九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
林 照剛(はやし てるたけ) データ更新日:2024.04.23

准教授 /  工学研究院 機械工学部門 加工プロセス講座


主な研究テーマ
ナノ粒子チップを用いたナノ粒子粒度分布計測に関する研究
キーワード:ナノ粒子 粒度分布計測 ナノパーティクルチップ
2020.04.
蛍光ナノプローブを用いたブラウン運動解析に基づくナノ粒子粒径評価に関する研究
キーワード:蛍光偏光法,回転拡散係数,ナノ粒子,粒径評価
2004.04.
低照度フェムト秒ダブルパルスビームを用いたワイドバンドギャップ半導体励起面のダメージレスレーザー加工に関する研究
キーワード: レーザーアブレ−ション, フェムト秒レーザー加工
2009.09.
研究業績
主要著書
主要原著論文
1. Jiaqing Zhu, Terutake Hayashi, Syuhei Kurokawa, Measurement of number-weighted particle size distribution for CMP slurry using nanoparticle chip, Precision Engineering, https://doi.org/10.1016/j.precisioneng.2023.12.012, 86, 203-212, 2024.03, [URL], Chemical mechanical polishing/planarization (CMP) slurry contains mainly abrasive grains (primary particles) with few aggregations (secondary particles). Measuring the particle size distribution (PSD) of CMP slurry is crucial for improving the productivity of the CMP process. For the quality management of CMP slurry, it is necessary to evaluate both the sizes and quantities of both the primary and secondary particles. Conventional PSD analysis methods, except for image analysis, face challenges in identifying primary and secondary particles for PSD measurements. For image analysis, the particles must be transferred from a suspension to a substrate using the conventional sampling method; however, this creates aggregates, resulting in a change in the PSD of the particles on the substrate compared to that in suspension under poly-dispersed conditions. Thus, this study proposed a novel particle sizing method using nanoparticle chip (NPC) to assist in the image analysis of the PSD. The NPC can pick up a single particle in a small volume droplet to avoid aggregation and maintain the poly-dispersed condition of the particles in suspension. The primary and secondary particles can be identified using scanning electron microscope (SEM) or atomic force microscope (AFM), and the PSD can be evaluated by measuring the area and height of the particles. Further, the quantities of both the primary and secondary particles can be counted from the substrate. This study presented a comparison of the diameter measurements using NPC and the conventional method. The results show that the NPC identified the primary and secondary particles and decreased the measurement error of the particle diameters. Consequently, the NPC proves to be superior to the conventional method for use in the PSD analysis of CMP slurry..
2. 朱 家慶, 林 照剛, 黒河 周平, ナノ粒子チップを用いた多分散ナノ粒子の粒度分布計測, 日本機械学会論文集, https://doi.org/10.1299/transjsme.20-00220, 86, 892, p. 20-00220-p. 20-00220, Online ISSN 2187-9761, 2020.12, [URL], For poly-dispersed nanoparticles, which have more than two peaks on their particle size distribution (PSD), it is important to determine the mean particle diameter and their dispersion at each peak in a liquid. Dynamic Light Scattering (DLS), that is one of a typical nanoparticle sizing method, has difficulty to determine the several peaks in the PSD for the poly-dispersed particles. On the other hand, Image analysis methods (IA) can distinguish the peak for both the primary particle and secondary particle in the PSD of poly-dispersed particles accurately. However, IA is a time-consuming method and it is difficult to apply the measurement of the PSD due to the requirement of measuring the large number of particles, one by one. The particles in the liquid are transferred to a substrate in air when observing the particle to measure their size and the size distribution. In this procedure, some particles usually aggregate with surrounding particles. It causes the difference between the PSD for dispersed particles in liquid and that of the particles on the substrate. In this study, we suggest a novel particle sizing method using “Nanoparticle chip”, that is nanoparticles grid on the substrate to maintain the poly-dispersed condition in the liquid, to develop IA for measuring the poly-dispersed particles in liquid. The dispersed condition of the particle on Nanoparticle chip can be kept from the condition in liquid when the particles are transferred to the substrate in air. Therefore, measuring the PSD on Nanoparticle chip is equal to measure the PSD in the liquid. In this paper, in order to verify the feasibility of the nanoparticle sizing using Nanoparticle chip to measure the PSD for poly-dispersed particles in the liquid, we performed a fundamental experiment to fabricate the Nanoparticle chip and to determine the PSD for poly-dispersed particles. In this report, it is reported that the PSD for the poly-dispersed particles, which is the mixture of 152nm particle and 498nm particle, using Nanoparticle chip..
3. Terutake Hayashi, Nanoparticle sizing method based on fluorescence anisotropy analysis, Measurement, vol. 59, 382-388, 2015.01, Demand for applications of nanoparticles in electric architecture has been increasing. Nanoparticles provide new opportunities for improving circuit response. We discuss a novel method for evaluating nanoparticle sizes based on fluorescence anisotropy analysis. Particle size evaluation is possible through measurements of the rotational diffusion coef- ficient, which is sensitive to particle size. We develop a system for measuring rotational diffusion coefficients by using a fluorescent probe to label a particle. We report fundamen- tal experiments that verify the feasibility of the proposed method. The rotational diffusion coefficients of gold nanoparticles with diameters ranging 6–20 nm were measured using the proposed method. The measured rotational diffusion coefficients decrease with increasing particle size. This finding indicates that nanoparticles smaller than 15 nm can be measured with fine resolution..
4. 林 照剛, 石崎佑樹, 道畑正岐, 高谷裕浩, 田中慎一, 蛍光偏光法を用いたナノ粒子粒径計測に関する研究(第2 報)-DNA プローブの回転拡散係数評価に基づく粒径計測手法の提案-, 精密工学会, 80, 10, 956-960, 2014.10, The nanoparticle is key materials in the area of nanotechnology, and there is a strong demand to measure the particle size accurately and easily. We proposed a novel nanoparticle sizing method based on fluorescence polarization analysis, and constructed the rotational diffusion coefficient measurement system using fluorescent DNA probe (fl-DNA). Nano particle sizing is achieved by measuring the rotational diffusion coefficient of fl-DNA, which is labeled to nanoparticle. In this report, we investigate the relation between the rotational diffusion coefficient of fl-DNA and the size of the nano particles standard. The rotational diffusion coefficients of gold nanoparticles of diameters from 6 nm to 20 nm were measured using
the proposed method..
5. 石崎佑樹,林 照剛,道畑正岐,高谷裕浩, 蛍光偏光法を用いたナノ粒子粒径計測に関する研究(第1報)-蛍光DNAプローブを用いた回転拡散係数測定システムの開発-, 精密工学会, 80, 3, 214-219, 2014.09.
6. Masaki Michihata, Terutake Hayashi, Atushi Adachi, Yasuhiro Takaya, Measurement of probe-stylus sphere diameter for micro-CMM based on spectral fingerprint of whispering gallery modes, CIRP, 63, 1, 469-472, 2014.08, Probe calibration contributes to the measurement uncertainty of micro-coordinate measuring machines (micro-CMMs). This study proposes a new method of measuring stylus sphere diameters for micro-CMMs based on the analysis of whispering gallery modes (WGMs). Depending on the incident wavelength, different WGMs will be excited in the probe stylus, resulting in a wavelength spectral fingerprint that is related to the sphere diameter. In this paper, the diameter of the microprobe stylus sphere was determined with a least-squares method using theoretical and measured spectra of WGMs.
The measurement results showed that the precision of the proposed method was nm..
7. 村井亮太,高谷裕浩,林 照剛,道畑正岐,小松直樹, ポリグリセロール修飾ナノダイヤモンドを用いた銅膜の平坦化加工に関する研究, 砥粒加工学会, 58, 2, 97-102, 2014.02.
8. 林 照剛, 福田悠介, 道畑正岐, 高谷裕浩, パルストレインビームを用いたコヒーレントフォノン励起加工に関する研究(第一報) ーコヒーレントフォノン励起加工システムの構築と加工基礎実験ー, 精密工学会, 80, 9, 867-872, 2014.02.
9. Terutake Hayashi, Masaki Michihata, Yasuhiro Takaya, and Kok Fonog Lee, Development of nanoparticle sizing system using fluorescence polarization, ACTA IMEKO, 2, 2, 67-72, 2013.12.
10. Terutake HAYASHI, Masaki MICHIHATA, and Yasuhiro TAKAYA, Development of an Optical Heterogeneity Evaluation System Using Phase-Shift Digital Holography, Key Engineering Materials, 523-524, 865-870, 2012.11.
11. Masafumi YASUDA, Terutake HAYASHI, Masaki MICHIHATA, and Yasuhiro TAKAYA, A Novel Batch Fabrication of Micro Parts Using DNA Pattern Recognition, Key Engineering Materials, 523-524, 598-603, 2012.11.
12. Yusuke FUKUTA, Terutake HAYASHI, Masaki MICHIHATA, and Yasuhiro TAKAYA, Development of a Novel Surface Processing System Using Femtosecond Pulse Train, Key Engineering Materials, 523-524, 220-225, 2012.11.
13. Terutake HAYASHI, Masaki MICHIHATA, and Yasuhiro TAKAYA, Evaluation of Optical Heterogeneity Using Phase-Shift Digital Holography, International Journal of Nanomanufacturing, 8, 5-6, 508-521, 2012.08.
14. Terutake HAYASHI, Yasuhiro TAKAYA, and Masaki MICHIHATA, Development of Nanoparticle Sizing System Integrated with Optical Microscopy Using Fluorescence Polarization, International Journal of Nanomanufacturing, 8, 1-2, 54-66, 2012.01.
15. Yasuhiro TAKAYA, Hirotaka KISHIDA, Terutake HAYASHI, Masaki MICHIHATA, and Ken KOKUBO, Chemical Mechanical Polishing of Patterned Copper Wafer Surface Using Water-Soluble Fullerenol Slurry, CIRP, 60, 1, 567-570, 2011.08.
16. Terutake HAYASHI, Masaki MICHIHATA, and Yasuhiro TAKAYA, Total Angle-Resolved Scattering: Characterization of Microlens Mold Surface, Procedia Engineering, 19, 132-137, 2011.01.
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. Jiaqing Zhu, Terutake Hayashi, Syuhei Kurokawa, Measurement of number-weighted particle size distribution for poly-dispersed particles using nanoparticle chip, The 19th International Conference on Precision Engineering (ICPE2022 in Nara), 2022.11.
2. Jiaqing Zhu, Terutake Hayashi, Syuhei Kurokawa, Nanoparticle sizing for CMP slurry using nanoparticle chip, The 10th International Conference on Leading Edge Manufacturing in 21st Center(LEM21), 2021.11.
3. Jiaqing Zhu, Terutake Hayashi, Syuhei Kurokawa, Measurement of molar concentration spectrum based on number-weighted particle size distribution for poly-dispersed particles using nanoparticle chip, XXIII IMEKO World Congress “Measurement: sparking tomorrow’s smart revolution”, 2021.11.
4. Jiaqing Zhu, Terutake Hayashi, Syuhei Kurokawa, Measurement of molar concentration spectra for nanoparticle with multi-modal nanoparticle size distribution using nanoparticle chip
, 18th International Conference on Precision Engineering, 2020.11.
5. Jiaqing Zhu, Terutake Hayashi, Syuhei Kurokawa, Study on particle size distribution measurement using nanoparticle micro array, International Symposium on Measurement Technology and Intelligent Instruments, 2020.07, Nanoparticle is widely used in industrial production, such as biological sensor, pigment and slurry in CMP (Chemical Mechanical Polishing). Particle size distribution is used in the quality evaluation of nanoparticle. It is important to measure the particle size distribution of primary particle for the mixture solution of both primary and secondary particle. Image analysis method is able to accurately measure the geometric diameter of primary particle, even though secondary particle is present in solution. It is able to solve the problem that the result of DLS (Dynamic Light Scattering) is unreliable when secondary particle is present in solution. It is necessary that it takes a lot of time to observe thousands of particles. The aggregation of particles is also a problem during sample preparation from solution. It causes that it is difficult to confirm the presence of secondary particle in the solution. In this research, in order to accurately measure average diameter of primary particle and classify types of particle as primary particle or secondary particle, we suggest a new sample preparation method that called “nanoparticle micro array”. In this method, first nanoparticles are uniformly dispersed in solution. Then these nanoparticles are sampled one by one from the solution and arranged on silicon wafer in a high density and uniformly-spaced position. After the solution was evaporated, the sample is observed by SEM (Scanning Electron Microscope)/AFM (Atomic Force Microscope). And the geometric diameter of primary particle is measured from the SEM/AFM image. In this report, in order to verify the feasibility of particle characterization using “nanoparticle micro array”, we performed a fundamental experiment to classify particles and measure primary particle size distribution on a nanoparticle chip..
6. Terutake Hayashi, Syuhei KUROKAWA and Zhu Jiaqing, A novel nano particle characterizing method using nano particle micro array, International conference on precision engineering 2018 , 2018.11.
7. Keigo MATSUNAGA, Terutake HAYASHI, Syuhei KUROKAWA, Hideaki YOKOO, Noboru HASEGAWA, Masuhara NISHIKINO, Yoji MATSUKAWA, Dynamics of photo-excitation for the ablation of 4H-SiC substrate using femtosecond laser, the 9th International Conference on Leading Edge Manufacturing in 21st Century (LEM21), 2017.11.
8. 林 照剛, 黒河 周平, 横尾英昭, 王成武, 松川洋二, 周波数分解光ゲート法を用いた半導体ウェハ表面の非接触光計測に関する研究, 日本機械学会生産加工部門 部門講演会, 2014.11, We proposed a novel optical surface inspection method to investigate the surface defects of semiconductor wafer. A novel phase characterizing method, which is based on a cross correlation frequency resolved optical gating method, is applied to evaluate the surface nano structure of semiconductor wafer. In this paper, we describe the principle of the method and the component of originally developed equipment to evaluate the nano surface texture by using hybrid X-FROG method. .
9. Terutake Hayashi, Syuhei Kurokawa, Study on diffusion coefficient evaluation for free abrasives and chemicals by using fluorescent anisotropy analysis, The 18th International Conference On Mechatronics Technology, 2014.10, CMP (Chemical Mechanical Polishing/ Planarization) for semiconductor production has become increasingly important to integrate the multi-layer circuits. CMP is a process of smoothing wafers surface with the both chemical reaction in slurry and mechanical polishing by using polishing pad and abrasives. In this research, we aim at the high-efficiency and high quality CMP of semiconductor wafer. We investigate fundamental property of CMP process in the aspect of polishing and alternation based on observing the diffusion of abrasive and chemicals. We consider the translational diffusion is related to the frequency of the contact for the free abrasives and chemicals on the surface of the material. Thus, the translational diffusion coefficient is considered to be related the change of the surface integrity and the material processing properties, such as removal rate, surface roughness, and flatness. In this paper, we suggest a novel measurement method for the translational diffusion coefficient based on the measurement of the fluidity of the slurry. The fluidity of slurry is measured by using fluorescence anisotropy analysis. We develop a system for measuring fluidity of slurry by using a fluorescent probe. The fundamental experiments are performed to verify the feasibility of the proposed method..
特許出願・取得
特許出願件数  4件
特許登録件数  0件
学会活動
所属学会名
電気工学会
砥粒加工学会
精密工学会
日本機械学会
学協会役員等への就任
2018.04~2019.03, 精密工学会九州支部, 幹事.
2016.04~2018.03, 精密工学会九州支部, 幹事.
2016.04~2017.03, 日本機械学会, 幹事.
2015.04~2017.03, 日本機械学会, 幹事.
学会大会・会議・シンポジウム等における役割
2016.03.13~2016.03.15, 精密工学会, 座長(Chairmanship).
2015.03.15~2015.03.15, 機械学会九州支部 総会・講演会, 座長(Chairmanship).
2015.03.17~2015.03.19, 精密工学会, 座長(Chairmanship).
2013.11.07~2013.11.08, The 7th International Conference on Leading Edge Manufacturing in 21st Century, 座長(Chairmanship).
2014.03.18~2014.03.20, 精密工学会, 座長(Chairmanship).
2015.11.18~2013.11.22, The 8th International Conference on Leading Edge Manufacturing in 21st Century, 座長(Chairmanship).
2015.09.04~2015.09.06, 精密工学会, 座長(Chairmanship).
2016.09.04~2016.09.07, 精密工学会秋期全国大会, セッションオーガナイザ.
2016.09.12~2016.09.14, 機械学会年次大会, 部門セッション企画委員(生産加工・工作機械部門,生産システム部門).
2014.09.02~2014.09.05, LMPMI2014, Publication Committee.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2017年度 10    20 
2016年度 15  10  10    35 
2016年度 10  10  20    40 
2015年度   12 
受賞
砥粒加工学会賞論文賞, 公益社団法人 砥粒加工学会 , 2015.03.
精密工学会沼田記念論文賞, 公益社団法人精密工学会 , 2015.03.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2016年度~2018年度, 基盤研究(B), 代表, 蛍光ナノプローブを用いたブラウン運動評価に基づく高精度ナノ粒子粒度分布解析.
競争的資金(受託研究を含む)の採択状況
2016年度~2017年度, JST マッチングプランナー制度, 代表, フェムト秒レーザーによる難加工性透明材料表面のダメージレス精密加工技術の開発.
2014年度~2014年度, レーザプロセッシング 一般研究開発助成(天田財団), 代表, フェムトパルストレインビームによるコヒーレントフォノン励起加工に関する研究.
共同研究、受託研究(競争的資金を除く)の受入状況
2018.04~2019.03, 代表, フェムト秒レーザーを用いた光励起加工に関する研究.
2017.04~2018.03, 代表, フェムト秒レーザーを用いた光励起加工に関する研究.
2016.04~2017.03, 代表, フェムト秒レーザーを用いた光励起加工に関する研究.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。