九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
胡 長洪(ふー ちやんほん) データ更新日:2024.04.26



主な研究テーマ
着底型洋上風車のスカートサクションジャケット(SSJ)基礎の研究
キーワード:着底型洋上風力発電、SSJ基礎、曳航安定性
2022.04.
中型レンズ風車の開発とそのマルチ化
キーワード:レンズ風車、マルチローターシステム、CFDシミュレーション、風洞試験
2022.04.
TLP型浮体式マスト/ライダーの開発
キーワード:洋上風況計測、ハイブリッドマスト/ライダーシステム、TLP浮体
2020.04.
洋上架空送電用のTLP型浮体式送電塔の開発
キーワード:浮体式送電塔、洋上架空送電、TLP
2016.04.
地産地消漁業協調洋上浮体式風力発電システムの開発
キーワード:洋上風力発電、新型浮体、分散型電源、漁業協調
2012.04.
潮流発電タービン後流解析及び潮流ファーム最適配置に関する研究
キーワード:潮流発電、後流解析、最適配置
2014.07.
次世代高性能CFDソルバーの開発と流体・構造連成解析への応用
キーワード:数値流体力学、流体・構造連成解析, 自由表面衝撃
2008.04.
大型浮体式風力発電システムの波浪安全性とウェーク予測に関する研究
キーワード:浮体式風力発電用プラットホーム、波浪安全性、波浪衝撃、ウェーク予測、数値流体力学
2010.04.
強非線形浮体・自由表面相互作用問題に対する数値計算法の開発
キーワード:強非線形自由界面,数値流体力学,界面捕捉法,波浪衝撃
2002.04.
CO2海底貯留に対する環境リスク評価に関する研究
キーワード:CO2海洋隔離、深海底貯留、拡散シミュレーション、環境評価
2010.04~2016.03.
CO2排出削減のための新しい省エネ船型開発に関する研究
キーワード:CO2排出削減, 省エネ船型, CFDシミュレーション
2009.04.
船舶機関室火災の数値シミュレーション
キーワード:機関室火災,数値シミュレーション,火災モデル
2000.04~2004.03.
低濃度固気混相流の数値シミュレーション
キーワード:溶接・切断ヒューム,数値計算,低濃度固気混相流,労働環境
1998.04~2002.03.
従事しているプロジェクト研究
集風レンズ付き風車の中型200kW機とそのマルチロータシステムの技術開発
2022.11~2025.03, 代表者:大屋裕二, (株)リアムウィンド, (株)リアムウィンド
2022年11月「環境省令和4年度地域共創セクター横断型カーボンニュートラル技術開発・実証事業(集風レンズ付き風車の中型200kW機とそのマルチロータシステムの技術開発)が採択され、九州大学は共同実施者として風車開発に関する流体力学検討(レンズの最適化設計、マルチレンズ風車の流体力学検討など)を実施する。
.
スカートサクションジャケット(SSJ)曳航・沈設工法に関する研究
2022.04~2024.03, 代表者:胡 長洪, 九州大学, 九州大学(日本)
本研究は、大型起重機船等が不要なスカートサクションジャケット(SSJ)設置工法を開発する目的で、水槽実験と数値シミュレーションを実施し、SSJの曳航と沈下の方法を検討する。.
着床型風力発電の送電線ケーブルのVIV挙動に関する研究
2019.04~2023.03, 代表者:胡 長洪, 九州大学, 九州大学(日本)
着床型風力発電の送電線ケーブルの潮流中のVIVによる挙動と内部応力の把握は送電線ケーブルの構造設計、疲労設計上きわめて重要である。本研究は水槽実験と数値解析によりケーブルのVIV挙動と内部応力の関係を把握し、関連の予測ツールを開発する。.
JST A-STEP 機能検証フェーズ/実証研究タイプ/浮体式洋上送電塔の設置工法に関する研究
2018.12~2019.12, 代表者:胡 長洪, 九州大学, 科学技術振興機構(JST)
洋上送電コストを大きく低減することを目的として、浮体式洋上送電塔による新しい洋上架空送電システムを開発する。本研究は縮小模型水槽実験と数値シミュレーションを実施し、大型起重機船等が不要な浮体式洋上送電塔の簡便・迅速な設置工法に関する流体力学特性を解明しその成立性を実証する。.
海洋エネルギー技術研究開発/次世代海洋エネルギー発電技術研究開発
2014.07~2016.03, 代表者:胡 長洪, 九州大学, 独立行政法人新エネルギー・産業技術総合開発機構(NEDO)

本研究では、複雑な海底地形上に複数基の発電装置を設置している潮流発電ファームに対する最適配置を検討する目的で、広域解析モデルを用いて潮流発電ファームを含めた広域潮流解析の結果を局所CFDモデルの境界条件として与え、複数基発電装置の相互干渉をCFDシミュレーションする技術を開発する。関連の水槽実験も行う。.
新型洋上風力発電浮体の開発
2012.04~2016.03, 代表者:胡 長洪, 九州大学, 九州大学(日本)

応用力学研究所の研究プロジェクトである風レンズ風車を利用した大規模洋上風力発電構想の一環として、産学共同で浮体一機に複数風車を搭載する世界初のコンセプトを開発し、さらに養殖生簀の併設により、漁業との共存を目指している。.
カーボンニュートラル・エネルギー国際研究所(I2CNER)CO2貯留部門
2010.04~2015.03, 九州大学, 九州大学(日本)
「世界トップレベル研究拠点(WPI)プログラム」である「カーボンニュートラル・エネルギー国際研究所」が推進するCO2海洋隔離に関する安全性評価および環境評価について基礎的な研究を行っている。.
九州大学東アジア環境問題プロジェクト
2007.04~2015.03, 九州大学, 九州大学(日本)
九州大学では急速な東アジアの経済発展に伴う環境問題を解決するために研究プロジェクトをスタートした。その中の大気汚染グループのメンバーとして,中国側のパートナーと組んで複雑地形の空気流動および物質移動の数値計算に関する研究を行っている。.
研究業績
主要著書
1. Masashi Kashiwagi, Changhong Hu and Makoto Sueyoshi, Numerical Computation Methods for Extremely Nonlinear Wave-Body Interactions,
Chapter 12 : Numerical Computation Methods for Extremely Nonlinear Wave-Body Interactions
, The world Scientific Publishing Co., in the series of Advances in Coastal and Ocean Engineering, Vol. 11, 2009.05.
主要原著論文
1. Ruo Luo, Yingyi Liu, Hongzhong Zhu, Changhong Hu, Numerical and experimental investigation of a floating overhead power transmission system, Ocean Engineering, 10.1016/j.oceaneng.2023.115085, 284, No. 115085, 2023.11.
2. Liu, Cheng; Gao, Ruoqing; Hu, Changhong, A consistent mass-momentum flux computation method for the simulation of plunging jet, Physics of Fluids, 10.1063/5.0084894, 34, 3, 2022.03.
3. Zhu, Hongzhong; Hu, Changhong, A study on floating overhead power transmission system for offshore energy development: Design and modeling approach, Ocean Engineering, 10.1016/j.oceaneng.2021.109528, 236, 2021.09.
4. Al-Salami, Jabir; Kamra, Mohamed M.; Hu, Changhong, A high order flux reconstruction interface capturing method with a phase field preconditioning procedure, Journal of Computational Physics, 10.1016/j.jcp.2021.110376, 438, 2021.08, This paper presents a simple and highly accurate method for capturing sharp interfaces moving in divergence-free
velocity fields using the high-order Flux Reconstruction approach on unstructured grids. A well-known limitation of
high-order methods is their susceptibility to the Gibbs phenomenon; the appearance of spurious oscillations in the
vicinity of discontinuities and steep gradients makes it difficult to accurately resolve shocks or sharp interfaces. In
order to address this issue in the context of sharp interface capturing, a novel, preconditioned and localized phasefield
method is developed in this work. The numerical accuracy of interface normal vectors is improved by utilizing
a preconditioning procedure based on the level set method with localized artificial viscosity stabilization. The developed
method was implemented in the framework of the multi-platform Flux Reconstruction open-source code PyFR
[1]. Kinematic numerical tests in 2D and 3D conducted on different mesh types showed that the preconditioning
procedure significantly improves accuracy with little added computational effort. The results demonstrate the conservativeness
of the proposed method and its ability to capture highly distorted interfaces with superior accuracy
when compared to conventional and high-order VOF and level set methods. Dynamic interface capturing validation
tests were also carried out by coupling the proposed method to the entropically damped artificial compressibility
variant of the incompressible Navier-Stokes equations. The high accuracy and locality of the proposed method offer
a promising route to carrying out massively-parallel, high accuracy simulations of multi-phase, incompressible phenomena..
5. Jabir Al Salami, Changhong Hu, Mohamed M. Kamra, Kazuaki Hanada, Magnetic Induction and Electric Potential Smoothed Particle Magnetohydrodynamics for Incompressible Flows, International Journal for Numerical Methods in Fluids, 10.1002/fld.4906, 93, 3, 720-747, 2020.08, [URL], In order to solve incompressible, nonideal magnetohydrodynamic (MHD) free-surface flows, two weakly compressible smoothed particle hydrodynamics models, with and without the consideration of magnetic induction, are developed. The SPH formulation for magnetic induction magnetohydrodynamics (SPMHD), which is popular in astrophysical studies, is applied for the first time to incompressible free-surface MHD flows, such as liquid metal flows, with the consideration of nonideal MHD effects and boundaries with arbitrary electric conductivity. An SPMHD implementation using the inductionless approximation is also proposed for both electrically conductive and insulating boundaries, in which a Poisson equation is solved to compute the Lorentz force instead of evolving the magnetic induction equation. Both proposed methods are validated against MHD benchmarks, including free-surface MHD cases. The proposed inductionless SPMHD implementation has the advantages of stability and relaxed time-step restrictions, but is only accurate at a low range of Hartmann numbers. For high Hartmann number problems, magnetic induction SPMHD model is more accurate. The computational efficiency and conservation error of the two models are compared and discussed..
6. Changhong Hu, Mohamed M. Kamra, An unstructured mesh method for numerical simulation of violent sloshing flows, Journal of Hydrodynamics, 10.1007/s42241-020-0019-z, 32, 2, 259-266, 2020.04, [URL], An unstructured mesh Reynolds-averaged Navier-Stokes (RANS) solver has been developed for numerical simulation of violent sloshing flows inside a tank with complicated inner structures. The numerical solver employs the unstructured multi-dimensional tangent hyperbolic interface capturing method (UMTHINC) for free-surface capturing combined with various turbulence models. The sloshing motion is numerically modeled using the body-force method which introduces a source term into the momentum equation corresponding to the tank motion profile. Numerical simulations of the tank sloshing problems are performed for different test cases with various oscillation frequencies. The performance of the interface capturing method has been discussed and the effect of turbulence model choice on loading predictions is highlighted by studying several RANS models and analyzing its effect on fluid motion and impact pressure. Numerical simulations of the sloshing inside the tank with a vertical baffle has also been conducted and a discussion is provided on different numerical treatment of the baffle..
7. Cheng Liu, Changhong Hu, An adaptive high order WENO solver for conservation laws, Communications in Computational Physics, 10.4208/cicp.OA-2018-0059, 26, 3, 719-748, 2019.09, This paper presents an implementation of the adaptive hybrid WENO (weighted essentially non-oscillatory) scheme based on our previous investigations for compressible multi-medium flows (Liu and Hu, J. Comput. Phys., 342 (2017), 43-65). In this study a simple and efficient method is developed for Euler equations and Navier-Stokes equations arising from the conservation laws. A class of high order weighted essentially non-oscillatory (WENO) schemes are applied to resolve the complicated flow structures and shock waves. Classical WENO schemes are computationally expensive in calculating the non-linear weight and smoothness indicators. We propose a block-structured adaptive mesh method together with a modified hybrid-WENO scheme to reduce the cost, the reconstruction is only performed at non-smooth region. Comparisons of WENO scheme with various smoothness indicators and different Lax-Friedrich flux vector splitting methods are performed on block structured adaptive mesh. Benchmark tests show present adaptive hybrid WENO method is low-dissipative and highly robust. The 2-D/3-D shock wave boundary layer interaction are simulated to verify the efficiency of present AMR (adaptive mesh refinement) solver in predicting turbulent flow..
8. Cheng Liu, Changhong Hu, An actuator line - immersed boundary method for simulation of multiple tidal turbines, Renewable Energy, 10.1016/j.renene.2019.01.019, 136, 473-490, 2019.06, [URL], This work proposes an efficient actuator line – immersed boundary (AL-IB) method to predict the wake of multiple horizontal-axis tidal turbines (HATTs). A sharp IB method with a simple adaptive mesh refinement strategy is used to improve the computational efficiency. The velocity and other scalar fields adjacent to the solid surface are reconstructed by a moving least square (MLS) interpolation. A computationally efficient AL model is applied to represent the rotors by adding source term to the governing equation rather than resolving the fully geometry of the blade. To predict the turbulent wake, the AL-IB method is implemented with an unsteady Reynolds-averaged Navier–Stokes (URANS) solver. Performance of three types of turbulence models, k−ω−SST model, standard and corrected k−ω model are evaluated. An efficient wall function model is proposed for the MLS-IB approach. The accuracy of the present AL-IB method is validated by numerical tests of a single rotor and multiple tandem arranged IFREMER rotors [1,2]. Wake interference of Manchester rotors [3] with side by side arrangement is also investigated numerically. The predicted wake velocity and turbulence intensity (TI) are in reasonably good agreement with the experimental results..
9. Cheng Liu, Changhong Hu, Block-based adaptive mesh refinement for fluid–structure interactions in incompressible flows, Computer Physics Communications, 10.1016/j.cpc.2018.05.015, 232, 104-123, 2018.11, [URL], In this study, an immersed boundary (IB) approach on the basis of moving least squares (MLS) interpolation is proposed for analyzing the dynamic response of a rigid body immersed in incompressible flows. An improved mapping strategy is proposed for a quick update of the signed distance field. A CIP-CSL (constraint interpolation profile - semi-Lagrangian) scheme with a compact stencil is adopted for the convective term in momentum equation. Fluid–structure interaction problems can be solved by either the weak or the strong coupling schemes according to the density ratio of the solid and fluid. This research is based on our previous studies on block-structured adaptive mesh refinement (AMR) method for incompressible flows (Liu & Hu, 2018). Present AMR-FSI solver is proved to be accurate and robust in predicting dynamics of VIV (vortex induced vibration) problems. The efficiency of the adaptive method is demonstrated by the 2D simulation of a freely falling plate with the comparison to other numerical methods. Finally, the freely falling and rising 3D sphere are computed and compared with corresponding experimental measurement..
10. Changhong Hu, Cheng Liu, Simulation of violent free surface flow by AMR method, Journal of Hydrodynamics, 10.1007/s42241-018-0043-4, 30, 3, 384-389, 2018.06, [URL], A novel CFD approach based on adaptive mesh refinement (AMR) technique is being developed for numerical simulation of violent free surface flows. CIP method is applied to the flow solver and tangent of hyperbola for interface capturing with slope weighting (THINC/SW) scheme is implemented as the free surface capturing scheme. The PETSc library is adopted to solve the linear system. The linear solver is redesigned and modified to satisfy the requirement of the AMR mesh topology. In this paper, our CFD method is outlined and newly obtained results on numerical simulation of violent free surface flows are presented..
11. Cheng Liu, Changhong Hu, An adaptive multi-moment FVM approach for incompressible flows, Journal of Computational Physics, 10.1016/j.jcp.2018.01.006, 359, 239-262, 2018.04, [URL], In this study, a multi-moment finite volume method (FVM) based on block-structured adaptive Cartesian mesh is proposed for simulating incompressible flows. A conservative interpolation scheme following the idea of the constrained interpolation profile (CIP) method is proposed for the prolongation operation of the newly created mesh. A sharp immersed boundary (IB) method is used to model the immersed rigid body. A moving least squares (MLS) interpolation approach is applied for reconstruction of the velocity field around the solid surface. An efficient method for discretization of Laplacian operators on adaptive meshes is proposed. Numerical simulations on several test cases are carried out for validation of the proposed method. For the case of viscous flow past an impulsively started cylinder (Re=3000,9500), the computed surface vorticity coincides with the result of the body-fitted method. For the case of a fast pitching NACA 0015 airfoil at moderate Reynolds numbers (Re=10000,45000), the predicted drag coefficient (CD) and lift coefficient (CL) agree well with other numerical or experimental results. For 2D and 3D simulations of viscous flow past a pitching plate with prescribed motions (Re=5000,40000), the predicted CD, CL and CM (moment coefficient) are in good agreement with those obtained by other numerical methods..
12. Cheng Liu, Changhong Hu, An immersed boundary solver for inviscid compressible flows, International Journal for Numerical Methods in Fluids, 10.1002/fld.4399, 85, 11, 619-640, 2017.12, [URL], In this paper, a simple and efficient immersed boundary (IB) method is developed for the numerical simulation of inviscid compressible Euler equations. We propose a method based on coordinate transformation to calculate the unknowns of ghost points. In the present study, the body-grid intercept points are used to build a complete bilinear (2-D)/trilinear (3-D) interpolation. A third-order weighted essentially nonoscillation scheme with a new reference smoothness indicator is proposed to improve the accuracy at the extrema and discontinuity region. The dynamic blocked structured adaptive mesh is used to enhance the computational efficiency. The parallel computation with loading balance is applied to save the computational cost for 3-D problems. Numerical tests show that the present method has second-order overall spatial accuracy. The double Mach reflection test indicates that the present IB method gives almost identical solution as that of the boundary-fitted method. The accuracy of the solver is further validated by subsonic and transonic flow past NACA2012 airfoil. Finally, the present IB method with adaptive mesh is validated by simulation of transonic flow past 3-D ONERA M6 Wing. Global agreement with experimental and other numerical results are obtained..
13. Cheng Liu, Changhong Hu, A Second Order Ghost Fluid Method for an Interface Problem of the Poisson Equation, Communications in Computational Physics, 10.4208/cicp.OA-2016-0155, 22, 4, 965-996, 2017.10, [URL], A second order Ghost Fluid method is proposed for the treatment of interface problems of elliptic equations with discontinuous coefficients. By appropriate use of auxiliary virtual points, physical jump conditions are enforced at the interface. The signed distance function is used for the implicit description of irregular domain. With the additional unknowns, high order approximation considering the discontinuity can be built. To avoid the ill-conditioned matrix, the interpolation stencils are selected adaptively to balance the accuracy and the numerical stability. Additional equations containing the jump restrictions are assembled with the original discretized algebraic equations to form a new sparse linear system. Several Krylov iterative solvers are tested for the newly derived linear system. The results of a series of 1-D, 2-D tests show that the proposed method possesses second order accuracy in L norm. Besides, the method can be extended to the 3-D problems straightforwardly. Numerical results reveal the present method is highly efficient and robust in dealing with the interface problems of elliptic equations..
14. Cheng Liu, Changhong Hu, Adaptive THINC-GFM for compressible multi-medium flows, Journal of Computational Physics, 10.1016/j.jcp.2017.04.032, 342, 43-65, 2017.08, [URL], In this paper, a THINC (tangent of hyperbola for interface capturing) (Xiao F. et al., 2005) [26] coupled with GFM (Ghost Fluid Method) is proposed for numerical simulation of compressible multi-medium flows. The THINC scheme, which was first developed for incompressible flows, is applied for capturing the distorted material interface of compressible flows. The hybrid WENO (weighted essentially non-oscillatory) scheme with the blocked structured adaptive mesh refinement (AMR) method is implemented. Load balancing is considered in the parallel computing. Several well documented numerical tests are performed and the results show that the THINC scheme behaviors better in mass conservation. It is the first endeavor to implement THINC scheme with adaptive mesh for computing the compressible multiphase problems. The shock wave–helium bubble interaction test reveals that the present method is efficient in prediction of the deformed interface. The solver is further validated by shock wave impact SF6 interface with square, rectangle, forward and backward triangle shapes in which the wave positions and intersecting angles are compared quantitatively. Finally, the collapse of an air bubble under shock in water is simulated, global agreement with experimental and other numerical results are obtained..
15. Changhong Hu, Cheng Liu, Development of Cartesian Grid Method for Simulation of Violent Ship-Wave Interactions, Journal of Hydrodynamics, 10.1016/S1001-6058(16)60702-3, 28, 6, 1003-1010, 2016.12.
16. Xuhui Li, Fei Jiang, Changhong Hu, Analysis of the accuracy and pressure oscillation of the lattice Boltzmann method for fluid–solid interactions, Computers & Fluids, 10.1016/j.compfluid.2016.01.015, 129, 33-52, 2016.04, Investigations have been conducted to analyze the accuracy of the ghost fluid immersed boundary lattice Boltzmann method and the conventional interpolation/extrapolation bounce-back schemes. The intrinsic sources of pressure oscillation for numerical simulation of moving boundary flows have also been inves- tigated. An existing bilinear ghost fluid immersed boundary lattice Boltzmann method (BGFM) (Tiwari and Vanka, 2012) and a proposed quadratic ghost fluid immersed boundary lattice Boltzmann method (QGFM) have been compared with Guo’s second-order extrapolation bounce-back scheme (Guo et al.) and the linear and quadratic interpolation bounce-back scheme (LIBB, QIBB) (Bouzidi et al., 2001; Lalle- mand and Luo, 2003). To study the numerical pressure oscillations in the moving boundary problem, (i) three existing refilling techniques and one proposed refilling technique are compared; (ii) three col- lision models, including the single-relaxation-time model, the multiple-relaxation-time model and the two-relaxation-time model, are investigated; (iii) two force evaluation schemes, a Galilean invariant mo- mentum exchange method Wen et al. and a stress integration method Inamuro et al., are considered. The accuracy and the performance in pressure oscillation suppression for the studied numerical approaches are compared and discussed by five numerical examples: an eccentric cylinder flow, a Cylindrical Couette flow, an impulsively started cylinder in a channel, an oscillation cylinder in calm water and a particle suspension problem. The numerical results indicate that the accuracy of QGFM scheme is comparable to Guo’s scheme while the accuracy of BGFM is worse than both of them. The QIBB scheme shows the best performance in the space convergence accuracy among all the schemes. Selection of the collision model, refilling technique and force evaluation scheme affect the pressure oscillation phenomenon in moving boundary simulations remarkably..
17. Cheng Liu, Changhong Hu, An Efficient Immersed Boundary Treatment for Complex Moving Object, Journal of Computational Physics, 10.1016/j.jcp.2014.06.042, 274, 654-680, 2014.10.
18. Fei Jiang, Changhong Hu, Numerical Simulation of a Rising CO2 Droplet in the Initial Accelerating Stage by a Multiphase Lattice Boltzmann Method, Applied Ocean Research, 10.1016/j.apor.2013.06.005, 45, 0, 1-9, 2014.03, A multi-phase flow model which applies lattice Boltzmann method (LBM) is developed for numerical simulation
of the initial accelerating stage of a rising CO 2 droplet in the deep ocean. In the present LBM model, a
multiple-relaxation time (MRT) collision operator is adopted to increase the numerical stability, and a color
model is used to treat the two-phase fluid. A domain shift scheme is proposed to make the long distance
calculation available. The computation is accelerated by using the GPU computing and correspondent parallel
implementation techniques are developed. The proposed numerical model is first validated against several
benchmark problems: Laplace law test, binary Poiseuille flow problem and rise of a toluene droplet. Then
numerical simulation of a liquid CO 2 droplet rising from quiescence to its steady state is carried out and the
results are compared to a laboratory experiment. Excellent agreement is obtained on both terminal velocity
and variation of droplet shape..
19. Kangping Liao, Changhong Hu, A coupled FDM–FEM method for free surface flow interaction with thin elastic plate, Journal of Marine Science and Technology, 10.1007/s00773-012-0191-0, 18, 1, 1-11, 2013.03, A partitioned approach by the coupling finite difference method (FDM) and the finite element method
(FEM) is developed for simulating the interaction between free surface flow and a thin elastic plate. The FDM, in
which the constraint interpolation profile method is applied, is used for solving the flow field in a regular fixed
Cartesian grid, and the tangent of the hyperbola for interface capturing with the slope weighting scheme is used for
capturing free surface. The FEM is used for solving structural deformation of the thin plate. A conservative
momentum-exchange method, based on the immersed boundary method, is adopted to couple the FDM and the
FEM. Background grid resolution of the thin plate in a regular fixed Cartesian grid is important to the computational
accuracy by using this method. A virtual structure method is proposed to improve the background grid resolution
of the thin plate. Both of the flow solver and the structural solver are carefully tested and extensive validations
of the coupled FDM–FEM method are carried out on a benchmark experiment, a rolling tank sloshing with a thin
elastic plate..
20. Changhong Hu, Makoto Sueyoshi, Fei Jiang, Kiminori Shitashima,Tetsuo Yanagi, Rise and Dissolution Modeling of CO2 Droplet in the Ocean, Journal of Novel Carbon Resource Sciences, 7, 12-17, 2013.02, A numerical approach is proposed to study the behavior of a natural carbon dioxide (CO2) droplet leaked from the
seafloor. Motion and deformation of the droplet at the initial stage are simulated by a lattice Boltzmann multi-phase
method to obtain the terminal velocity. The whole process of droplet rise and dissolution is modeled by a simplified
analytical method. The in-situ experiment case on a natural CO2 droplet at the Okinawa Trough (Shitashima, et al.1))
is studied by using the proposed numerical model. Numerical experiments show strong dependency between the
terminal velocity and the droplet density. The phenomena obtained in the on-sea observation are discussed by the
present numerical study..
21. Xizeng Zhao, Changhong Hu, Numerical and experimental study on a 2-D floating body under extreme wave conditions, Applied Ocean Research, 10.1016/j.apor.2012.01.001, 35, 1-13, 2012.03, This paper presents further developments of a constrained interpolation profile (CIP)-based Cartesian grid method (Hu et al. [29]) to model nonlinear interactions between extreme waves and a floating body, which is validated against to a newly performed experiment. In the experiment, three kinds of waves (regular wave, focused wave and combined regular and focused wave) are generated and a box-shaped floating body with a superstructure is used. Validation computations on the experiment are performed by the improved CIP-based Cartesian grid method, in which the THINC/WLIC scheme (THINC: tangent of hyperbola for interface capturing; WLIC: Weighed line interface calculation), is used for interface capturing. The highly nonlinear wave-body interactions, including large amplitude body motions and water-on-deck are numerically investigated through implementation of focused wave input to the CIP-based method. Computations are compared with experimental results and good agreement is achieved. The effects of the water-on-deck phenomena and different input focus positions on the body response are also dealt with in the research..
22. Fei JIANG, Changhong Hu, Application of Lattice Boltzmann Method for Simulation of Turbulent Diffusion from a CO2 Lake in Deep Ocean, Journal of Novel Carbon Resource Sciences, 5, 10-18, 2012.02.
23. Changhong Hu, Makoto Sueyoshi , Ryuji Miyake, Tingyao Zhu, Computation of Fully Nonlinear Wave Loads on a Large Container Ship by CIP based Cartesian Grid Method, Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2010-20286, 2010.06.
24. Changhong Hu, Makoto Sueyoshi,Masashi Kashiwagi, Numerical Simulation of Strongly Nonlinear Wave-Ship Interaction by CIP/Cartesian Grid Method, Int. Journal of Offshore and Polar Engineering, 20, 2, 81-87, 2010.06.
25. Changhong Hu, Masashi Kashiwagi, Two-dimensional numerical simulation and experiment on strongly nonlinear wave–body interactions , Journal of Marine Science and Technology, 10.1007/s00773-008-0031-4, 14, 2, 200-213, 2009.06.
26. Changhong Hu, Masashi Kashiwagi, and Makoto Sueyoshi, Improvement towards High-Resolution Computation on Strongly Nonlinear Wave-Induced Motions of an Actual Ship, Proc. of 27th Symposium on Naval Hydrodynamics, pp. 525-534, 2008.10.
27. Changhong Hu and Masashi Kashiwagi, Numerical and Experimental Studies on Three-Dimensional Water on Deck with a Modified Wigley Model, Proc. 9th Int. Conf. on Numerical Ship Hydrodynamics, Vol 1, pp.159-169, 2007.08.
28. Hu, CH, Kashiwagi, M, Kishev, Z, Sueyoshi, M and Faltinsen, O., Application of CIP Method for Strongly Nonlinear Marine Hydrodynamics, Ship Technology Research, V.53, No. 2, pp 74-87, 2006.06.
29. Zdravko Kishev, Changhong Hu and Masashi Kashiwagi, Numerical simulation of violent sloshing by a CIP-based method, Journal of Marine Science and Technology, V. 11, pp.111-122, 2006.06.
30. Changhong Hu, Odd Faltinsen and Masashi Kashiwagi, 3-D Numerical Simulation of Freely Moving Floating Body by CIP Method, Proc. 15th International Offshore and Polar Engineering Conference, 674-679, Vol. 4, pp.674-679, 2005.06.
31. Changhong Hu and Masashi Kashiwagi, A CIP-Based Method for Numerical Simulations of Violent Free Surface Flows, Journal of Marine Science and Technology, 10.1007/s00773-004-0180-z, 9, 4, 143-157, Vol.9, No.4, pp. 143-157, 2004.12.
32. Changhong Hu, Masashi Kashiwagi and Zdravko Kishev, Numerical Simulation of Violent Sloshing by CIP Method, Proc. 19th International Workshop on Water Waves and Floating Bodies, pp.67-70, 2004.03.
33. Changhong Hu and Nobuyoshi Fukuchi, A Field Modeling Approach to Prediction of Hot Gas Movement Induced by Marine Compartment Fires, International Journal of Offshore and Polar Engineering, 13, 4, 249-253, Vol. 13, No. 4, pp.249-253, 2003.12.
34. Changhong Hu and Masashi Kashiwagi, Development of CFD Simulation Method for Extreme Wave-Body Interactions, Proceedings of the 8th International Conference on Numerical Ship Hydrodynamics, Vol.2, pp. 50-57, 2003.09.
35. Changhong Hu and Masashi Kashiwagi, Numerical Simulation of Non-Linear Free Surface Wave Generation by CIP Method and Its Applications, Proceedings of the 13th International Offshore and Polar Engineering Conference, 294-299, Vol. 3, pp. 294-299, 2003.05.
36. Changhong Hu and Masashi Kashiwagi, A CIP Based Numerical Simulation Method for Extreme Wave-Body Interaction, Proc. 18th International Workshop on Water Waves and Floating Bodies, 2003.04.
主要総説, 論評, 解説, 書評, 報告書等
1. 胡 長洪, CIP法, 日本船舶海洋工学会誌 25号, 2009.07.
主要学会発表等
1. Lei Tan, Yingyi Liu, Changhong Hu, A numerical analysis tool for the design of a TLP-based met mast, The 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2023.06.
2. 胡 長洪、福島 総士、カムラ モハメド、渡辺 勢也、野田 穣士朗, 波の影響を考慮した2基潮流タービンの水槽実験, 日本船舶海洋工学会春季講演会, 2021.05.
3. Changhong Hu, Mohamed M. Kamra, Seiya Watanabe, Numerical and Experimental Investigation of Dam-Break Flow Against a Vertical Cylinder, 36th International Workshop on Water Waves and Floating Bodies, 2018.04.
4. Changhong Hu, Experimental and Numerical Study of Dam Break Flow Impact on a Vertical Cylinder, The 4th Symposium on Computational Marine Hydrodynamics, 2021.01.
5. Changhong Hu, Numerical and Experimental Study on Sloshing in a Tank with Complicated Inner Structures, The 2nd International Workshop on Numerical and Experimental Modelling of Wave -Structure Interaction, 2020.11.
6. Changhong Hu, Development of a Medium-Scale Floating Offshore Wind Turbine System, International Workshop on Offshore Wind Energy (IWOWE), 2019.12.
7. Changhong Hu, Makoto Sueyoshi, Chen, Liu, Yusaku Kyozuka, Yuji Ohya, Numerical and Experimental Study on a Floating Platform for Offshore Renewable Energy, the ASME 2012 32th International Conference on Ocean, Offshore and Arctic Engineering , 2013.06.
8. Changhong Hu, Development of CIP Based Cartesian Grid Method and Its Application to Strongly Nonlinear Wave-Body Interactions, 2nd International Conference on Violent Flows, 2012.09, A Cartesian grid method with CIP (Constraint Interpolation Profile) based flow solver has been developed in Research Institute for Applied Mechanics (RIAM), Kyushu University, for ten years for numerical simulation of strongly nonlinear seakeeping problems. In this presentation, a brief introduction of the development will be given at first. Then to demonstrate the performance of the CFD method three applications will be presented: (1) Prediction of nonlinear wave loads on a latest post-Panamax container ship moving in large-amplitude regular waves for various wave lengths and wave angles; (2) Numerical simulation of a floating wind turbine platform in harsh sea conditions; (3) Partitioned FSI simulation of nonlinear interaction between free surface and elastic structure..
9. Changhong HU, A CIP/ Cartesian grid method for strongly nonlinear free surface flows, Workshop on CFD Solvers for Unsteady Marine Applications: Capabilities and Challenges, 2007.12.
10. Changhong HU and Masashi Kashiwagi, A CFD Approach for Extremely Nonlinear Wave-Body Interactions: Development and Validation, 2007.07.
11. 胡 長洪, 波・浮体の強非線形相互作用に対する数値計算, RIMS研究集会「波動現象の数理と応用」, 2006.10.
特許出願・取得
特許出願件数  3件
特許登録件数  0件
学会活動
所属学会名
国際海洋極地工学会
日本船舶海洋工学会
日本機械学会
学協会役員等への就任
2021.04~2022.03, 日本船舶海洋工学会推進・運動性能研究会, 会長.
2020.04~2021.03, 日本船舶海洋工学会推進・運動性能研究会, 副会長.
2015.04, 日本船舶海洋工学会西部支部, 運営委員.
学会大会・会議・シンポジウム等における役割
2021.05.31~2021.06.01, 日本船舶海洋工学会春季講演会, 司会.
2020.11.16~2020.11.17, 日本船舶海洋工学会春季講演会, 論文審査委員.
2019.12.18~2019.12.19, International Workshop on Offshore Wind Energy (IWOWE), 司会(Moderator).
2019.09.22~2019.09.25, The 11th International Workshop on Ship and Marine Hydrodynamics (IWSH 2019), International Scientific Committee.
2019.06.03~2019.06.04, 日本船舶海洋工学会春季講演会, 論文審査委員.
2018.11.05~2018.11.08, the 4th Asian Wave Tidal Energy Conference (AWTEC 2018), Organizing Committee.
2018.05.21~2018.05.22, 日本船舶海洋工学会春季講演会, 司会(Moderator).
2017.11.27~2017.11.28, 日本船舶海洋工学会秋季講演会, 司会(Moderator).
2017.11.05~2017.11.08, The 10th International Workshop on Ship and Marine Hydrodynamics (IWSH 2017) , International Scientific Committee.
2016.05.26~2016.05.27, 日本船舶海洋工学会春季講演会, 司会(Moderator).
2015.09.06~2015.09.11, 11th European wave and tidal conference, 司会(Moderator).
2014.11.20~2014.11.21, 日本船舶海洋工学会秋季講演会, 司会(Moderator).
2014.10.12~2014.10.16, the 11th Pacific/Asia Offshore Mechanics Symposium , 司会(Moderator).
2014.07.27~2014.08.01, GRAND RENEWABLE ENERGY 2014, 司会(Moderator).
2012.09.25~2012.09.27, 2nd International Conference on Violent Flows, 司会(Moderator).
2012.07.01~2012.07.06, 31th International Conference on Ocean, Offshore and Arctic Engineering, 司会(Moderator).
2011.11.14~2011.11.15, the 4th International Symposium on the East Asian Environmental Hydrodynamics, 司会(Moderator).
2011.09.16~2011.09.19, 7th International Workshop on Ship Hydrodynamics, 司会(Moderator).
2010.11.17~2010.11.18, the 12th Cross Straits Symposium on Materials, Energy and Environmental Engineering, 司会(Moderator).
2010.09.13~2010.09.14, the 4th International Symposium on the East Asian Environmental Hydrodynamics, 司会(Moderator).
2010.01.09~2010.01.12, the 6th International Workshop on Ship Hydrodynamics, 司会(Moderator).
2009.11.19~2009.11.20, 日本船舶海洋工学会講演会, 司会(Moderator).
2008.03.26~2008.03.29, OC2008, 司会(Moderator).
2007.12.03~2007.12.06, APCOM'07-EPMESC XI, 司会(Moderator).
2007.11.20~2007.11.22, VF2007, 司会(Moderator).
2007.05.25~2007.05.26, 日本船舶海洋工学会の春季講演会, 司会(Moderator).
2006.10.01~2006.10.03, 9th Numerical Towing Tank Symposium, 司会(Moderator).
2006.05.11~2006.05.12, 日本船舶海洋工学会西部支部 春季講演会, 司会(Moderator).
2003.11.22~2003.11.24, 日本機械学会第16回計算力学講演会, 司会(Moderator).
2003.05.14~2003.05.15, 西部造船会第106回例会, 司会(Moderator).
2015.06.21~2012.06.26, 25th International Offshore and Polar Engineering Conference, session organizer.
2012.07.01~2012.07.06, 31th International Conference on Ocean, Offshore and Arctic Engineering, session organizer.
2010.07.19~2010.07.23, WCCM/APCOM 2010, session organizer.
2008.09.15~2008.09.20, 25th International Towing Tank Conference, Local organizing member.
2007.11.20~2007.11.22, International Conference on Violent Flows, Local organizing member.
2002.05.26~2002.05.31, The 12th International Offshore and Polar Engineering Conference , Local organizing member.
学会誌・雑誌・著書の編集への参加状況
2010.04~2015.03, Journal of Marine Science and Application, 国際, 編集委員.
2019.04~2023.03, 日本船舶海洋工学会論文集, 国内, 編集委員.
2009.01~2014.01, Journal of Hydrodynamics, 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2023年度
2022年度
2021年度
2020年度
2019年度 15 
2018年度 14 
2017年度 11  15 
2016年度 13 
2015年度 12 
2014年度 11  19 
2013年度 14 
2012年度 17 
2011年度 10  18 
2010年度 16 
2009年度 12 
2008年度 14 
2007年度
2006年度 15 
2005年度   15    22 
2004年度    
2003年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
University of Strathclyde, UnitedKingdom, 2023.05~2023.05.
Aalto University, Finland, 2023.09~2023.09.
Ottawa , Canada, 2023.06~2023.06.
Qingdao, China, 2019.12~2019.12.
Shanghai Jiao Tong University, China, 2019.12~2019.12.
Shanghai Jiao Tong University, China, 2019.11~2019.11.
Hamburg, Germany, 2019.09~2019.09.
Napoli, Italy, 2019.09~2019.09.
Shanghai Jiao Tong University, China, 2019.07~2019.07.
Harbin Engineering University, China, 2019.02~2019.02.
Taipei, Taiwan, 2018.09~2018.09.
Shanghai Jiao Tong University, China, 2018.08~2018.08.
Shanghai Jiao Tong University, China, 2018.06~2018.06.
Guidel-Plages, France, 2018.04~2018.04.
Shanghai, China, 2017.12~2017.12.
Keelung, Taiwan, 2017.11~2017.11.
Shanghai Jiao Tong University, China, 2017.08~2017.08.
Dalian, China, 2017.04~2017.04.
Shanghai Jiao Tong University, China, 2017.02~2017.02.
Wuxi, China, 2016.11~2016.11.
Singapore, Singapore, 2016.09~2016.09.
Florida State University, Detroit, UnitedStatesofAmerica, 2016.03~2016.04.
Nantes, France, 2015.09~2015.09.
Shanghai Jiao Tong University, China, 2015.08~2015.08.
Harbin Engineering University, China, 2015.06~2015.07.
Hawaii, UnitedStatesofAmerica, 2015.06~2015.06.
St. John's, Newfoundland, McGill University, Canada, 2015.05~2015.06.
George Mason University, UnitedStatesofAmerica, 2015.03~2015.03.
National University of Singapore, Nanyang Technological University, Bureau Veritas Singapore branch, Singapore, 2015.03~2015.03.
Shanghai Jiao Tong University, China, 2014.10~2014.10.
Harbin Engineering University, China, 2014.03~2014.03.
Shanghai, China, 2013.11~2013.11.
Ulsan, Korea, 2013.06~2013.06.
Nantes, France, 2013.06~2013.06.
Nantes, France, 2012.09~2012.09.
Rio de Janeiro, Brazil, 2012.07~2012.07.
Shanghai Jiao Tong University, Xian University of Technology, China, 2011.09~2011.09.
IWWWFB2011, INSEAN, Greece, Italy, 2011.04~2011.04.
ハルビン工科大学, China, 2011.01~2011.01.
Gothenburg, Sweden, 2010.12~2010.12.
Portsmouth, UnitedKingdom, 2010.11~2010.11.
POSTEC, Korea, 2010.11~2010.11.
Shanghai, China, 2010.10~2010.10.
Shanghai, China, 2010.09~2010.09.
Sydney, Australia, 2010.07~2010.07.
上海, China, 2010.06~2010.06.
ハルビン, 上海交通大学, China, 2010.05~2010.05.
ハルビン工科大学, China, 2010.01~2010.01.
ハルビン工科大学, 大連理工大学, China, 2009.09~2009.09.
Soeul, Korea, 2008.10~2008.10.
同済大学, ハルビン工程大学, 上海交通大学, China, 2008.09~2008.09.
Vancouver, McGill University, Canada, 2008.07~2008.07.
清華大学, 中国科学院力学研究所, China, 2008.04~2008.04.
Jeju, Korea, 2008.04~2008.04.
NTNU, Norway, 2007.12~2007.12.
Hamberg University of Technology, Germany, 2007.07~2007.07.
NuTTS'05, France, 2006.10~2006.10.
Shanghai JiaoTong University, China, 2006.06~2006.06.
Loughborough University, UnitedKingdom, 2006.04~2006.04.
NTNU, Norway, 2004.04~2005.03.
外国人研究者等の受入れ状況
2024.01~2024.01, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2024.01~2024.01, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2024.01~2024.01, 2週間未満, Korea Maritime & Ocean University, Korea, 学内資金.
2024.01~2024.01, 2週間未満, Newcastle University, China, 学内資金.
2024.01~2024.01, 2週間未満, National Taiwan University, Taiwan, 学内資金.
2024.01~2024.01, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2023.02~2023.02, 2週間未満, National Taiwan University, Taiwan, 学内資金.
2023.02~2023.02, 2週間未満, Newcastle University, China, 学内資金.
2022.10~2023.09, 1ヶ月以上, 中国浙江海洋大学, China, 外国政府・外国研究機関・国際機関.
2020.01~2020.01, 2週間未満, Dalian University of Technology, China, 学内資金.
2020.01~2020.01, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2020.01~2020.01, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2020.01~2020.01, 2週間未満, Newcastle University, UnitedKingdom, 学内資金.
2018.12~2018.12, 2週間未満, Harbin Engineering University, China, 学内資金.
2018.12~2018.12, 2週間未満, Newcastle University, UnitedKingdom, 学内資金.
2018.12~2018.12, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2018.01~2018.01, 2週間未満, Seoul National University, Korea, 学内資金.
2018.01~2018.01, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2018.01~2018.01, 2週間未満, 国立台湾大学, Taiwan, 学内資金.
2018.01~2017.01, 2週間未満, 国立台湾海洋大学, Taiwan, 学内資金.
2018.01~2017.01, 2週間未満, 国立台湾海洋大学, Taiwan, 学内資金.
2018.01~2017.01, 2週間未満, Bureau Veritas Singapore, France, 学内資金.
2017.01~2017.01, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2017.01~2017.01, 2週間未満, Technical University of Denmark, Denmark, 学内資金.
2017.01~2017.01, 2週間未満, University of Wisconsin-Milwaukee, UnitedStatesofAmerica, 学内資金.
2015.12~2015.12, 2週間未満, Inha University, Korea, 学内資金.
2015.12~2015.12, 2週間未満, National Taiwan Ocean University, Taiwan, 学内資金.
2015.12~2015.12, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2014.12~2014.12, 2週間未満, Ecole Centrale de Nantes, France, 学内資金.
2014.12~2014.12, 2週間未満, University of Massachusetts, UnitedStatesofAmerica, 学内資金.
2014.12~2014.12, 2週間未満, Shanghai Jiao Tong University, China, 学内資金.
2014.12~2014.12, 2週間未満, Harbin Engineering University, China, 学内資金.
2014.01~2014.01, 2週間未満, Harbin Engineering University, China, 学内資金.
2014.01~2014.01, 2週間未満, Ocean University of China, China, 学内資金.
2013.01~2013.01, 2週間未満, Korea Maritime University, Korea, 学内資金.
2013.01~2013.01, 2週間未満, Korea Institute of Ocean Science and Technology, Korea, 学内資金.
2011.12~2011.12, 2週間未満, Lavrentyev Institute of Hydrodynamics, Russia, 学内資金.
2011.12~2011.12, 2週間未満, Harbin Engineering University, China.
2011.12~2011.12, 2週間未満, University of East Anglia, UnitedKingdom, 学内資金.
2011.12~2011.12, 2週間未満, University of East Anglia, Russia.
2011.12~2011.12, 2週間未満, ソウル大学, Korea, 学内資金.
2010.12~2010.12, 2週間未満, ソウル大学, Korea, 学内資金.
2009.12~2009.12, 2週間未満, ソウル大学, Korea, 学内資金.
2009.12~2009.12, 2週間未満, 上海交通大学, China, 学内資金.
2009.08~2009.08, 2週間未満, 蔚山大学, Korea, 外国政府・外国研究機関・国際機関.
2009.06~2009.06, 2週間未満, シンガポール国立大学, Singapore, 学内資金.
2009.06~2009.06, 2週間未満, オーストラリア連邦科学産業研究機構, Australia, 外国政府・外国研究機関・国際機関.
2009.05~2011.03, 1ヶ月以上, 九州大学応用力学研究所, China, 九州大学応用力学研究所.
受賞
グラフィクスアワード特別賞, 日本計算工学会 第27回計算工学講演会, 2022.06.
Landrini Award, 8th Numerical Towing Tank Symposium, Hamburg, Germany, 2004.10.
日本造船学会賞・日本海事協会賞・日本財団会長賞, 日本造船学会・日本海事協会・日本財団, 2005.06.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2020年度~2023年度, 基盤研究(C), 分担, 液体金属プラズマ対向機器に於ける電磁力強制流動による熱・粒子除去能力の向上.
2019年度~2024年度, 挑戦的研究(開拓), 分担, 楊液体金属発電の原理実証.
2019年度~2021年度, 基盤研究(B), 分担, 低潮流域に適用可能な浮沈式潮流発電システムの実海域実験.
2019年度~2021年度, 基盤研究(B), 代表, 潮流発電の実用化開発に必要な高精度広域CFD解析手法の開発.
2017年度~2020年度, 基盤研究(A), 分担, 波浪中での耐航・操縦性能及び構造連成応答に関する次世代実用計算法の開発研究.
2015年度~2017年度, 挑戦的萌芽研究, 代表, 複合材料製大型海洋構造物の成立性に関する検討.
2015年度~2017年度, 基盤研究(B), 代表, 複数機風車搭載の洋上風力発電浮体の最適化設計に関する解析手法の開発.
2012年度~2014年度, 基盤研究(B), 代表, 浮体式洋上風力発電システムに関する波浪安全性評価のためのCFD手法の開発.
2012年度~2013年度, 挑戦的萌芽研究, 代表, 格子ボルツマン法とGPGPUを応用した高解像度局所海洋流動モデルの開発.
2009年度~2011年度, 基盤研究(B), 代表, 荒天海域の耐航性能推定法としてCIP・直交格子法の実用化に関する研究.
2006年度~2007年度, 一般研究(C), 代表, CIP・直交格子法による自由表面と物体の強非線形相互作用に関する数値計算法の開発.
2003年度~2005年度, 一般研究(C), 代表, 強非線形自由界面問題に関するCFDシミュレーション方法の開発.
2001年度~2002年度, 奨励研究(A), 代表, CFDによる船殻工場における溶接ヒュームの拡散制御に関する研究.
1999年度~2000年度, 奨励研究(A), 代表, 温度差の大きい閉鎖空間における乱流自然対流と熱拡散に関する研究.
1997年度~1998年度, 奨励研究(A), 代表, 多区画空間構造における乱流拡散現象に関する研究.
競争的資金(受託研究を含む)の採択状況
2022年度~2024年度, 令和4年度地域共創セクター横断型カーボンニュートラル技術開発・実証事業, 分担, 集風レンズ付き風車の中型200kW機とそのマルチロータシステムの技術開発.
2018年度~2019年度, JST A-STEP機能検証フェーズ, 代表, 浮体式洋上送電塔の設置工法に関する研究.
2014年度~2015年度, NEDO, 代表, 海洋エネルギー技術研究開発/次世代海洋エネルギー発電技術研究開発.
2003年度~2005年度, 造船学術研究推進機構研究費, 代表, CIP法による船舶・海洋構造物への波浪衝撃に関する研究.
共同研究、受託研究(競争的資金を除く)の受入状況
2023.04~2024.03, 代表, 洋上風力発電施設施工に利用する大型運搬台船の上下動低減装置の開発.
2023.04~2024.03, 代表, スカートサクションジャケット(SSJ)曳航・沈設工法に関する研究.
2022.04~2023.03, 代表, スカートサクションジャケット(SSJ)曳航・沈設工法に関する研究.
2022.04~2023.03, 代表, 着床型風力発電の送電線ケーブルの波浪中の挙動と内部応力の設計評価に関する研究.
2021.04~2022.03, 代表, 着床型風力発電の送電線ケーブルの潮流中のVIVによる挙動と内部応力に関する変動最大値と設計評価に関する研究.
2020.04~2021.03, 代表, 着床型風力発電の送電線ケーブルの潮流中のVIVによる挙動と内部応力に関する変動最大値と設計評価に関する研究.
2019.04~2020.03, 代表, 着床型風力発電の送電線ケーブルの潮流中のVIVによる挙動と内部応力に関する水槽実験と設計評価に関する研究.
2015.04~2016.03, 代表, 新型浮体式洋上風力発電システムの開発(フェーズ4).
2014.04~2015.03, 代表, 新型浮体式洋上風力発電システムの開発(フェーズ3).
2013.04~2014.03, 代表, 新型浮体式洋上風力発電システムの開発(フェーズ2).
2013.04~2014.03, 代表, 平水面上船体形状を考慮した波浪中CFDの開発 (フェーズ6).
2012.10~2013.03, 代表, 新型浮体式洋上風力発電システムの開発.
2012.04~2013.03, 代表, 平水面上船体形状を考慮した波浪中CFDの開発 (フェーズ5).
2011.04~2012.03, 代表, 平水面上船体形状を考慮した波浪中CFDの開発 (フェーズ4).
2009.04~2011.03, 代表, Study on CIP-based Finite Difference Method for Violent Sloshing.
2010.04~2011.03, 代表, 平水面上船体形状を考慮した波浪中CFDの開発 (フェーズ3).
2009.04~2010.03, 代表, 平水面上船体形状を考慮した波浪中CFDの開発 (フェーズ2).
2008.10~2009.03, 代表, 平水面上船体形状を考慮した波浪中CFDの開発 (フェーズ1).
2004.04~2007.03, 分担, CFDによる非線形船体波浪荷重計算プログラムの開発研究.
寄附金の受入状況
2023年度, (株)新来島どっく, 寄附講座/数値流体力学部門.
2022年度, (株)新来島どっく, 寄附講座/数値流体力学部門.
2021年度, (株)新来島どっく, 寄附講座/数値流体力学部門.
2020年度, (株)新来島どっく, 寄附講座/数値流体力学部門.
2019年度, (財)日本海事協会, 応用力学研究所研究資金/方形タンク内構材に対するスロッシング荷重影響.
2019年度, ㈱新来島どっく , 応用力学研究所研究資金/LNG燃料船ガス拡散の数値解析に関する研究.
2018年度, (財)日本海事協会, 応用力学研究所研究資金/方形タンク内構材に対するスロッシング荷重影響.
2018年度, ㈱新来島どっく , 応用力学研究所研究資金/LNG燃料船ガス拡散の数値解析に関する研究.
2017年度, 株式会社 テクノサービス, 応用力学研究所研究資金.
2015年度, (財)日本海事協会, 応用力学研究所研究資金/強非線形波・浮体相互作用に関する数値計算.
2014年度, 株式会社 テクノサービス, 応用力学研究所研究資金.
2013年度, (財)日本海事協会, 応用力学研究所研究資金/洋上風力発電用浮体の安全性評価手法に関する研究.
2012年度, (財)日本海事協会, 応用力学研究所研究資金/洋上風力発電用浮体の安全性評価手法に関する研究.
2011年度, 株式会社 テクノサービス, 応用力学研究所研究資金.
2011年度, 日本水産株式会社, 応用力学研究所研究資金/稚魚飼育水槽内の流れ場解明と制御に関する研究.
2011年度, (財)日本海事協会, 応用力学研究所研究資金/洋上風力発電用浮体の安全性評価手法に関する研究.
2010年度, 造船学術研究推進機構, 応用力学研究所研究資金/CFDシミュレーションによる波浪中抵抗増加に関する研究.
2010年度, (財)日本海事協会, 応用力学研究所研究資金/非線形波浪荷重計算プログラムの斜波中への拡張.
2009年度, (財)日本海事協会, 応用力学研究所研究資金/非線形波浪荷重計算プログラムの斜波中への拡張.
2008年度, (財)日本海事協会, 応用力学研究所研究資金/二次元Sloshing解析の解析コードの比較調査.
2008年度, (財)日本海事協会, 応用力学研究所研究資金/船体に作用する非線形波浪荷重計算プログラムの開発研究.
2003年度, 三井造船秋島研究所, 船舶・波の強非線形相互作用に関するCFD方法の開発.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。