1. |
Shinichi Kobayashi, Ashay Burungale, Anticyclotomic CM Iwasawa theory at inert primes II, Arithmetic of L-functions, 2023.05. |

2. |
Shinichi Kobayashi, Integral structures on p-adic Fourier theory, Number theory seminar, 2023.02. |

3. |
Shinichi Kobayashi, The p-adic valuation of local resolvents and anticyclotomic Hecke L-values of imaginary quadratic fields at inert primes, Algebraic/Analytic aspects of L-functions, 2023.01. |

4. |
Shinichi Kobayashi, The p-adic valuation of local resolvents and anticyclotomic Hecke L-values of imaginary quadratic fields at inert primes, Seminar on Geometry and Arithmetic, 2023.01. |

5. |
Shinichi Kobayashi, Rubin's conjecture on local units in the anticyclotomic tower at inert primes, Elliptic curves and modular forms in arithmetic geometry, 2022.09. |

6. |
Shinichi Kobayashi, Local units and root numbers of Hecke L-functions in anticyclotomic extensions at inert primes, Arithmetic Geometry Takeshi 60, 2021.09. |

7. |
Shinichi Kobayashi, On p-divisibilities of Special values of the Hecke L-function of CM elliptic curves at inert primes, L-values and Iwasawa theory, 2020.11. |

8. |
小林真一, Lectures on the p-adic Gross-Zagier formula, 2018.03. |

9. |
小林真一, Iwasawa theory for generalized Heegner cycles at non-ordinary primes, Workshop on p-adic L-functions and algebraic cycles, 2017.09. |

10. |
小林真一, Iwasawa theory for generalized Heegner cycles at non-ordinary primes, Special Cycles on Shimura Varieties and Iwasawa Theory, 2017.08, 高次重さをもつ保型形式の反円分拡大における岩澤理論の基本課題の解決およびp進Gross-Zagier公式の証明. |

11. |
小林真一, Local Iwasawa theory of modular forms for the anti-cyclotomic Z_p-extension, Iwasawa2017, 2017.07. |

12. |
小林真一, The p-adic Gross-Zagier formula for higher weight modular forms at non-ordinary primes, Fukuoka International Conference on Arithmetic Geometry in 2017, Kyushu University, 2017.04. |

13. |
小林 真一, Anticyclotomic Iwasawa theory for modular forms at non-ordinry primes, Sendai International conference on Arithmetic Geometry in 2016, 2016.01. |