九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動
山下 尚人(やました なおと) データ更新日:2023.06.19



主な研究テーマ
半導体スピントロニクス
キーワード:スピントロニクス; 半導体デバイス; 結晶成長
2021.08~2023.03.
研究業績
主要原著論文
1. N. Yamashita, R. Mitsuishi, Y. Nakamura, K. Takeda, M. Hori, K. Kamataki, T. Okumura, K. Koga, M. Shiratani, Role of insoluble atoms in the formation of a three-dimensional buffer layer in inverted Stranski–Krastanov mode, J. Mater. Res, 10.1557/s43578-022-00886-7, 1-8, 2023.01, [URL].
2. N. Yamashita, E. Shigematsu, S. Honda, R. Ohshima, M. Shiraishi, Y. Ando, Realization of efficient tuning of the Fermi level in iron-based ferrimagnetic alloys, Physical Review Materials, 10.1103/physrevmaterials.6.104405, 6, 10, 104405, 2022.10, The Stoner criterion allows only three single elements possessing room-temperature (RT) ferromagnetism: cobalt (Co), nickel (Ni), and iron (Fe). Although these three elements have played central roles in magnetism-based materials, their large work function (4.5∼5.2eV) is becoming a non-negligible obstacle for realization of spin devices using nonmetallic materials with finite energy gaps, because injection of electron spins into these nonmetallic materials is strongly hampered due to the large Schottky barrier height. Hence, a novel ferromagnetic or ferrimagnetic material simultaneously possessing RT ferromagnetism or ferrimagnetism and high Fermi energy is strongly required. Here, we show that an Fe-based alloy, iron-gadolinium (FeGd), allows circumvention of the obstacle. Surprisingly, only 20% of Gd incorporation in Fe dramatically modulates the Fermi energy from -4.8 to -3.0 eV, which is the largest modulation in all metallic alloys reported thus far. The coexistence of ferrimagnetism and nonzero spin polarization at RT of FeGd supports its abundant potential for future applications in low-carrier-density materials such as monolayer, organic, and nondegenerate inorganic semiconductors..
3. D. Takahashi, N. Yamashita, D. Yamashita, T. Okumura, K. Kamataki, K. Koga, M. Shiratani, N. Itagaki, Epitaxial Growth of Zn1-xMgxO Films on Sapphire Substrates via Inverted Stranski-Krastanov Mode Using Magnetron Sputtering, MRS Adv., 10.1557/s43580-022-00234-1, 2022.02, [URL].
4. Yuta Nakamura, Naoto Yamashita, Kunihiro Kamataki, Takamasa Okumura, Kazunori Koga, Masaharu Shiratani, Naho Itagaki, Growth of Single-Crystalline ZnO Films on 18%-Lattice-Mismatched Sapphire Substrates Using Buffer Layers with Three-Dimensional Islands, Crystal Growth & Design, 10.1021/acs.cgd.2c00145, 22, 6, 3770-3777, 2022.06.
5. Naoto Yamashita, Yuichiro Ando, Hayato Koike, Shinji Miwa, Yoshishige Suzuki, Masashi Shiraishi, Thermally Generated Spin Signals in a Nondegenerate Silicon Spin Valve, Physical Review Applied, 10.1103/physrevapplied.9.054002, 9, 5, 054002, 2018.05.
主要学会発表等
1. N. Yamashita, A. Agusutrisno, K. Kamataki, T. Okumura, K. Koga, M. Shiratani, N. Itagaki, Increase of Blocking Temperature in Co-doped ZnO by Using NitrogenMediated Crystallization, ICMFS-2022, 2022.07.
2. N. Yamashita, D. Takahashi, T. Okumura, K. Kamataki, K. Koga, M. Shiratani, N. Itagaki, Microscopic analysis of single crystalline Zn1-xMgxO thin films on sapphire grown via inverted Stranski-Krastanov mode, 7th International Conference on Advances in Functional Materials(AFM-2022), 2023.01.
3. 山下尚人, 中村優太, 鎌滝晋礼, 奥村賢直, 板垣奈穂, 古閑一憲, 白谷正治, サファイア基板上の単結晶ZnO薄膜作製におけるバッファー層評価指標, 第83回応用物理学会秋季学術講演会, 2022.09.
4. N. Yamashita, R. Mitsuishi, Y. Nakamura, T. Okumura, K. Kamataki, K. Koga, M. Shiratani, Mechanism of homogeneous nucleation of ZnO in N2 and Ar plasma, 第32回日本MRS年次大会, 2022.12.
5. 山下尚人, A. Agustrisno, 奥村賢直, 鎌滝晋礼, 板垣奈穂, 古閑一憲, 白谷正治, C. Marrows, Non-off Axis Sputtering Deposition of Ferrimagnetic Insulator Film with Perpendicular Magnetic Anisotropy, 第70回応用物理学会 春季学術講演会, 2023.03.
学会活動
所属学会名
応用物理学会
その他の研究活動
海外渡航状況, 海外での教育研究歴
University of Leeds, UnitedKingdom, 2022.10~2023.01.
受賞
応用物理学会第5回英語講演奨励賞, 応用物理学会スピントロニクス分科会, 2016.09.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。