九州大学 研究者情報
論文一覧
柳田 剛(やなぎだ たけし) データ更新日:2023.10.05

教授 /  先導物質化学研究所 融合材料部門


原著論文
1. W. J. Li; K. Nagashima; T. Hosomi; C. Wang; Y. Hanai; A. Nakao; A. Shunori; J. Y. Liu; G. Z. Zhang; T. Takahashi; W. Tanaka; M. Kanai; T. Yanagida, Mechanistic Approach for Long-Term Stability of a Polyethylene Glycol-Carbon Black Nanocomposite Sensor, Acs Sensors, 10.1021/acssensors.1c01875, 7, 1, 151-158, 2023.01, Polymer-carbon nanocomposite sensor is a promising molecular sensing device for electronic nose (e-nose) due to its printability, variety of polymer materials, and low operation temperature; however, the lack of stability in an air environment has been an inevitable issue. Here, we demonstrate a design concept for realizing long-term stability in a polyethylene glycol (PEG)-carbon black (CB) nanocomposite sensor by understanding the underlying phenomena that cause sensor degradation. Comparison of the sensing properties and infrared spectroscopy on the same device revealed that the oxidation-induced consumption of PEG is a crucial factor for the sensor degradation. According to the mechanism, we introduced an antioxidizing agent (i.e., ascorbic acid) into the PEG-CB nanocomposite sensor to suppress the PEG oxidation and successfully demonstrated the long-term stability of sensing properties under an air environment for 30 days, which had been difficult in conventional polymer-carbon nanocomposite sensors..
2. Kunanon Chattrairat, Takao Yasui, Shunsuke Suzuki, Atsushi Natsume, Kazuki Nagashima, Mikiko Iida, Min Zhang, Taisuke Shimada, Akira Kato, Kosuke Aoki, Fumiharu Ohka, Shintaro Yamazaki, Takeshi Yanagida, and Yoshinobu Baba, All-in-One Nanowire Assay System for Capture and Analysis of Extracellular Vesicles from an ex Vivo Brain Tumor Model, ACS Nano, 10.1021/acsnano.2c08526, 17, 3, 2235-2244, 2023.01, Extracellular vesicles (EVs) have promising potential as biomarkers for early cancer diagnosis. The EVs have been widely studied as biological cargo containing essential biological information not only from inside vesicles such as nucleic acids and proteins but also from outside vesicles such as membrane proteins and glycolipids. Although various methods have been developed to isolate EVs with high yields such as captures based on density, size, and immunoaffinity, different measurement systems are needed to analyze EVs after isolation, and a platform that enables all-in-one analysis of EVs
from capture to detection in multiple samples is desired. Since a nanowire-based approach has shown an effective capability for capturing EVs via surface charge interaction compared to other
conventional methods, here, we upgraded the conventional well plate assay to an all-in-one nanowire-integrated well plateassay system (i.e., a nanowire assay system) that enables charge-based EV capture and EV analysis of membrane proteins. We applied the nanowire assay system to analyze EVs from brain tumor organoids in which tumor environments, including vascular formations, were reconstructed, and we found that the membrane protein expression ratio of CD31/CD63 was 1.42- fold higher in the tumor organoid-derived EVs with a p-value less than 0.05. Furthermore, this ratio for urine samples from
glioblastoma patients was 2.25-fold higher than that from noncancer subjects with a p-value less than 0.05 as well. Our results demonstrated that the conventional well plate method integrated with the nanowire-based EV capture approach allows users not only to capture EVs effectively but also to analyze them in one assay system. We anticipate that the all-in-one nanowire assay system will be a powerful tool for elucidating EV-mediated tumor−microenvironment crosstalk..
3. M. Tanaka, T. Minamide, Y. Takahashi, Y. Hanai, T. Yanagida, and M. Okochi, Peptide Screening from a Phage Display Library for Benzaldehyde Recognition, Chemistry Letters, 10.1246/cl.190318, 48, 978-981, 2022.11.
4. H. Koga, K. Nagashima, K. Suematsu, T. Takahashi, L. Zhu, D. Fukushima, Y. Huang, Nakagawa, J. Liu, K. Uetani, M. Nogi, T. Yanagida and Y. Nishina, Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano-Micro-Macro Trans-Scale Design, ACS NANO, 10.1021/acsnano.1c10728, 16, 6, 8630-8640, 2022.06.
5. @C. Jirayupat, K. Nagashima, T.Hosomi, T.Takahashi, B.Samransuksamer, Y.Hanai, A.Nakao, M.Nakatani, J.Liu, G.Zhang, W.Tanaka, M.Kanai, T.Yasui, Y.Baba and T. Yanagida, Breath odor-based individual authentication by an artificial olfactory sensor system and machine learning, CHEMICAL COMMUNICATIONS, 10.1039/d1cc06384g, 58, 44, 6377-6380, 2022.05.
6. @W. Li, K.Nagashima, @T. Hosomi, @J. Liu, @T. Takahashi, @G. Zhang, @W. Tanaka, @M. Kanai and @T. Yanagida, Core-Shell Metal Oxide Nanowire Array to Analyze Adsorption Behaviors of Volatile Molecules, Chemistry Letters, 10.1246/cl.220010​, 51, 424-427, 2022.03.
7. E. Kanao; K. Nakano; R. Kamei; T. Hosomi; Y. Ishihama; J. Adachi; T. Kubo; K. Otsuka; T. Yanagida, Moderate molecular recognitions on ZnO m-plane and their selective capture/release of bio-related phosphoric acids, Nanoscale Adv, 10.1039/d1na00865j, 4, 6, 1649-1658, 2022.03, Herein, we explore the hidden molecular recognition abilities of ZnO nanowires uniformly grown on the inner surface of an open tubular fused silica capillary via liquid chromatography. Chromatographic evaluation revealed that ZnO nanowires showed a stronger intermolecular interaction with phenylphosphoric acid than any other monosubstituted benzene. Furthermore, ZnO nanowires specifically recognized the phosphate groups present in nucleotides even in the aqueous mobile phase, and the intermolecular interaction increased with the number of phosphate groups. This discrimination of phosphate groups in nucleotides was unique to the rich (101̄0) m-plane of ZnO nanowires with a moderate hydrophilicity and negative charge. The discrimination could be evidenced by the changes in the infrared bands of the phosphate groups on nucleotides on ZnO nanowires. Finally, as an application of the molecular recognition, nucleotides were separated by the number of phosphate groups, utilizing optimized gradient elution on ZnO nanowire column. Thus, the present results elucidate the unique and versatile molecular selectivity of well-known ZnO nanostructures for the capture and separation of biomolecules..
8. J. Liu, H. Zeng, G. Zhang, W. Li, K. Nagashima, T. Takahashi, T. Hosomi, W. Tanaka,M. Kanai and T. Yanagida, Edge-Topological Regulation for in Situ Fabrication of Bridging Nanosensors​, Nano Letters, DOI:10.1021/acs.nanolett.1c04600, 22, 6, 2567-2577, 2022.02, In situ fabrication of well-defined bridging nanostructures is an interesting and unique approach to three-dimensionally design nanosensor structures, which are hardly attainable by other methods. Here, we demonstrate the significant effect of edge-topological regulation on in situ fabrication of ZnO bridging nanosensors. When employing seed layers with a sharp edge, which is a well-defined structure in conventional lithography, the bridging angles and electrical resistances between two opposing electrodes were randomly distributed. The stochastic nature of bridging growth direction at the sharp edges inherently causes such unintentional variation of structural and electrical properties. We propose an edgeless seed layer structure using a two-layers resist method to solve the above uncontrollability of bridging nanosensors. Such bridging nanosensors not only substantially improved the uniformity of structural and electrical properties between two
opposing electrodes but also significantly enhanced the sensing responses for NO2 with the smaller variance and the lower limit of detection via in situ controlled electrical contacts..
9. J. Liu; K. Nagashima; T. Hosomi;W. Lei; G. Zhang; T. Takahashi; X. Zhao; Y. Hanai; A. Nakao; M. Nakatani; W. Tanaka; H. Saito; M. Kanai; T. Shimada; T. Yasui; Y. Baba; T. Yanagida, Water-Selective Nanostructured Dehumidifiers for Molecular Sensing Spaces, ACS Sens, 10.1021/acssensors.1c02378, 7, 2, 534-544, 2022.02, Humidity and moisture effects, frequently called water poisoning, in surroundings are inevitable for various molecular sensing devices, strongly affecting their sensing characteristics. Here, we demonstrate a water-selective nanostructured dehumidifier composed of ZnO/TiO(2)/CaCl(2) core-shell heterostructured nanowires for molecular sensing spaces. The fabricated nanostructured dehumidifier is highly water-selective without detrimental adsorptions of various volatile organic compound molecules and can be repeatedly operated. The thermally controllable and reversible dehydration process of CaCl(2).nH(2)O thin nanolayers on hydrophilic ZnO/TiO(2) nanowire surfaces plays a vital role in such water-selective and repeatable dehumidifying operations. Furthermore, the limitation of detection for sensing acetone and nonanal molecules in the presence of moisture (relative humidity approximately 90%) was improved more than 20 times using nanocomposite sensors by operating the developed nanostructured dehumidifier. Thus, the proposed water-selective nanostructured dehumidifier offers a rational strategy and platform to overcome water poisoning issues for various molecular and gas sensors..
10. H. Honda; T. Takahashi; Y. Shiiki; H. Zeng; K. Nakamura; S. Nagata; T. Hosomi; W. Tanaka; G. Zhang; M. Kanai; K. Nagashima; H. Ishikuro; T. Yanagida, Impact of Lateral SnO(2) Nanofilm Channel Geometry on a 1024 Crossbar Chemical Sensor Array, ACS Sens, 10.1021/acssensors.1c02173, 7, 2, 460-468, 2022.02, We propose a rational strategy to fabricate thermally robust, highly integrated molecular and gas sensors utilizing a lateral SnO(2) nanofilm channel geometry on a 1024 crossbar sensor array. The proposed lateral channel geometry substantially suppresses the detrimental effects of parasitic interconnect wire resistances compared with those of a conventional vertical sandwich-type crossbar array because of its excellent resistance controllability. A conductive oxide top-contact electrode on the lateral SnO(2) nanofilm channel enhances the thermal stability at temperatures of up to 500 degrees C in ambient air. Integrating this lateral SnO(2) nanofilm geometry with analog circuits enables the operation of a 1024 crossbar sensor array without selector devices to avoid sneak currents. The developed 1024 crossbar sensor array system detects the local spatial distribution of the molecular gas concentration. The spatial data of molecular concentrations include molecule-specific data to distinguish various volatile molecules based on their vapor pressures. Thus, this integrated crossbar sensor array system using lateral nanofilm geometry offers a platform for robust, reliable, highly integrated molecular and gas sensors..
11. @J. Liu, @K. Nagashima, @T. Hosomi, W. Lei, @G. Zhang, @T. Takahashi, @X. Zhao, @Y. Hanai, A. Nakao, M. Nakatani, W. Tanaka, H. Saito, M. Kanai, T. Shimada, T. Yasui, Y. Baba and T. Yanagida, Water-Selective Nanostructured Dehumidifier for Molecular Sensing Space, ACS Sensors, 10.1021/acssensors.1c02378​, 7, 2, 534-544, 2022.01, Humidity and moisture effects, frequently called water poisoning, in surroundings are inevitable for various molecular sensing devices, strongly affecting their sensing characteristics. Here, we demonstrate a water-selective nanostructured dehumidifier composed of ZnO/TiO2/CaCl2 core–shell heterostructured nanowires for molecular sensing spaces. The fabricated nanostructured dehumidifier is highly water-selective without detrimental adsorptions of various volatile organic compound molecules and can be repeatedly operated. The thermally controllable and reversible dehydration process of CaCl2·nH2O thin nanolayers on hydrophilic ZnO/TiO2 nanowire surfaces plays a vital role in such water-selective and repeatable dehumidifying operations. Furthermore, the limitation of detection for sensing acetone and nonanal molecules in the presence of moisture (relative humidity ∼ 90%) was improved more than 20 times using nanocomposite sensors by operating the developed nanostructured dehumidifier. Thus, the proposed water-selective nanostructured dehumidifier offers a rational strategy and platform to overcome water poisoning issues for various molecular and gas sensors..
12. H. Honda, T. Takahashi, Y. Shiiki, H. Zeng, K. Nakamura, S. Nagata, . Hosomi, W. Tanaka, G. Zhang, M. Kanai, K. Nagashima, H. Ishikuro and T. Yanagida, Impact of Lateral SnO2 Nanofilm Channel Geometry on a 1024 Crossbar Chemical Sensor Array, ACS Sensors, 10.1021/acssensors.1c02173​, 7, 2, 460-468, 2022.01, We propose a rational strategy to fabricate thermally robust, highly integrated molecular and gas sensors utilizing a lateral SnO2 nanofilm channel geometry on a 1024 crossbar sensor array. The proposed lateral channel geometry substantially suppresses the detrimental effects of parasitic interconnect wire resistances compared with those of a conventional vertical sandwich-type crossbar array because of its excellent resistance controllability. A conductive oxide top-contact electrode on the lateral SnO2 nanofilm channel enhances the thermal stability at temperatures of up to 500 °C in ambient air. Integrating this lateral SnO2 nanofilm geometry with analog circuits enables the operation of a 1024 crossbar sensor array without selector devices to avoid sneak currents. The developed 1024 crossbar sensor array system detects the local spatial distribution of the molecular gas concentration. The spatial data of molecular concentrations include molecule-specific data to distinguish various volatile molecules based on their vapor pressures. Thus, this integrated crossbar sensor array system using lateral nanofilm geometry offers a platform for robust, reliable, highly integrated molecular and gas sensors..
13. T. Yasui, P. Paisrisarn, T. Yanagida, Y. Konakade, Y. Nakamura, K. Nagashima, M. Musa, I. A. Thiodorus, H. Takahashi, T. Naganawa, T. Shimada, N. Kaji, T. Ochiya, T. Kawai and Y. Baba, ​ Molecular Profiling of Extracellular Vesicles via Charge-based Isolation using Oxide Nanowire Microfluidics, Biosensors and Bioelectronics, 10.1016/j.bios.2021.113589​, 194, 113589-113589, 2021.12, Extracellular vesicles (EVs) have shown promising features as biomarkers for early cancer diagnoses. The outer layer of cancer cell-derived EVs consists of organotropic metastasis-induced membrane proteins and specifically enriched proteoglycans, and these molecular compositions determine EV surface charge. Although many efforts have been devoted to investigating the correlation between EV subsets obtained through density-, size-, and immunoaffinity-based captures and expressed membrane proteins, understanding the correlation between EV subsets obtained through surface charge-based capture and expressed membrane proteins is lacking. Here, we propose a methodology to profile membrane proteins of EV subsets obtained through surface charge-based capture. Nanowire-induced charge-based capture of EVs and in-situ profiling of EV membrane proteins are the two key methodology points. The oxide nanowires allowed EVs to be obtained through surface charge-based capture due to the diverse isoelectric points of the oxides and the large surface-to-volume ratios of the nanowire structures. And, with the ZnO nanowire device, whose use does not require any purification and concentration processes, we demonstrated the correlation between negatively-charged EV subsets and expressed membrane proteins derived from each cell. Furthermore, we determined that a colon cancer related membrane protein was overexpressed on negatively charged surface EVs derived from colon cancer cells..
14. K. Nakamura; T. Takahashi; T. Hosomi; Y. Yamaguchi; W. Tanaka; J. Y. Liu; M. Kanai; K. Nagashima; T. Yanagida, Surface Dissociation Effect on Phosphonic Acid Self-Assembled Monolayer Formation on ZnO Nanowires, Acs Omega, 10.1021/acsomega.1c06183, 7, 1, 1462-1467, 2021.12, Understanding the formation process of self-assembled monolayers (SAMs) of organophosphonic acids on ZnO surfaces is essential to designing their various applications, including solar cells, heterogeneous catalysts, and molecular sensors. Here, we report the significant effect of surface dissociation on SAM formation of organophosphonic acids on single-crystalline ZnO nanowire surfaces using infrared spectroscopy. When employing the most conventional solvent-methanol (relative permittivity er = 32.6), the production of undesired byproducts (layered zinc compounds) on the surface was identified by infrared spectral data and microscopy. On the other hand, a well-defined SAM structure with a tridentate coordination of phosphonic acids on the surface was confirmed when employing toluene (epsilon(r) = 2.379) or tert-butyl alcohol (epsilon(r) = 11.22-11.50). The observation of layered zinc compounds as byproducts highlights that the degree of Zn2+ dissociation from the ZnO solid surface into a solvent significantly affects the surface coordination of phosphonic acids during the SAM formation process. Although the ZnO nanowire surface (m-plane) is hydrophilic, the present results suggest that a weaker solvent polarity is preferred to form well-defined phosphonic acid SAMs on ZnO nanowire surfaces without detrimental surface byproducts..
15. H. Zeng, T. Takahashi, G. Zhang, T. Hosomi, M. Kanai, T. Seki, K. Nagashima, N. Shibata and T. Yanagida, Oxygen-Induced Reversible Sn-dopant Deactivation between Indium Tin Oxide and Single-Crystalline Oxide Nanowire Leading to Interfacial Switching, ACS Applied Materials & Interfaces, 10.1021/acsami.0c16108, 12, 52929-52936, 2021.11.
16. W.Li, K.Nagashima, T.Hosomi, C.Wang, Y.Hanai, A.Nakao, A.Shunori, J.Liu, G. Zhang, T.Takahashi, W.Tanaka, M.Kanai and T. Yanagida, Mechanistic Approach for Long-Term Stability of a Polyethylene
Glycol−Carbon Black Nanocomposite Sensor, ACS Sensors, 10.1021/acssensors.1c01875, 7, 1, 151-158, 2021.11, Polymer–carbon nanocomposite sensor is a promising molecular sensing device for electronic nose (e-nose) due to its printability, variety of polymer materials, and low operation temperature; however, the lack of stability in an air environment has been an inevitable issue. Here, we demonstrate a design concept for realizing long-term stability in a polyethylene glycol (PEG)–carbon black (CB) nanocomposite sensor by understanding the underlying phenomena that cause sensor degradation. Comparison of the sensing properties and infrared spectroscopy on the same device revealed that the oxidation-induced consumption of PEG is a crucial factor for the sensor degradation. According to the mechanism, we introduced an antioxidizing agent (i.e., ascorbic acid) into the PEG–CB nanocomposite sensor to suppress the PEG oxidation and successfully demonstrated the long-term stability of sensing properties under an air environment for 30 days, which had been difficult in conventional polymer–carbon nanocomposite sensors..
17. H.Liu, G.Meng, Z.Deng, K.Nagashima, S.Wang, T.Dai, L.Li, T. Yanagida and X.Fang, Discriminating BTX Molecules by the Nonselective Metal Oxide Sensor-Based Smart Sensing System, ACS Sensors, 10.1021/acssensors.1c01704, 6, 11, 4167-4175, 2021.11.
18. C.Jirayupat, K.Nagashima, T.Hosomi, T.Takahashi, W.Tanaka, B.Samransuksamer, G.Zhang, J.Liu, M.Kanai and T. Yanagida, Image Processing and Machine Learning for Automated Identification of Chemo/Bio-markers in Chromatography-Mass Spectrometry, Analytical Chemistry, 10.1021/acs.analchem.1c03163, 93, 44, 14708-14715, 2021.10, We present a method named NPFimg, which
automatically identifies multivariate chemo-/biomarker features
of analytes in chromatography−mass spectrometry (MS) data by
combining image processing and machine learning. NPFimg
processes a two-dimensional MS map (m/z vs retention time) to
discriminate analytes and identify and visualize the marker features.
Our approach allows us to comprehensively characterize the
signals in MS data without the conventional peak picking process,
which suffers from false peak detections. The feasibility of marker
identification is successfully demonstrated in case studies of aroma
odor and human breath on gas chromatography−mass spectrometry (GC−MS) even at the parts per billion level. Comparison with the widely used XCMS shows the excellent reliability of NPFimg,
in that it has lower error rates of signal acquisition and marker identification. In addition, we show the potential applicability of
NPFimg to the untargeted metabolomics of human breath. While this study shows the limited applications, NPFimg is potentially
applicable to data processing in diverse metabolomics/chemometrics using GC−MS and liquid chromatography−MS. NPFimg is
available as open source on GitHub (http://github.com/poomcj/NPFimg) under the MIT license..
19. M. Li, H. Liu, J. Chang, T. Dai, K. Nagashima, Z. Deng, T. Yanagida, X. Fang, and G. Meng, Quantitatively Discriminating Alcohol Molecules by Thermally Modulating NiO-Based Sensor Arrays", Advanced Materials Technologies, 10.1002/admt.202100762​, 2021.10.
20. H.Liu, G.Meng, Z.Deng, K.Nagashima, S.Wang, T.Dai,L.Li, T. Yanagida and X.Fang, Discriminating BTX Molecules by Non-Selective Metal Oxide Sensors Based Smart Sensing System, ACS Sensors, 6, 4167-4175, 2021.10.
21. C.Jirayupat, K.Nagashima, T.Hosomi, T.Takahashi, W.Tanaka, B.Samransuksamer, G.Zhang, J.Liu, M.Kanai and T. Yanagida, Image Processing and Machine Learning for Automated Identification of Chemo/Bio-markers in Chromatography-Mass Spectrometry, Analytical Chemistry, 10.1021/acs.analchem.1c03163, 93, 14706-14715, 2021.10.
22. M. Li, H. Liu, J. Chang, T. Dai, K. Nagashima, Z. Deng, T. Yanagida, X. Fang, and G. Meng, Quantitatively Discriminating Alcohol Molecules by Thermally Modulating NiO-Based Sensor Arrays, Advanced Materials Technologies, 10.1002/admt.202100762​, 2021.10.
23. G. Zhang, H. Zeng, J. Liu, K. Nagashima, T. Takahashi, T. Hosomi, W. Tanaka and T. Yanagida, ​Nanowire-Based Sensor Electronics for Chemical and Biological Applications, Analyst, 10.1039/D1AN01096D​, 146, 6684-6725, 2021.09.
24. M. Musa, T. Yasui, Z. Zhu, K. Nagashima, M. Ono, Q. Li, H. Takahashi, T. Shimada, A. Arima, T. Yanagida and Y. Baba, Oxide Nanowire Microfluidic Devices for Capturing Single-stranded DNAs, Analytical Sciences, 10.2116/analsci.20P421, 37, 8, 1139, 2021.08.
25. R. Yan, T. Takahashi, H. Zeng, T. Hosomi, M.Kanai, G. Zhang, K. Nagashima and T. Yanagida, Robust and Electrically Conductive ZnO Thin Films and Nanostructures: Their Applications in Thermally and Chemically Harsh Environments, ACS Applied Electronic Materials, 10.1021/acsaelm.1c00428, 3, 2925-2940, 2021.07.
26. Z. Zhu, T. Yasui, Q. Liu, K. Nagashima, T. Takahashi, T. Shimada, T. Yanagida and Y. Baba, Fabrication of a Robust In2O3 Nanolines FET Device as an Immunosensor Platform, Micromachines, 10.3390/mi12060642, 12, 6, 642-642, 2021.05.
27. R. Yamaguchi, T. Hosomi, M. Ohtani, K. Nagashima, T. Takahashi, G Zhang, M. Kanai,  H. Masai, J. Terao and T Yanagida, Maximizing Conversion of Surface Click Reactions for Versatile Molecular Modification on Metal Oxide Nanowires, Langmuir, 10.1021/acs.langmuir.1c00106​, 37, 17, 5172-5179, 2021.04.
28. Liu, Jiangyang; Nagashima, Kazuki; Nagamatsu, Yuki; Hosomi, Takuro; Saito, Hikaru; Wang, Chen; Mizukami, Wataru; Zhang, Guozhu; Samransuksamer, Benjarong; Takahashi, Tsunaki; Kanai, Masaki; Yasui, Takao; Baba, Yoshinobu; Yanagida, Takeshi, Impact of Surface Cu2+ of ZnO/(Cu1-xZnx)O Heterostructured Nanowires on Adsorption and Chemical Transformation of Carbonyl Compounds
, Chemical Science, 10.1039/d1sc00729g​, 12, 5073-5081, 2021.04.
29. R. Kamei, T. Hosomi, E. Kanao, M. Kanai, K. Nagashima, T. Takahashi, G Zhang, T. Yasui, J. Terao, K. Otsuka, Y. Baba, T. Kubo and T. Yanagida , Rational Strategy for Space-Confined Seeded Growth of ZnO Nanowires in Meter-Long Microtubes, ACS Applied Materials & Interfaces, 10.1021/acsami.0c22709​, 13, 14, 16812-16819, 2021.03.
30. Yan, Ruolin; Takahashi, Tsunaki; Zeng, Hao; Hosomi, Takuro; Kanai, Masaki; Zhang, Guozhu; Nagashima, Kazuki; Yanagida, Takeshi, Enhancement of pH Tolerance in Conductive Al-Doped ZnO Nanofilms via Sequential Annealing, ACS APPLIED ELECTRONIC MATERIALS, 10.1021/acsaelm.0c01052, 3, 2, 955-962, 2021.02.
31. H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi and T. Yanagida , Metal Oxide Nanowire Molecular Sensors and Their Promises, Chemosensors, 10.3390/chemosensors9020041, 9, 2021.02, [URL].
32. G. Zhang, T. Hosomi, W. Mizukami, J. Liu, K. Nagashima, T. Takahashi, M. Kanai, T. Yasui, Y. Aoki, Y. Baba, J. C Ho and T. Yanagida, Thermally Robust and Strongly Oxidizing Surface of WO3 Hydrate Nanowires for Electrical Aldehyde Sensing with Long-Term Stability, Journal of Materials Chemistry A, 10.1039/D0TA11287A​, 9, 5815-5824, 2021.01.
33. Q. Quan, Z. Lai, Y. Bao, X. Bu, Y. Meng, W. Wang, T. Takahashi, T. Hosomi, K. Nagashima, T. Yanagida, C Liu, J. Lu and J. C. Ho, Self-Anti-Stacking 2D Metal Phosphide Loop-Sheet Heterostructures by Edge-Topological Regulation for Highly Efficient Water Oxidation​, Small, 10.1002/smll.202006860, 17, 2021.01.
34. M. Musa, T. Yasui, K. Nagashima, M. Horiuchi, Z. Zhu, Q. Liu, T. Shimada, A. Arima, T. Yanagida and Y. Baba, ZnO/SiO2 core/shell nanowires for capturing CpG rich single-stranded DNAs, Analytical Methods, 10.1039/d0ay02138e, 13, 337-344, 2020.12.
35. N. Koga, T. Hosomi, M. Zwama, C. Jirayupat, T. Yanagida, K. Nishino, S. Yamasaki, Identification of Genetic Variants via Bacterial Respiration Gas Analysis, Frontiers in Microbiology, 10.3389/fmicb.2020.581571 ​, 11, 581571-581571, 2020.11.
36. Y. Meng, F. Li, X. Kang, X. Bu, R. Wei, S.P. Yip, C. Lan, T. Hosomi, T. Takahashi, K. Nagashima, T. Yanagida and J. C. Ho, Artificial Visual Systems Enabled by Quasi-Two-Dimensional Electron Gases in Oxide Superlattice Nanowires, Science Advances, eabc6389, 2020.11.
37. Hao Zeng, Tsunaki Takahashi, Takehito Seki, Masaki Kanai, Guozhu Zhang, Takuro Hosomi, Kazuki Nagashima, Naoya Shibata, Takeshi Yanagida, Oxygen-Induced Reversible Sn-dopant Deactivation between Indium Tin Oxide and Single-Crystalline Oxide Nanowire Leading to Interfacial Switching" , org/10.1021/acsami.0c16108, 12, 47, 52929-52936, 2020.11, [URL], An impurity doping in semiconductors is an
important irreversible process of manipulating the electrical
properties of advanced electron devices. Here, we report an
unusual reversible dopant activation/deactivation phenomenon,
which emerges at an interface between indium tin oxide (ITO) and
single-crystalline oxide channel. We found that the interface
electrical resistance between ITO electrodes and single-crystalline
oxide nanowire channel can be repeatedly switched between a
metallic state and a near-insulative state by applying thermal
treatments in air or vacuum. Interestingly, this electrical switching phenomenon disappears when the oxide nanowire changes from
the single-crystalline structure to the lithography-defined polycrystalline structure. Atmosphere-controlled annealing experiments
reveal that atmospheric oxygen induces repeatable change in the interfacial electrical resistance. Systematic investigations on metal
cation species and channel crystallinity demonstrate that the observed electrical switching is related to an interface-specific reversible
Sn-dopant activation/deactivation of ITO electrode in contact with a single-crystalline oxide channel.
38. S. Nekita, K. Nagashima, G. Zhang, Q. Wang, M. Kanai, T. Takahashi, T. Hosomi, K. Nakamura, T. Okuyama and T. Yanagida, Face-Selective Crystal Growth of Hydrothermal Tungsten Oxide Nanowires for Sensing Volatile Molecules", ACS Applied Nano Materials, 10.1021/acsanm.0c02194, 3, 10252-10260, 2020.10.
39. Y. Meng, Z. Lai, F. Li, W. Wang, S.P. Yip, Q. Quan, X. Bu, F. Wang, T. Hosomi, T. Takahashi, K. Nagashima, T. Yanagida, J. Lu and J. C. Ho, Perovskite Core-Shell Nanowire Transistors: Interfacial Transfer Doping and Surface Passivation, ​ACS Nano, 10.1021/acsnano.0c03101​ ​, 14, 12749-12760, 2020.10.
40. C. Wang, T. Hosomi, K. Nagashima, T. Takahashi, G. Zhang, M. Kanai, H.Yoshida and T. Yanagida, Phosphonic Acid Modified ZnO Nanowire Sensors: Directing Reaction Pathway of Volatile Carbonyl Compounds, ACS Applied Materials & Interfaces, 10.1021/acsami.0c10332​, 12, 44265-44272, 2020.10.
41. Q. Liu, T. Yasui, K. Nagashima, T. Yanagida, M. Hara, M. Horiuchi, Z. Zhu, H. Takahashi, T. Shimada, A. Arima and Y. Baba, Ammonia-induced Seed Layer Transformations in A Hydrothermal Growth Process of Zinc Oxide Nanowires, Journal of Physical Chemistry C , 10.1021/acs.jpcc.0c05490​, 124, 20563-20568, 2020.10.
42. J. Liu, K. Nagashima, H. Yamashita, W. Mizukami, T. Hosomi, M. Kanai, X. Zhao, Y. Miura, G. Zhang, T. Takahashi, M. Suzuki, D. Sakai, Y. He, T. Yasui, Y. Aoki, Y. Baba, J.C.Ho and T. Yanagida, Face-Selective Tungstate Ions Drive Zinc Oxide Nanowire Growth Direction and Dopant Incorporation, Communications Materials, 10.1038/s43246-020-00063-5, 1, 58-58, 2020.08.
43. J. Liu, K. Nagashima, H. Yoshida, T. Hosomi, T. Takahashi, G. Zhang, M. Kanai, Y. He and T. Yanagida, Facile Synthesis of Zinc Titanate Nanotubes via Reaction-Byproduct Etching, Chemistry Letters, 10.1246/cl.200480, 49, 1220-1223, 2020.07.
44. T. Shimada, T. Yasui, A. Yonese, T. Yanagida, N. Kaji, M. Kanai, K. Nagashima, T. Kawai and Y. Baba, Mechanical Rupture-Based Antibacterial and Cell-Compatible ZnO/SiO2 Nanowire Structures Formed by Bottom-Up Approaches, Micromachines, 10.3390/mi11060610, 11, 610-610, 2020.07.
45. R. Yan, T. Takahashi, M. Kanai, T. Hosomi, G. Zhang, K. Nagashima and T. Yanagida, Unusual Sequential Annealing Effect in Achieving High Thermal Stability of Conductive Al-doped ZnO Nanofilms, ACS Applied Electronic Materials, 10.1021/acsaelm.0c00321, 2, 2064, 2020.07.
46. Q. Liu, T. Yasui, K. Nagashima, T. Yanagida, M. Horiuchi, Z. Zhu, H. Takahashi, T. Shimada, A. Arima and Y. Baba, Photolithography Fabricated Single ZnO Nanowire Device and Its Electrical Resistivity, Analytical Science, 10.2116/analsci.20N002, 36, 1125-1129, 2020.04.
47. X. Zhao, K. Nagashima, G. Zhang,T. Hosomi, H. Yoshida, Y. Akihiro, M. Kanai, W. Mizukami, Z. Zhu, T. Takahashi, M. Suzuki, B. Samransuksamer, G. Meng, T. Yasui, Y. Aoki, Y. Baba and T. Yanagida, Synthesis of Monodispersedly Sized ZnO Nanowires from Randomly Sized Seeds​, Nano Letters, 10.1021/acs.nanolett.9b04367, 20, 599-605, 2020.04, We demonstrate the facile, rational synthesis of monodispersedly sized zinc oxide (ZnO) nanowires from randomly sized seeds by hydrothermal growth. Uniformly shaped nanowire tips constructed in ammonia-dominated alkaline conditions serve as a foundation for the subsequent formation of the monodisperse nanowires. By precisely controlling the sharp tip formation and the nucleation, our
method substantially narrows the distribution of ZnO nanowire diameters from σ = 13.5 nm down to σ = 1.3 nm and controls their diameter by a completely bottom-up method, even initiating from randomly sized seeds. The proposed concept of sharp tip based monodisperse nanowires growth can be applied to the growth of diverse metal oxide nanowires and thus paves the way for bottom-up grown metal oxide nanowires-integrated nanodevices with a reliable performance..
48. G. Zhang, C. Wang, W. Mizukami, T. Hosomi, K. Nagashima, K. Nakamura, T. Takahashi, M. Kanai, T. Yasui, Y. Aoki, Y. Baba,and T. Yanagida, Monovalent Sulfur Oxoanions Enable Millimeter-Long Single Crystalline h-WO3 Nanowire Synthesis, Nanoscale, 10.1039/c9nr10565d, 12, 9058-9066, 2020.03.
49. H. Zeng, T. Takahashi, T. Hosomi, K. Nagashima, M. Kanai, G. Zhang and T. Yanagida, Improvements of Electrical Characteristics of Single-Crystalline ZnO Nanowire Field-Effect Transistors via Self-Assembled Monolayer Modification, Engineering Sciences Reports, 42, 12-16, 2020.02.
50. X. Zhao, K. Nagashima, G. Zhang, T. Hosomi, H. Yoshida, Y. Akihiro,M. Kanai, W. Mizukami, Z. Zhu, T. Takahashi, M. Suzuki, B. Samransuksamer, G. Meng, T. Yasui, Y. Aoki, Y. Baba, and T. Yanagida, Synthesis of Monodispesedly Sized ZnO Nanowires from Randomly Sized Seeds, Nano Letters, 2020.01, 金属酸化物ナノワイヤはその構造的な特徴と金属酸化物特有の機能物性を併せ持つ堅牢なナノ材料群であり、次世代IoTの中核技術を担うインタラクティブデバイスの有望材料として注目を集めているが、自己組織化メカニズムにより形成される金属酸化物ナノワイヤの構造ばらつきが与えるデバイス動作信頼性への影響が懸念されており、本研究分野における最も重要な問題として取り上げられてきた。これまでは構造ばらつきを制御するために均一サイズの種結晶が用いられてきたが、リソグラフィによる均一種結晶形成はコスト高になるだけでなく、デバイス作製プロセスに制限を与えるため、これを本質的に解決する方法が強く求められてきた。本研究では、従来結晶成長では実現不可能であった、ランダムサイズの種結晶から均一径を有する酸化亜鉛(ZnO)ナノワイヤを合成する方法論を提案している。核形成開始点となる種結晶先端をアンモニアにより先鋭化することで、ランダムサイズの種結晶からでも均一な核形成場が構築されることが本技術のカギとなる。本技術を利用してσ=1.3nmの単分散ZnOナノワイヤの合成に成功した。種結晶の先鋭化に基づく本研究の概念は多種多様な金属酸化物ナノワイヤの均一合成に適用可能であることから、今後、本技術を用いた高信頼性金属酸化物ナノワイヤデバイスの応用研究が展開されると期待される。.
51. T. Yanase, U. Ogihara, Y. Awashima, T. Yanagida, K. Nagashima, T. Nagahama and T. Shimada, Growth Kinetics and Magnetic Property of Single-Crystal Fe Nanowires Grown via Vapor-Solid Mechanism Using Chemically Synthesized FeO Nanoparticle Catalysts, Crystal Growth & Design, 10.1021/acs.cgd.9b01148, 2020.01.
52. K. Nakamura, T. Takahashi, T. Hosomi, T. Seki, M. Kanai, G. Zhang, K. Nagashima, N. Shibata and T. Yanagida,, Redox-Inactive CO2 Determines Atmospheric Stability of Electrical Properties of ZnO Nanowire Devices through a Room-Temperature Surface Reaction, ACS Applied Materials & Interfaces, 10.1021/acsami.9b13231,, 2020.01.
53. T. Matsuda, K. Takada, K. Yano, R. Tsutsumi, K. Yoshikawa, S. Shimomura, Y. Shimizu, K. Nagashima, T. Yanagida and F. Ishikawa, , Controlling Bi-Provoked Nanostructure Formation in GaAs/GaAsBi Core-Shell Nanowires, Nano Letters, 10.1021/acs.nanolett.9b02932, 2020.01.
54. D. Sakai, K. Nagashima, H. Yoshida, M. Kanai, Y. He, G. Zhang, X. Zhao, T. Takahashi, T. Yasui, T. Hosomi, Y. Uchida, S. Takeda, Y. Baba and T. Yanagida, , Substantial Narrowing on the Width of “Concentration Window” of Hydrothermal ZnO Nanowires via Ammonia Addition, Scientific Reports, 10.1038/s41598-019-50641-y, 2020.01.
55. T. Tanaka, K. Tabuchi, K. Tatehora, . Shiiki, S. Nakagawa, T. Takahashi, R. Shimizu, H. Ishikuro, T. Kuroda, T. Yanagida and K. Uchida, Low-Power and ppm-Level Multi-Molecule Detection by Integration of Self-Heated Metal Nanosheet Sensors, IEEE Transactions and Electron Devices, 10.1109/TED.2019.2945932, 2019.11.
56. Yanagida Takeshi , Integrated Molecule Recognition Sensor Electronics using Nanostructured Metal Oxides on Silicon
, 2018 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATION (VLSI-TSA)
, 2019.06.
57. H. Koga, K. Nagashima, Y. Huang, G. Zhang, T. Takahashi, A. Inoue, H. Yang, M. Kanai, Y. He, K. Uetani, M. Nogi and T. Yanagida, Paper-based Disposable Molecular Sensor Constructed from Oxide Nanowires, Cellulose Nanofibers, and Pencil-drawn Electrodes, ACS Applied Materials & Interfaces, 10.1021/acsami.9b01287, 11, 16, 15044-15050, 2019.04.
58. @長縄豪、安井隆雄、柳田剛、加地範匡、長島一樹、鷲尾隆、馬場嘉信, 酸化物ナノワイヤによる尿中microRNAの回収と解析, 化学とマイクロ・ナノシステム, 18, 34-35, 2019.03.
59. Chen Wang, Takuro Hosomi, Kazuki Nagashima, Tsunaki Takahashi, Guozhu Zhang, Masaki Kanai, Hao Zeng, Wataru Mizukami, Nobutaka Shioya, Takafumi Shimoaka, Takehiro Tamaoka, Hideto Yoshida, Hideto Yoshida Hideto Yoshida, Seiji Takeda, TakaoYasui, Yoshinobu Baba, Yuriko Aoki, Jun Terao, Takeshi Hasegawa, Takeshi Yanagida, Rational Method of Monitoring Molecular Transformations on Metal-Oxide Nanowire Surfaces, Nano Letters, org/10.1021/acs.nanolett.8b05180, 19, 4, 2443-2449, 2019.03, 金属酸化物ナノワイヤは熱・化学的安定性に優れたナノ材料であり、次世代IoT向け分子認識センサの有望材料として注目を集めているが、希薄な揮発性分子と金属酸化物ナノワイヤ表面との相互作用を解析・評価することは困難であり、分子認識センサの機能設計における障壁となっていた。本研究では基板上に1方向に配向制御した単結晶酸化亜鉛ナノワイヤアレイを構築し、その規定された巨大ナノ結晶表面上で生じる分子の吸着・化学変化・脱離現象を各種高感度解析法(ガスクロマトグラフ質量分析・角度可変偏光赤外分光法)により評価することで、肺がんマーカー分子であるノナナールの二量化反応、及び酸化反応についてその反応経路と共に明らかにすることに成功した。更に熱処理による酸化亜鉛ナノワイヤの表面特性変調を行うことで各種反応を任意に制御できることが明らかとなった。本研究は、金属酸化物ナノワイヤによる分子認識センサの機能向上、設計に資する重要な知見であり、本論文で提案したアプローチにより、今後多種多様な揮発性分子群のセンサ表面上での振る舞いが解明されていくと期待される。.
60. H. Anzai, T. Takahashi, M. Suzuki, M. Kanai, G. Zhang, T. Hosomi, T. Seki, . Nagashima, N. Shibata and T. Yanagida,, Unusual Oxygen Partial Pressure Dependence of Electrical Transport of Single-Crystalline Metal Oxide Nanowires Grown by the Vapor–Liquid–Solid Process, Nano Letters, org/10.1021/acs.nanolett.8b04668, 19, 3, 1675-1681, 2019.03, 単結晶金属酸化物ナノワイヤは金属や半導体など材料系には見られない多彩な機能物性を示す興味深いナノ材料群である。Vapor-Liquid-Solid法は高結晶性のナノワイヤ構造体を構築可能な方法論であるが、本手法を用いて作製された単結晶金属酸化物ナノワイヤは大きなバンドギャップを有する絶縁体であるにも関わらず、結晶欠陥に由来する「意図しないドーピング」により高い電気伝導性が報告されており、ナノ機能物性抽出・変調へ向けて長年の技術的課題となっていた。本研究では、Vapor-Liquid-Solid成長において金属酸化物ナノワイヤの構成元素である酸素の供給フラックス(酸素圧)を変調させた際に、電気伝導性において異常な酸素圧依存性が観測された。電気伝導性及び化学組成の空間分布評価により、本依存性が気固界面及び液固界面といった競合する2つの結晶成長界面における結晶の本質的な差異に起因することを明らかにした。更に、上記実験結果に基づいて構築した1次元結晶成長モデル(分子動力学シミュレーション)に基づいて界面選択的結晶成長を行うことにより、金属酸化物ナノワイヤの超高結晶化に成功した。.
61. ​T. Yasui, T. Yanagida, T. Shimada, K. Otsuka, M. Takeuchi, K. Nagashima, S. Rahong, T. Naito, D. Takeshita, A. Yonese, R. Magofuku, Z. Zhu, N. Kaji, M. Kanai, T. Kawai, and Y. Baba , Engineering Nanowire-Mediated Cell Lysis for Microbial Cell Identification, ACS Nano, 10.1021/acsnano.8b08959, 13, 2262-2273, 2019.02.
62. Y. Akihiro, K. Nagashima, T. Hosomi, M. Kanai, H. Anzai, T. Takahashi, G. Zhang, T. Yasui, Y. Baba and T. Yanagida, Water-Organic Cosolvent Effect on Nucleation of Solution-Synthesized ZnO Nanowires, ACS Omega, ​10.1021/acsomega.9b00945, 4, 8299-8304, 2019.01.
63. H. Liu, Y. He, K. Nagashima, G. Meng, T. Dai, B. Tong, Z. Deng, S. Wang, N. Zhu, T. Yanagida and X. Fang, Discrimination of VOCs molecules via extracting concealed features from a temperature-modulated p-type NiO sensor, Sensors & Actuators: B. Chemical, 10.1016/j.snb.2019.04.078, 293, 342-349, 2019.01.
64. Taisuke Shimada, Hirotoshi Yasaki, Takao Yasui, Takeshi Yanagida, Noritada Kaji, Masaki Kanai, Kazuki Nagashima, Tomoji Kawai and Yoshinobu Baba , PM2.5 Particle Detection in a Microfluidic Device by Using Ionic Current Sensing
, Analytical Sciences
, 34, 1347-1349, 2018.11.
65. Shimada Taisuke Yasui Takao Yokoyama Asami Goda Tatsuro Hara Mitsuo Yanagida Takeshi Kaji Noritada Kanai Masaki Nagashima Kazuki Miyahara Yuji Kawai Tomoji Baba, Yoshinobu , Biomolecular recognition on nanowire surfaces modified by the self-assembled monolayer
, LAB ON A CHIP
, 18, 21, 3225-3229, 2018.09.
66. Zhuge Fuwei Takahashi Tsunaki Kanai Masaki Nagashima Kazuki Fukata Naoki Uchida, Ken Yanagida, Takeshi , Thermal conductivity of Si nanowires with delta-modulated dopant distribution by self-heated 3 omega method and its length dependence
, JOURNAL OF APPLIED PHYSICS
, 10.1063/1.5039988, 124, 65105-65105, 2018.08.
67. Yasui Takao、Yanagida Takeshi、Ito Satoru、Konakade Yuki、Takeshita Daiki、Naganawa Tsuyoshi、Nagashima Kazuki、Shimada Taisuke、Kaji Noritada、Nakamura Yuta、Thiodorus Ivan Adiyasa、He Yong、Rahong Sakon、Kanai Masaki、Yukawa Hiroshi、Ochiya Takahiro、Kawai Tomoji、Baba Yoshinobu, Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires , nano letters, 10.1126/sciadv.1701133, 2018.06.
68. T. Yasui, T. Yanagida, S. Ito, Y. Konakade, D. Takeshita, T. Naganawa, K. Nagashima, T. Shimada, N. Kaji, Y. Nakamura, I. Adiyasa Thiodorus, Y. He, S. Rahong, M. Kanai, H. Yukawa, T. Ochiya, T. Kawai and Y. Baba, Unveiling Massive Numbers of Cancer-related Urinary-Micro RNA Candidates via Nanowires , Science Advances , 10.1126/sciadv.1701133, 2018.06.
69. H. Zeng, @T. Takahashi, M. Kanai, G. Zhang, Y. He, K. @Nagashima and T. Yanagida, Long-Term Stability of Oxide Nanowire Sensors via Heavily-Doped Oxide Contact2 2017 1854-1859
, ACS Sensors , 10.1021/acssensors.7b00716, 2018.06.
70. H. Yasaki, T. Yasui, T. Yanagida, N. Kaji, M. Kanai,@ K. Nagashima, T. Kawai and Y. Baba, Substantial Expansion of Detectable Size Range in Ionic Current Sensing through Pores by Using a Microfluidic Bridge Circuit , Journal of the American Chemical Society, 10.1021/jacs.7b06440 , 2018.06.
71. #H. Anzai, @M. Suzuki, @@K. Nagashima, @M. Kanai, #Z. Zhu, @Y. He, @‘M. Boudot,@G. Zhang, @T. Takahashi, K. Kanemoto, T. Seki, N. Shibata and T. Yanagida, True Vapor-Liquid-Solid Process Suppresses Unintentional Carrier Doping of Single Crystalline Metal Oxide Nanowires
, Nanoletters, 10.1021/acs.nanolett.7b01362, 2018.06.
72. 長島一樹、@高橋綱己、@柳田 剛 , 単結晶酸化物ナノワイヤの界面選択的結晶成長に基づく構造・組成・機能制御とデバイス展開
, セラミックス
, 53, 411-416, 2018.06.
73. Yasaki Hirotoshi Shimada Taisuke Yasui Takao Yanagida Takeshi Kaji Noritada Kanai Masaki Nagashima Kazuki Kawai Tomoji Baba Yoshinobu , Robust Ionic Current Sensor for Bacterial Cell Size Detection
, ACS SENSORS
, 10.1021/acssensors.8b00045, 3, 3, 574-579, 2018.02.
74. @柳田 剛, @長島一樹, @高橋綱己, 結晶成長の空間選択性に基づいた単結晶金属酸化物ナノワイヤの創製とナノデバイス展開

, 応用物理
, 87, 27-33, 2018.01.
75. Yasaki Hirotoshi Yasui Takao Yanagida Takeshi Kaji Noritada Kanai Masaki Nagashima Kazuki Kawai Tomoji Baba Yoshinobu , A real-time simultaneous measurement on a microfluidic device for individual bacteria discrimination
, SENSORS AND ACTUATORS B-CHEMICAL
, 2018.01.
76. Yasaki Hirotoshi Yasui Takao Yanagida Takeshi Kaji Noritada Kanai Masaki Nagashima Kazuki Kawai Tomoji Baba Yoshinobu, Effect of Channel Geometry on Ionic Current Signal of a Bridge Circuit Based Microfluidic Channel, CHEMISTRY LETTERS
, 10.1246/cl.171139, 47, 3, 350-353, 2018.01.
77. S. Rahong, T. Yasui, T. Yanagida, N. Kazuki, M. Kanai, G. Meng, Y. He, F.W. Zhuge, N. Kaji, T. Kawai, Y. Baba, Three-dimensional Nanowire Structures for Ultra- Fast Separation of DNA, Protein and RNA Molecules, 2015.06.
78. M. Tsutsui, T. Yoshida, K. Yokota, H. Yasaki, T. Yasui, A. Arima, W. Tonomura, K. Nagashima, T. Yanagida, M. Taniguchi, N. Kaji, T. Washio, Y. Baba, and T. Kawai, Discriminating Single-Bacterial Shape using Low-Aspect-Ratio Pores , Science Report, 10.1038/s41598-017-17443-6, 17371, 2017.06.
79. S. Rahong, T. Yasui, T. Yanagida, K. Nagashima, M. Kanai, G. Meng, Y. He, F.W. Zhuge, N. Kaji, T. Kawai, Y. Baba, Self-assembled Nanowire Arrays as Three-dimensional Nanopores for Filtration of DNA Molecules.
80. A. Klamchuen, M. Suzuki, K. Nagashima, H. Yoshida, M. Kanai, F.W. Zhuge, Y. He, G. Meng, S. Kai, S. Takeda, T. Kawai, T. Yanagida, Rational Concept for Designing Vapor-Liquid-Solid Growth of Single Crystalline Metal Oxide Nanowires.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。