Updated on 2024/11/19

写真a

 
NOMURA KENTARO
 
Organization
Faculty of Science Department of Physics Professor
Research Institute of Superconductor Science and Systems (Concurrent)
School of Sciences Department of Physics(Concurrent)
Graduate School of Sciences Department of Physics(Concurrent)
Title
Professor
Contact information
メールアドレス
Profile
Theoretical research on geometric quantum phenomena in quantum condensed matter, particularly in topological materials, Dirac-Weyl electron systems, and fractional quantum Hall systems, exploring new phenomena related to peculiar quantum transport, magnetism, spintronics, and non-commutative anyons.

Degree

  • Ph. D (The University of Tokyo)

Research Interests・Research Keywords

  • Research theme: topological insulator and superconductor

    Keyword: topological insulator and superconductor

    Research period: 2024

  • Research theme: Condensed Matter Theory

    Keyword: Topological Materials

    Research period: 2022.4 - 2022.6

Papers

  • Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>

    Fujiwara, K; Ogawa, K; Yoshikawa, N; Kobayashi, K; Nomura, K; Shimano, R; Tsukazaki, A

    COMMUNICATIONS MATERIALS   5 ( 1 )   2024.11   eISSN:2662-4443

     More details

    Publisher:Communications Materials  

    Domain walls (DWs) in magnetic materials host various interesting magneto-transport phenomena. Recent theoretical proposals focusing on DWs of magnetic Weyl semimetals (mWSMs) suggest the emergence of even more exotic transport owing to topologically protected Weyl domains with opposite chirality. However, techniques for controlling and characterizing DWs in mWSMs have not yet matured sufficiently to identify the distinct features of electrical conduction on DWs. Here, by adopting an optical technique to manipulate magnetic domains in mWSM Co3Sn2S2 Hall-bar devices, we discover giant antisymmetric magnetoresistance arising across a DW formed by serially connected upward- and downward-magnetized Weyl domains. This phenomenon originates from the large tangent of the Hall angle associated with the intrinsic anomalous Hall effect in the oppositely magnetized Weyl domains. Furthermore, we quantitatively evaluate DW resistance by systematically controlling the number of DWs. These results underscore the promising avenue of Weyl DW engineering for advanced research on topological magnets.

    DOI: 10.1038/s43246-024-00688-w

    Web of Science

    Scopus

  • Collective excitations in magnetic topological insulators and axion dark matter search

    Ishiwata, K; Nomura, K

    JOURNAL OF HIGH ENERGY PHYSICS   2024 ( 10 )   2024.10   ISSN:1029-8479

     More details

    Publisher:Journal of High Energy Physics  

    We investigate collective excitations in magnetic topological insulators (TIs) and their impact on axion detection. In the three-dimensional TI model with the Hubbard term, the effective action of magnons and amplitude modes is formulated by dynamical susceptibility under the antiferromagnetic and ferromagnetic states. One of the amplitude modes is identified as “axionic” quasi-particle and its effective coupling to the electromagnetic fields turns out to be enhanced by about four orders of magnitude larger than the previous estimate, which may drastically change the sensitivity of the axion search using “axion” in magnetic TIs.

    DOI: 10.1007/JHEP10(2024)225

    Web of Science

    Scopus

  • Chiral Gauge Field in Fully Spin-Polarized Magnetic Weyl Semimetal with Magnetic Domain Walls

    Akihiro Ozawa, Yasufumi Araki, Kentaro Nomura

    Journal of the Physical Society of Japan   93 ( 9 )   2024.7   ISSN:0031-9015 eISSN:1347-4073

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Physical Society of Japan  

    Modulation of magnetization in magnetic Weyl semimetals leads to the shift of Weyl points in momentum space, which effectively serves as the chirality-dependent gauge field for the Weyl fermions. Here, we theoretically study such a magnetization-induced chiral gauge field, in a fully spin-polarized Weyl ferromagnet Co3Sn2S2. From a tight-binding model of Co3Sn2S2 on a stacked kagome lattice with magnetism, we calculate the magnetization-dependent evolution of the Weyl points in momentum space, resulting in the chiral gauge field. In the presence of the magnetic domain wall structure, we evaluate the chiral magnetic field arising from the spatial profile of the chiral gauge field. We find that a magnetic domain wall in Co3Sn2S2 gives rise to a giant chiral magnetic field for the Weyl fermions, which reaches the order of a few hundred tesla to induce the Landau quantization. Such a giant chiral magnetic field may also influence the novel transport phenomena, such as the charge pumping by the domain wall motion, compatible with the spin-motive force.

    DOI: 10.7566/JPSJ.93.094704

    Web of Science

    Scopus

  • Disorder-induced topological superconductivity in a spherical quantum-Hall–superconductor hybrid

    Koji Kudo, Ryota Nakai, Kentaro Nomura

    Physical Review B   110 ( 3 )   2024.7   ISSN:2469-9950 eISSN:2469-9969

     More details

    Publishing type:Research paper (scientific journal)   Publisher:American Physical Society (APS)  

    Quantum-Hall-superconductor hybrids have been predicted to exhibit various types of topological order, providing possible platforms for intrinsically fault-tolerant quantum computing. In this paper, we investigate disorder effects on the Rashba-coupled quantum-Hall system combined with the type-II superconductor. By diagonalizing the Bogoliubov-de Gennes Hamiltonian projected into a Rashba-coupled Landau level, we demonstrate the emergence of a topological superconducting phase resulting from disorders and proximity-induced pairing. Distinctive gapless modes appear in the real-space entanglement spectrum, which is consistent with topological superconductivity. Historically, the spherical geometry has been commonly used for identifying topologically ordered states, especially quantum-Hall physics, due to its compact and contractible nature. Motivated by this, we develop a formulation to construct this hybrid system on a sphere. Our numerical demonstrations are all performed on the spherical geometry.

    DOI: 10.1103/PhysRevB.110.035147

    Web of Science

    Scopus

    Other Link: http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevB.110.035147/fulltext

  • Effective Tight-Binding Model of Compensated Ferrimagnetic Weyl Semimetal with Spontaneous Orbital Magnetization

    Meguro, T; Ozawa, A; Kobayashi, K; Nomura, K

    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN   93 ( 3 )   2024.2   ISSN:0031-9015

     More details

    Publisher:Journal of the Physical Society of Japan  

    The effective tight-binding model with compensated ferrimagnetic inverse-Heusler lattice Ti2MnAl, candidate material of magnetic Weyl semimetal, is proposed. The energy spectrum near the Fermi level, the configurations of the Weyl points, and the anomalous Hall conductivity are calculated. We found that the orbital magnetization is finite, while the total spin magnetization vanishes, at the energy of the Weyl points. The magnetic moments at each site are correlated with the orbital magnetization and can be controlled by the external magnetic field.

    DOI: 10.7566/JPSJ.93.034703

    Web of Science

    Scopus

▼display all

Books

  • トポロジカル絶縁体・超伝導体

    野村健太郎(Role:Sole author)

    丸善出版  2016.12    ISBN:4621301039

     More details

    Total pages:371   Book type:Scholarly book

Presentations

  • 磁性ワイル半金属におけるスピン電磁応答の理論 Invited

    野村健太郎

    日本物理学会  2023.9 

     More details

    Event date: 2023.9 - 2024.9

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:東北大学   Country:Japan  

    近年スピン軌道相互作用に起因する物質の新しい量子状態として,トポロジカル物質の研究が盛んに行われている[1].特に磁気秩序とトポロジカルに非自明なバンド構造を有する磁性ワイル半金属は,新規物質および新現象の探索といった基礎研究に加えて,新たなスピントロニクス機能を有する磁性材料の探索といった応用的観点からも注目を集めている.本講演では,この数年の理論研究を概観し,磁性ワイル半金属に特有の新しい物理現象の理論提案を紹介する.磁性ワイル半金属の候補物質の中でも,比較的大きい異常ホール角が報告されている,カゴメ格子層が積層したCo3Sn2S2に着目する.これらの電子状態を記述する有効模型[2]を導入し,磁性の起源[3]を議論する.Co3Sn2S2の場合は強磁性の起源がストーナー機構によって評価できる.ホールドープをするとストーナー条件を満たさなくなり強磁性秩序は消失する.一方,電子ドープした場合は,ベクトルスピンカイラリティーが有限の状態が安定化する.次に電場誘起磁壁駆動を解析する[4,5].通常の金属強磁性体ではdumping-likeトルクが支配的であるのに対し,磁性ワイル半金属ではfield-likeトルクが増強される.後者は内因的ピンニングが起こりにくいという利点を有し,したがって少ない電流で磁壁を駆動できることが期待できる.これに関連した現象として有限電流下で保磁力が弱まる実験結果[6]を紹介する.Co3Sn2S2では異常ホール効果に加えて,特徴的なスピンホール効果を有する.面直方向へのスピン流に関しては様々なスピン成分に対するスピン流が生成され,面直異方性をもつ強磁性体へのスピンホールトルク効果が生じうる[7].時間があれば,逆ホイスラー構造を有するTi2MnAlの有効模型を導入し[8],特異なスピン軌道トルク効果に関する研究を紹介する.

    参考文献
    [1] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
    [2] A. Ozawa, K. Nomura, J. Phys. Soc. Jpn. 88, 123703 (2019).
    [3] A. Ozawa, K. Nomura, Phys. Rev. Material 6, 024202 (2022)
    [4] D. Kurebayashi and K. Nomura, Sci. Rep. 9, 5365 (2019).
    [5] D. Kurebayashi, Y. Araki, K. Nomura, J. Phys. Soc. Jpn. 90, 084702 (2021).
    [6] Q. Wang et al., Nat. Electron. 6, 119 (2023).
    [7] A. Ozawa, K. Kobayashi, K. Nomura, arXiv:2305.15144
    [8] T. Meguro, A. Ozawa, K. Kobayashi, K. Nomura, arXiv:2304.14009

MISC

  • トポロジーと物質の関係 Invited

    野村健太郎

    サイエンス社 数理科学 特集「トポロジカル物質の物理と数理」   2024.5

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 微分形式と量子力学 ~ 幾何学的位相入門 ~ Reviewed

    野村健太郎

    サイエンス社 数理科学 特集「微分形式で書く・考える」   2023.8

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

Other

  • 理工系トップジャーナルの一つNature Electronicsに北京大学との共同研究の成果を出版した.野村は理論解析を担当した. Q. Wang, Y. Zeng, K. Yuan, Q. Zeng, P. Gu, X. Xu, H. Wang, Z. Han, K. Nomura, W. Wang, E. Liu, Y. Hou, and Y. Ye “Magnetism modulation in Co3Sn2S2 by current-assisted domain wall motion” Nat Electron 6, 119–125 (2023). DOI: https://doi.org/10.1038/s41928-022-00879-8

    2023.6

Research Projects

  • Emergent quantization phenomena in strongly coupled hybrid open quantum systems

    Grant number:20H01830  2020.4 - 2023.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    野村 健太郎, 荒木 康史, 佐藤 正寛, 三澤 貴宏

      More details

    Grant type:Scientific research funding

    本研究では電極が強磁性体であったりあるいは超伝導体であったりする場合、すなわち外部と強く相互作用する「開放系としてのトポロジカル物質」が新たに獲得する機能・現象を、 輸送現象を中心に探索し、基礎学理を構築する。

    CiNii Research

  • トポロジカル材料科学に基づく革新的機能を有する材料・デバイスの創出

    2018.10 - 2024.3

      More details

    Authorship:Coinvestigator(s) 

    本研究領域は、将来の超スマート社会実現に資するため、連続変形に対する不変性に着目した新たな物質観であるトポロジーに着目し、新規な機能発現に関する現象の解明、新規機能・新原理・新規構造に基づいた材料・デバイスの創出に資する研究開発を基礎基盤的アプローチから推進することにより、既存の技術では実現できない革新的機能を有する材料・デバイスの創出を目的とします。
     具体的な研究分野としては、電子状態のトポロジーに関する物性物理学を中心に置き、フォトニクスやスピントロニクス分野、さらに新規機能を実現するデバイス工学への展開を対象とします。一方、実空間のトポロジーにおいても位相欠陥等のトポロジカルな性質を利用したスピン流の制御に加え、分子の幾何学的性質や絡み合いを制御するソフトマターも対象とします。
     これらの研究分野が複合的に連携することで、結晶成長技術、構造や物性の解明と制御のための計測・解析・加工プロセス技術、部素材・デバイス設計技術等の技術基盤の創出やこれらに関する基礎学理の構築も行いつつ、革新的機能を有する材料・デバイスの創出に取り組みます。

Educational Activities

  • 修士課程3名の研究指導をしている.
    4年生3名の特別研究を指導している.
    統計力学I・同演習,物性物理学IIの講義を担当している.

Class subject

  • 原子分子の量子力学

    2023.10 - 2024.3   Second semester

  • 物理学特別講義15

    2023.10 - 2024.3   Second semester

  • 統計力学Ⅰ・同演習

    2023.10 - 2024.3   Second semester

  • 現代物理学基礎

    2023.4 - 2023.9   First semester

  • Physics of Elementary Excitations

    2022.10 - 2023.3   Second semester

▼display all

FD Participation

  • 2023.3   Role:Participation   Title:【物理学科FD】物理数学の教育と効果的な演習に向けて

    Organizer:Undergraduate school department

  • 2022.4   Role:Participation   Title:令和4年度 第1回全学FD(新任教員の研修)The 1st All-University FD (training for new faculty members) in FY2022

    Organizer:University-wide

  • 2022.3   Title:「物理数学の教育と効果的な演習に向けて」