Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Matsuda Taito Last modified date:2020.01.10

Academic Degree
Doctor of Medicine
Country of degree conferring institution (Overseas)
Field of Specialization
Total Priod of education and research career in the foreign country
Research Interests
  • Direct reprogramming of microglia into neurons
    keyword : direct reprogramming
  • Identify the factors inducing the impairment of neural stem cell proliferation during aging
    keyword : Neural stem cell
Academic Activities
1. Matsuda T * (co-corresponding author)., Irie T., Katsurabayashi S., Hayashi Y., Nagai T., Hamazaki N., Adefuin AMD., Miura F., Ito T., Kimura H., Shirahige K., Takeda T., Iwasaki K., Imamura T. & Nakashima K*., Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion, Neuron, 101, 472-485, 2019.01, Minimal sets of transcription factors can directlyreprogram somatic cells into neurons. However,epigenetic remodeling during neuronal reprogram-ming has not been well reconciled with transcrip-tional regulation. Here we show that NeuroD1achieves direct neuronal conversion from mouse mi-croglia bothin vitroandin vivo. Exogenous NeuroD1initially occupies closed chromatin regions associ-ated with bivalent trimethylation of histone H3 atlysine 4 (H3K4me3) and H3K27me3 marks in micro-glia to induce neuronal gene expression. These re-gions are resolved to a monovalent H3K4me3 markat later stages of reprogramming to establish theneuronal identity. Furthermore, the transcriptionalrepressorsScrt1andMeis2are induced as NeuroD1target genes, resulting in a decrease in the expres-sion of microglial genes. In parallel, the microglialepigenetic signature in promoter and enhancerregions is erased. These findings reveal NeuroD1pioneering activity accompanied by global epige-netic remodeling for two sequential events: onset ofneuronal property acquisition and loss of the micro-glial identity during reprogramming..
Membership in Academic Society
  • The Japane Neuroscience Sciety
  • The Japanese society for Epigenetics