビジョナリーリサーチ助成(スタート)/ 脳内マクロファージサブタイプの機能分離解析に基づく中枢神経系疾患発症メカニズムの理解と新規治療法の創出

    2021

      More details

    Grant type:Donation

  • 稲盛研究助成/脳境界マクロファージの包括的解析から見る正常脳形成と中枢性疾患発症

    2021

      More details

    Grant type:Donation

  • 早期ライフステージの脳内免疫細胞から紐解く正常脳形成と中枢性疾患発症

    2020 - 2023

    革新的先端研究開発支援事業(AMED-PRIME)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 中枢神経系マクロファージの機能解明を目的とした新規研究基盤の創出

    Grant number:20K22687  2020 - 2021

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Research Activity start-up

    増田 隆博

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    脳および脊髄を含む中枢神経系組織には、実質に存在するミクログリア細胞に加え、境界領域に種類の異なるマクロファージ[CNS-associated macrophages(CAMs)]が存在する。本研究では、以下2項目 (1) シングルセルトランスクリプトーム解析技術を用いたミクログリアおよびCAMsの遺伝子発現プロファイルの包括的比較解析によるミクログリア特異的遺伝子の特定、 (2) ミクログリア特異的遺伝子のプロモーターを用いた細胞種特異的遺伝子改変マウスの作成およびその機能解析を進め、ミクログリアおよびCAMsの機能解明に向けた研究基盤の創出を目指す。

    CiNii Research

  • 内藤記念科学奨励金 研究助成/ 新規機能操作ツールを用いた各種脳内マクロファージの存在意義の理解

    2020

      More details

    Grant type:Donation

  • 研究助成金/ 脳内マクロファージの機能解明に向けた基盤情報および新規ツールの創出

    2020

      More details

    Grant type:Donation

  • ミクログリア前駆細胞の脳内定着メカニズムの解明

    2015 - 2017

    Japan Society for the Promotion of Science  Postdoctoral Fellowships for Research Abroad

      More details

    Authorship:Principal investigator  Grant type:Joint research

  • 海外留学助成金/中枢神経系組織におけるミクログリア細胞の不均一性

    2015

      More details

    Grant type:Donation

  • IRFとターゲットとしたミクログリアによる神経障害性疼痛発現メカニズムの解明

    Grant number:23890148  2011 - 2012

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (Start-up)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 神​経​因​性​疼​痛​に​お​け​る​I​F​N​-​γ​を​介​し​た​ミ​ク​ロ​グ​リ​ア​の​活​性​化​機​構

    Grant number:20・5285  2008 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for JSPS Fellows

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

▼display all

Class subject

  • 医学研究特論Ⅰ

    2023.4 - 2024.3   Full year

  • アカデミック・フロンティアⅠ

    2023.4 - 2023.6   Spring quarter

  • 薬理・基礎理論

    2022.10 - 2023.3   Second semester

  • 基幹教育セミナー

    2022.6 - 2022.8   Summer quarter

FD Participation

  • 2024.4   Role:Participation   Title:職場における落とし穴

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.4   Role:Participation   Title:学生の多様性に対応した教育とは:障害学生への合理的配慮を中心に

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.9   Role:Participation   Title:JST 次世代研究者挑戦的研究プログラム 説明会

    Organizer:University-wide

  • 2021.9   Role:Participation   Title:M2B学習支援システム講習会★初級・中上級編★

    Organizer:University-wide

  • 2021.7   Role:Participation   Title:生体防御医学研究所FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.4   Role:Participation   Title:令和3年度 第1回全学FD(新任教員の研修)

    Organizer:University-wide

  • 2021.2   Role:Participation   Title:創薬産学官連携セミナー

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all

Other educational activity and Special note

  • 2022  Class Teacher  学部