2024/07/28 更新

お知らせ

 

写真a

タカハシ タツロウ
高橋 達郎
TAKAHASHI TATSURO
所属
理学研究院 生物科学部門 教授
理学部 生物学科(併任)
システム生命科学府 システム生命科学専攻(併任)
職名
教授
プロフィール
ツメガエル卵抽出液を主たるモデル系に用い、DNA複製、修復、クロマチン形成、染色体接着などの研究を行っている。特にDNA複製と協調したミスマッチDNA修復機構の研究や、DNA二重鎖切断修復の研究、染色体接着とDNA複製の協調機構の研究などを中心的に進めている。 学部教育、大学院教育においては、上記研究を通じて分子遺伝学、生化学の基礎的手法と考え方を身につけ、かつ遺伝情報の継承・維持機構についての深い学術的知識を得ることを目的に教育を行っている。
ホームページ

学位

  • 博士(理学)

経歴

  • 2007年3月〜2007年4月 大阪大学大学院理学研究科 助手 2007年4月〜2016年9月 大阪大学大学院理学研究科 助教   

研究テーマ・研究キーワード

  • 研究テーマ: ・DNAミスマッチ修復の動作原理の解明 ・DNAミスマッチ修復とクロマチン形成の協調機構の解明 ・相同性依存的修復の正確性を維持する機構の解明 ・染色体接着とDNA複製の協調機構の解明

    研究キーワード: DNA複製, DNA修復, 試験管内系, 染色体, ツメガエル

    研究期間: 2016年10月

論文

  • Resection of DNA double-strand breaks activates Mre11-Rad50-Nbs1- and Rad9-Hus1-Rad1-dependent mechanisms that redundantly promote ATR checkpoint activation and end processing in Xenopus egg extracts. 査読 国際誌

    #Kensuke Tatsukawa, #Reihi Sakamoto, @Yoshitaka Kawasoe, @Yumiko Kubota, @Toshiki Tsurimoto, @Tatsuro S Takahashi, @Eiji Ohashi

    Nucleic Acids Research   2024年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.

    DOI: 10.1093/nar/gkae082

  • The Atad5 RFC-like complex is the major unloader of proliferating cell nuclear antigen in Xenopus egg extracts. 査読 国際誌

    @Yoshitaka Kawasoe, #Sakiko Shimokawa, @Peter J Gillespie, @J Julian Blow, @Toshiki Tsurimoto, @Tatsuro S Takahashi

    The Journal of Biological Chemistry   300 ( 1 )   105588 - 105588   2024年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.

    DOI: 10.1016/j.jbc.2023.105588

  • Nucleosomes around a mismatched base pair are excluded via an Msh2-dependent reaction with the aid of SNF2 family ATPase Smarcad1. 査読 国際誌

    Riki Terui, Koji Nagao, Yoshitaka Kawasoe, Kanae Taki, Torahiko L. Higashi, Seiji Tanaka, Takuro Nakagawa, Chikashi Obuse, Hisao Masukata, Tatsuro S. Takahashi

    Genes & development   32   806 - 821   2018年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Post-replicative correction of replication errors by the mismatch repair (MMR) system is critical for suppression of mutations. Although the MMR system may need to handle nucleosomes at the site of chromatin replication, how MMR occurs in the chromatin environment remains unclear. Here, we show that nucleosomes are excluded from a >1-kb region surrounding a mismatched base pair in Xenopus egg extracts. The exclusion was dependent on the Msh2-Msh6 mismatch recognition complex but not the Mlh1-containing MutL homologs and counteracts both the HIRA- and CAF-1 (chromatin assembly factor 1)-mediated chromatin assembly pathways. We further found that the Smarcad1 chromatin remodeling ATPase is recruited to mismatch-carrying DNA in an Msh2-dependent but Mlh1-independent manner to assist nucleosome exclusion and that Smarcad1 facilitates the repair of mismatches when nucleosomes are preassembled on DNA. In budding yeast, deletion of FUN30, the homolog of Smarcad1, showed a synergistic increase of spontaneous mutations in combination with MSH6 or MSH3 deletion but no significant increase with MSH2 deletion. Genetic analyses also suggested that the function of Fun30 in MMR is to counteract CAF-1. Our study uncovers that the eukaryotic MMR system has an ability to exclude local nucleosomes and identifies Smarcad1/Fun30 as an accessory factor for the MMR reaction.

    DOI: 10.1101/gad.310995.117

    その他リンク: http://genesdev.cshlp.org/content/32/11-12/806.abstract

  • MutSα maintains the mismatch repair capability by inhibiting PCNA unloading 査読 国際誌

    Yoshitaka Kawasoe, Toshiki Tsurimoto, Takuro Nakagawa, Hisao Masukata, Tatsuro Takahashi

    eLife   5 ( 2016JULY )   2016年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Eukaryotic mismatch repair (MMR) utilizes single-strand breaks as signals to target the strand to be repaired. DNA-bound PCNA is also presumed to direct MMR. The MMR capability must be limited to a post-replicative temporal window during which the signals are available. However, both identity of the signal(s) involved in the retention of this temporal window and the mechanism that maintains the MMR capability after DNA synthesis remain unclear. Using Xenopus egg extracts, we discovered a mechanism that ensures long-term retention of the MMR capability. We show that DNA-bound PCNA induces strand-specific MMR in the absence of strand discontinuities. Strikingly, MutSα inhibited PCNA unloading through its PCNA-interacting motif, thereby extending significantly the temporal window permissive to strand-specific MMR. Our data identify DNA-bound PCNA as the signal that enables strand discrimination after the disappearance of strand discontinuities, and uncover a novel role of MutSα in the retention of the post-replicative MMR capability.

    DOI: 10.7554/eLife.15155

  • The prereplication complex recruits XEco2 to chromatin to promote cohesin acetylation in Xenopus egg extracts 査読

    Torahiko L. Higashi, Megumi Ikeda, Hiroshi Tanaka, Takuro Nakagawa, Masashige Bando, Katsuhiko Shirahige, Yumiko Kubota, Haruhiko Takisawa, Hisao Masukata, Tatsuro Takahashi

    Current Biology   22 ( 11 )   977 - 988   2012年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Background: Sister chromatids are held together by the ring-shaped cohesin complex, which is loaded onto chromosomes before DNA replication. Cohesion between sister chromosomes is established during DNA replication, and it requires acetylation of the Smc3 subunit of cohesin by evolutionally conserved cohesin acetyltransferases (CoATs). However, how CoATs are recruited to chromatin and how cohesin acetylation is regulated remain unclear. Results: We found that cohesin acetylation requires pre-RC-dependent chromatin loading of cohesin, but surprisingly, it is independent of DNA synthesis in Xenopus egg extracts. Immunodepletion experiments revealed that XEco2 is the CoAT responsible for Smc3 acetylation and sister chromatid cohesion. Recruitment of XEco2 onto chromatin was dependent on pre-RC assembly but was independent of cohesin loading and DNA synthesis. Two short N-terminal motifs, PBM-A and PBM-B, which are conserved among vertebrate Esco2/XEco2 homologs, were collectively essential for pre-RC-dependent chromatin association of XEco2, cohesin acetylation, and subsequent sister chromatid cohesion. The conserved PCNA-interacting protein box in XEco2 was largely dispensable for Smc3 acetylation but was partially required for cohesion. Interaction of acetylated cohesin with DNA was stabilized against salt-wash treatments after DNA replication. Conclusions: Our results demonstrate that pre-RC formation regulates chromatin association of XEco2 in Xenopus egg extracts. We propose that this reaction is critical to acetylate cohesin, whose DNA binding is subsequently stabilized by DNA replication.

    DOI: 10.1016/j.cub.2012.04.013

  • Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts 査読

    Tatsuro Takahashi, Abhijit Basu, Vladimir Bermudez, Jerard Hurwitz, Johannes C. Walter

    Genes and Development   22 ( 14 )   1894 - 1905   2008年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    To establish functional cohesion between replicated sister chromatids, cohesin is recruited to chromatin before S phase. Cohesin is loaded onto chromosomes in the G1 phase by the Scc2-Scc4 complex, but little is known about how Scc2-Scc4 itself is recruited to chromatin. Using Xenopus egg extracts as a vertebrate model system, we showed previously that the chromatin association of Scc2 and cohesin is dependent on the prior establishment of prereplication complexes (pre-RCs) at origins of replication. Here, we report that Scc2-Scc4 exists in a stable complex with the Cdc7-Drf1 protein kinase (DDK), which is known to bind pre-RCs and activate them for DNA replication. Immunodepletion of DDK from Xenopus egg extracts impairs chromatin association of Scc2-Scc4, a defect that is reversed by wild-type, but not catalytically inactive DDK. A complex of Scc4 and the N terminus of Scc2 is sufficient for chromatin loading of Scc2-Scc4, but not for cohesin recruitment. These results show that DDK is required to tether Scc2-Scc4 to pre-RCs, and they underscore the intimate link between early steps in DNA replication and cohesion.

    DOI: 10.1101/gad.1683308

  • Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication 査読

    Tatsuro Takahashi, Johannes C. Walter

    Genes and Development   19 ( 19 )   2295 - 2300   2005年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Cdc7, a protein kinase required for the initiation of eukaryotic DNA replication, is activated by a regulatory subunit, Dbf4. A second activator of Cdc7 called Drf1 exists in vertebrates, but its function is unknown. Here, we report that in Xenopus egg extracts, Cdc7-Drf1 is far more abundant than Cdc7-Dbf4, and removal of Drf1 but not Dbf4 severely inhibits phosphorylation of Mcm4 and DNA replication. After gastrulation, when the cell cycle acquires somatic characteristics, Drf1 levels decline sharply and Cdc7-Dbf4 becomes the more abundant kinase. These results identify Drf1 as a developmentally regulated, essential activator of Cdc7 in Xenopus.

    DOI: 10.1101/gad.1339805

  • Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex 査読

    Tatsuro Takahashi, Pannyun Yiu, Michael F. Chou, Steven Gygi, Johannes C. Walter

    Nature Cell Biology   6 ( 10 )   991 - 996   2004年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Cohesin is a multi-subunit, ring-shaped protein complex that holds sister chromatids together from the time of their synthesis in S phase until they are segregated in anaphase. In yeast, the loading of cohesin onto chromosomes requires the Scc2 protein. In vertebrates, cohesins first bind to chromosomes as cells exit mitosis, but the mechanism is unknown. Concurrent with cohesin binding, pre-replication complexes (pre-RCs) are assembled at origins of DNA replication through the sequential loading of the initiation factors ORC, Cdc6, Cdt1 and MCM2-7 (the 'licensing' reaction). In S phase, the protein kinase Cdk2 activates pre-RCs, causing origin unwinding and DNA replication. Here, we use Xenopus egg extracts to show that the recruitment of cohesins to chromosomes requires fully licensed chromatin and is dependent on ORC, Cdc6, Cdt1 and MCM2-7, but is independent of Cdk2. We further show that Xenopus Scc2 is required for cohesin loading and that binding of XScc2 to chromatin is MCM2-7 dependent. Our results define a novel pre-RC-dependent pathway for cohesin recruitment to chromosomes in a vertebrate model system.

    DOI: 10.1038/ncb1177

  • The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5 査読

    Ryota Miyashita, Atsuya Nishiyama, Weihua Qin, Yoshie Chiba, Satomi Kori, Norie Kato, Chieko Konishi, Soichiro Kumamoto, Hiroko Kozuka-Hata, Masaaki Oyama, Yoshitaka Kawasoe, Toshiki Tsurimoto, Tatsuro S Takahashi, Heinrich Leonhardt, Kyohei Arita, Makoto Nakanishi

    eLife   12   e79013   2023年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, the mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified. This study shows that deubiquitylation by USP7 and unloading by ATAD5 (ELG1 in yeast) are pivotal processes for the removal of PAF15 from chromatin. On replicating chromatin, USP7 specifically interacts with PAF15Ub2 in a complex with DNMT1. USP7 depletion or inhibition of the interaction between USP7 and PAF15 results in abnormal accumulation of PAF15Ub2 on chromatin. Furthermore, we also find that the non-ubiquitylated form of PAF15 (PAF15Ub0) is removed from chromatin in an ATAD5-dependent manner. PAF15Ub2 was retained at high levels on chromatin when the catalytic activity of DNMT1 was inhibited, suggesting that the completion of maintenance DNA methylation is essential for the termination of UHRF1-mediated ubiquitin signaling. This finding provides a molecular understanding of how the maintenance DNA methylation machinery is disassembled at the end of the S phase.

    DOI: 10.7554/elife.79013

  • Crosstalk between repair pathways elicits double-strand breaks in alkylated DNA and implications for the action of temozolomide 査読 国際誌

    Robert P Fuchs, Asako Isogawa, Joao A Paulo, Kazumitsu Onizuka, Tatsuro Takahashi, Ravindra Amunugama, Julien P Duxin, Shingo Fujii

    eLife   10   2021年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    <jats:p>Temozolomide (TMZ), a DNA methylating agent, is the primary chemotherapeutic drug used in glioblastoma treatment. TMZ induces mostly N-alkylation adducts (N7-methylguanine and N3-methyladenine) and some O<jats:sup>6</jats:sup>-methylguanine (O<jats:sup>6</jats:sup>mG) adducts. Current models propose that during DNA replication, thymine is incorporated across from O<jats:sup>6</jats:sup>mG, promoting a futile cycle of mismatch repair (MMR) that leads to DNA double-strand breaks (DSBs). To revisit the mechanism of O<jats:sup>6</jats:sup>mG processing, we reacted plasmid DNA with N-methyl-N-nitrosourea (MNU), a temozolomide mimic, and incubated it in <jats:italic>Xenopus</jats:italic> egg-derived extracts. We have shown that in this system, MMR proteins are enriched on MNU-treated DNA and we observed robust, MMR-dependent, repair synthesis. Our evidence also suggests that MMR, initiated at O<jats:sup>6</jats:sup>mG:C sites, is strongly stimulated in cis by repair processing of other lesions, such as N-alkylation adducts. Importantly, MNU-treated plasmids display DSBs in extracts, the frequency of which increases linearly with the square of alkylation dose. We suggest that DSBs result from two independent repair processes, one involving MMR at O<jats:sup>6</jats:sup>mG:C sites and the other involving base excision repair acting at a nearby N-alkylation adduct. We propose a new, replication-independent mechanism of action of TMZ, which operates in addition to the well-studied cell cycle-dependent mode of action.</jats:p>

    DOI: 10.7554/elife.69544

  • Human DDK rescues stalled forks and counteracts checkpoint inhibition at unfired origins to complete DNA replication. 国際誌

    Mathew J K Jones, Camille Gelot, Stephanie Munk, Amnon Koren, Yoshitaka Kawasoe, Kelly A George, Ruth E Santos, Jesper V Olsen, Steven A McCarroll, Mark G Frattini, Tatsuro S Takahashi, Prasad V Jallepalli

    Molecular cell   81 ( 3 )   426 - 441   2021年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Eukaryotic genomes replicate via spatially and temporally regulated origin firing. Cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) promote origin firing, whereas the S phase checkpoint limits firing to prevent nucleotide and RPA exhaustion. We used chemical genetics to interrogate human DDK with maximum precision, dissect its relationship with the S phase checkpoint, and identify DDK substrates. We show that DDK inhibition (DDKi) leads to graded suppression of origin firing and fork arrest. S phase checkpoint inhibition rescued origin firing in DDKi cells and DDK-depleted Xenopus egg extracts. DDKi also impairs RPA loading, nascent-strand protection, and fork restart. Via quantitative phosphoproteomics, we identify the BRCA1-associated (BRCA1-A) complex subunit MERIT40 and the cohesin accessory subunit PDS5B as DDK effectors in fork protection and restart. Phosphorylation neutralizes autoinhibition mediated by intrinsically disordered regions in both substrates. Our results reveal mechanisms through which DDK controls the duplication of large vertebrate genomes.

    DOI: 10.1016/j.molcel.2021.01.004

  • Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription 査読 国際誌

    Akiko K Okita, Faria Zafar, Jie Su, Dayalini Weerasekara, Takuya Kajitani, Tatsuro S Takahashi, Hiroshi Kimura, Yota Murakami, Hisao Masukata, Takuro Nakagawa

    Communications biology   2   17   2019年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Heterochromatin, characterized by histone H3 lysine 9 (H3K9) methylation, assembles on repetitive regions including centromeres. Although centromeric heterochromatin is important for correct segregation of chromosomes, its exact role in maintaining centromere integrity remains elusive. Here, we found in fission yeast that heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres. Mutations in Clr4/Suv39 methyltransferase increased the formation of isochromosomes, whose breakpoints were located in centromere repeats. H3K9A and H3K9R mutations also increased GCRs, suggesting that Clr4 suppresses centromeric GCRs via H3K9 methylation. HP1 homologs Swi6 and Chp2 and the RNAi component Chp1 were the chromodomain proteins essential for full suppression of GCRs. Remarkably, mutations in RNA polymerase II (RNAPII) or Tfs1/TFIIS, the transcription factor that facilitates restart of RNAPII after backtracking, specifically bypassed the requirement of Clr4 for suppressing GCRs. These results demonstrate that heterochromatin suppresses GCRs by repressing Tfs1-dependent transcription of centromere repeats.

    DOI: 10.1038/s42003-018-0251-z

  • Shelterin promotes tethering of late replication origins to telomeres for replication-timing control 査読

    Shiho Ogawa, Sayuri Kido, Tetsuya Handa, Hidesato Ogawa, Haruhiko Asakawa, Tatsuro Takahashi, Takuro Nakagawa, Yasushi Hiraoka, Hisao Masukata

    EMBO Journal   37 ( 15 )   2018年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DNA replication initiates at many discrete loci on eukaryotic chromosomes, and individual replication origins are regulated under a spatiotemporal program. However, the underlying mechanisms of this regulation remain largely unknown. In the fission yeast Schizosaccharomyces pombe, the telomere-binding protein Taz1, ortholog of human TRF1/TRF2, regulates a subset of late replication origins by binding to the telomere-like sequence near the origins. Here, we showed using a lacO/LacI-GFP system that Taz1-dependent late origins were predominantly localized at the nuclear periphery throughout interphase, and were localized adjacent to the telomeres in the G1/S phase. The peripheral localization that depended on the nuclear membrane protein Bqt4 was not necessary for telomeric association and replication-timing control of the replication origins. Interestingly, the shelterin components Rap1 and Poz1 were required for replication-timing control and telomeric association of Taz1-dependent late origins, and this requirement was bypassed by a minishelterin Tpz1-Taz1 fusion protein. Our results suggest that Taz1 suppresses replication initiation through shelterin-mediated telomeric association of the origins at the onset of S phase.

    DOI: 10.15252/embj.201898997

  • Direct binding of Cdt2 to PCNA is important for targeting the CRL4Cdt2 E3 ligase activity to Cdt1 査読

    Akiyo Hayashi, Nickolaos Nikiforos Giakoumakis, Tatjana Heidebrecht, Takashi Ishii, Andreas Panagopoulos, Christophe Caillat, Michiyo Takahara, Richard G. Hibbert, Naohiro Suenaga, Magda Stadnik-Spiewak, Tatsuro Takahashi, Yasushi Shiomi, Stavros Taraviras, Eleonore Von Castelmur, Zoi Lygerou, Anastassis Perrakis, Hideo Nishitani

    Life Science Alliance   1 ( 6 )   2018年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The CRL4Cdt2 ubiquitin ligase complex is an essential regulator of cell-cycle progression and genome stability, ubiquitinating substrates such as p21, Set8, and Cdt1, via a display of substrate degrons on proliferating cell nuclear antigens (PCNAs). Here, we examine the hierarchy of the ligase and substrate recruitment kinetics onto PCNA at sites of DNA replication. We demonstrate that the C-terminal end of Cdt2 bears a PCNA interaction protein motif (PIP box, Cdt2PIP), which is necessary and sufficient for the binding of Cdt2 to PCNA. Cdt2PIP binds PCNA directly with high affinity, two orders of magnitude tighter than the PIP box of Cdt1. X-ray crystallographic structures of PCNA bound to Cdt2PIP and Cdt1PIP show that the peptides occupy all three binding sites of the trimeric PCNA ring. Mutating Cdt2PIP weakens the interaction with PCNA, rendering CRL4Cdt2 less effective in Cdt1 ubiquitination and leading to defects in Cdt1 degradation. The molecular mechanism we present suggests a new paradigm for bringing substrates to the CRL4-type ligase, where the substrate receptor and substrates bind to a common multivalent docking platform to enable subsequent ubiquitination.

    DOI: 10.26508/lsa.201800238

  • Sensing and Processing of DNA Interstrand Crosslinks by the Mismatch Repair Pathway 査読

    Niyo Kato, Yoshitaka Kawasoe, Hannah Williams, Elena Coates, Upasana Roy, Yuqian Shi, Lorena S. Beese, Orlando D. Schärer, Hong Yan, Max E. Gottesman, Tatsuro Takahashi, Jean Gautier

    Cell Reports   21 ( 5 )   1375 - 1385   2017年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DNA interstrand crosslinks (ICLs) that are repaired in non-dividing cells must be recognized independently of replication-associated DNA unwinding. Using cell-free extracts from Xenopus eggs that support neither replication nor transcription, we establish that ICLs are recognized and processed by the mismatch repair (MMR) machinery. We find that ICL repair requires MutSα (MSH2–MSH6) and the mismatch recognition FXE motif in MSH6, strongly suggesting that MutSα functions as an ICL sensor. MutSα recruits MutLα and EXO1 to ICL lesions, and the catalytic activity of both these nucleases is essential for ICL repair. As anticipated for a DNA unwinding-independent recognition process, we demonstrate that least distorting ICLs fail to be recognized and repaired by the MMR machinery. This establishes that ICL structure is a critical determinant of repair efficiency outside of DNA replication. Kato et al. identify a mechanism of ICL recognition that operates independently of DNA replication and transcription. In the absence of these processes, ICLs are recognized and repaired by the MMR machinery. MutSα is critical for ICL recognition, while MutLα and EXO1 contribute to key downstream nucleolytic steps during ICL repair.

    DOI: 10.1016/j.celrep.2017.10.032

  • Regulation of mitotic recombination between DNA repeats in centromeres 査読

    Faria Zafar, Akiko K. Okita, Atsushi T. Onaka, Jie Su, Yasuhiro Katahira, Jun Ichi Nakayama, Tatsuro Takahashi, Hisao Masukata, Takuro Nakagawa

    Nucleic Acids Research   45 ( 19 )   11222 - 11235   2017年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Centromeres that are essential for faithful segregation of chromosomes consist of unique DNA repeats in many eukaryotes. Although recombination is under-represented around centromeres during meiosis, little is known about recombination between centromere repeats in mitotic cells. Here, we compared spontaneous recombination that occurs between ade6B/ade6X inverted repeats integrated at centromere 1 (cen1) or at a non-centromeric ura4 locus in fission yeast. Remarkably, distinct mechanisms of homologous recombination (HR) were observed in centromere and non-centromere regions. Rad51-dependent HR that requires Rad51, Rad54 and Rad52 was predominant in the centromere, whereas Rad51-independent HR that requires Rad52 also occurred in the arm region. Crossovers between inverted repeats (i.e. inversions) were underrepresented in the centromere as compared to the arm region. While heterochromatin was dispensable, Mhf1/CENP-S, Mhf2/CENP-X histone-fold proteins and Fml1/FANCM helicase were required to suppress crossovers. Furthermore, Mhf1 and Fml1 were found to prevent gross chromosomal rearrangements mediated by centromere repeats. These data uncovered the regulation of mitotic recombination between DNA repeats in centromeres and its physiological role in maintaining genome integrity.

    DOI: 10.1093/nar/gkx763

  • PCNA Retention on DNA into G2/M Phase Causes Genome Instability in Cells Lacking Elg1 査読

    Catherine Johnson, Vamsi K. Gali, Tatsuro Takahashi, Takashi Kubota

    Cell Reports   16 ( 3 )   684 - 695   2016年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Loss of the genome maintenance factor Elg1 causes serious genome instability that leads to cancer, but the underlying mechanism is unknown. Elg1 forms the major subunit of a replication factor C-like complex, Elg1-RLC, which unloads the ring-shaped polymerase clamp PCNA from DNA during replication. Here, we show that prolonged retention of PCNA on DNA into G2/M phase is the major cause of genome instability in elg1Δ yeast. Overexpression-induced accumulation of PCNA on DNA causes genome instability. Conversely, disassembly-prone PCNA mutants that relieve PCNA accumulation rescue the genome instability of elg1Δ cells. Covalent modifications to the retained PCNA make only a minor contribution to elg1Δ genome instability. By engineering cell-cycle-regulated ELG1 alleles, we show that abnormal accumulation of PCNA on DNA during S phase causes moderate genome instability and its retention through G2/M phase exacerbates genome instability. Our results reveal that PCNA unloading by Elg1-RLC is critical for genome maintenance.

    DOI: 10.1016/j.celrep.2016.06.030

  • Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation 査読

    Atsushi T. Onaka, Naoko Toyofuku, Takahiro Inoue, Akiko K. Okita, Minami Sagawa, Jie Su, Takeshi Shitanda, Rei Matsuyama, Faria Zafar, Tatsuro Takahashi, Hisao Masukata, Takuro Nakagawa

    Nucleic Acids Research   44 ( 22 )   10744 - 10757   2016年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Centromeres consist of DNA repeats inmany eukaryotes. Non-allelic homologous recombination (HR) between them can result in gross chromosomal rearrangements (GCRs). In fission yeast, Rad51 suppresses isochromosome formation that occurs between inverted repeats in the centromere. However, how the HR enzyme prevents homology-mediated GCRs remains unclear. Here, we provide evidence that Rad51 with the aid of the Swi/Snf-type motor protein Rad54 promotes non-crossover recombination between centromere repeats to prevent isochromosome formation. Mutations in Rad51 and Rad54 epistatically increased the rates of isochromosome formation and chromosome loss. In sharp contrast, these mutations decreased gene conversion between inverted repeats in the centromere. Remarkably, analysis of recombinant DNAs revealed that rad51 and rad54 increase the proportion of crossovers. In the absence of Rad51, deletion of the structure-specific endonuclease Mus81 decreased both crossovers and isochromosomes, while the cdc27/pol32-D1 mutation, which impairs break-induced replication, did not. We propose that Rad51 and Rad54 promote non-crossover recombination between centromere repeats on the same chromatid, thereby suppressing crossover between non-allelic repeats on sister chromatids that leads to chromosomal rearrangements. Furthermore, we found that Rad51 and Rad54 are required for gene silencing in centromeres, suggesting that HR also plays a role in the structure and function of centromeres.

    DOI: 10.1093/nar/gkw874

  • RecQ4 promotes the conversion of the pre-initiation complex at a site-specific origin for DNA unwinding in xenopus egg extracts 査読

    Yosuke Sanuki, Yumiko Kubota, Masato T. Kanemaki, Tatsuro Takahashi, Satoru Mimura, Haruhiko Takisawa

    Cell Cycle   14 ( 7 )   1010 - 1023   2015年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase a and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates.

    DOI: 10.1080/15384101.2015.1007003

  • Reconstitution of mitotic chromatids with a minimum set of purified factors 査読

    Keishi Shintomi, Tatsuro Takahashi, Tatsuya Hirano

    Nature Cell Biology   17 ( 8 )   1014 - 1023   2015年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The assembly of mitotic chromosomes, each composed of a pair of rod-shaped chromatids, is an essential prerequisite for accurate transmission of the genome during cell division. It remains poorly understood, however, how this fundamental process might be achieved and regulated in the cell. Here we report an in vitro system in which mitotic chromatids can be reconstituted by mixing a simple substrate with only six purified factors: core histones, three histone chaperones (nucleoplasmin, Nap1 and FACT), topoisomerase II (topo II) and condensin I. We find that octameric nucleosomes containing the embryonic variant H2A.X-F are highly susceptible to FACT and function as the most productive substrate for subsequent actions of topo II and condensin I. Cdk1 phosphorylation of condensin I is the sole mitosis-specific modification required for chromatid reconstitution. This experimental system will enhance our understanding of the mechanisms of action of individual factors and their cooperation during this process.

    DOI: 10.1038/ncb3187

  • Thymine DNA glycosylase is a CRL4Cdt2 substrate 査読

    Tamara J. Slenn, Benjamin Morris, Courtney G. Havens, Robert M. Freeman, Tatsuro Takahashi, Johannes C. Walter

    Journal of Biological Chemistry   289 ( 33 )   23043 - 23055   2014年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The E3 ubiquitin ligase CRL4Cdt2 targets proteins for destruction in S phase and after DNA damage by coupling ubiquitylation to DNA-bound proliferating cell nuclear antigen (PCNA). Coupling to PCNA involves a PCNA-interacting peptide (PIP) degron motif in the substrate that recruits CRL4Cdt2 while binding to PCNA. In vertebrates, CRL4Cdt2 promotes degradation of proteins whose presence in S phase is deleterious, including Cdt1, Set8, and p21. Here, we show that CRL4Cdt2 targets thymine DNA glycosylase (TDG), a base excision repair enzyme that is involved in DNA demethylation. TDG contains a conserved and nearly perfect match to the PIP degron consensus. TDG is ubiquitylated and destroyed in a PCNA-, Cdt2-, and PIP degron-dependent manner during DNA repair in Xenopus egg extract. The protein can also be destroyed during DNA replication in this system. During Xenopus development, TDG first accumulates during gastrulation, and its expression is down-regulated by CRL4Cdt2. Our results expand the group of vertebrate CRL4Cdt2 substrates to include a bona fide DNA repair enzyme.

    DOI: 10.1074/jbc.M114.574194

  • MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner 査読

    Atsuhiro Shimada, Yoshitaka Kawasoe, Yoshito Hata, Tatsuro Takahashi, Ryoji Masui, Seiki Kuramitsu, Kenji Fukui

    FEBS Journal   280 ( 14 )   3467 - 3479   2013年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    In the initial steps of DNA mismatch repair, MutS recognizes a mismatched base and recruits the latent endonuclease MutL onto the mismatch-containing DNA in concert with other proteins. MutL then cleaves the error-containing strand to introduce an entry point for the downstream excision reaction. Because MutL has no intrinsic ability to recognize a mismatch and discriminate between newly synthesized and template strands, the endonuclease activity of MutL is strictly regulated by ATP-binding in order to avoid nonspecific degradation of the genomic DNA. However, the activation mechanism for its endonuclease activity remains unclear. In this study, we found that the coexistence of a mismatch, ATP and MutS unlocks the ATP-binding-dependent suppression of MutL endonuclease activity. Interestingly, ATPase-deficient mutants of MutS were unable to activate MutL. Furthermore, wild-type MutS activated ATPase-deficient mutants of MutL less efficiently than wild-type MutL. We concluded that ATP hydrolysis by MutS and MutL is involved in the mismatch-dependent activation of MutL endonuclease activity. MutS and MutL participate in the initial steps in DNA mismatch repair. The role of their ATP hydrolysis in the repair pathway has been barely understood.

    DOI: 10.1111/febs.12344

  • Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast 査読

    Atsutoshi Tazumi, Masayoshi Fukuura, Ryuichiro Nakato, Ami Kishimoto, Tomokazu Takenaka, Shiho Ogawa, Ji Hoon Song, Tatsuro Takahashi, Takuro Nakagawa, Katsuhiko Shirahige, Hisao Masukata

    Genes and Development   26 ( 18 )   2050 - 2062   2012年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    In eukaryotes, the replication of chromosome DNA is coordinated by a replication timing program that temporally regulates the firing of individual replication origins. However, the molecular mechanism underlying the program remains elusive. Here, we report that the telomere-binding protein Taz1 plays a crucial role in the control of replication timing in fission yeast. A DNA element located proximal to a late origin in the chromosome arm represses initiation from the origin in early S phase. Systematic deletion and substitution experiments demonstrated that two tandem telomeric repeats are essential for this repression. The telomeric repeats recruit Taz1, a counterpart of human TRF1 and TRF2, to the locus. Genome-wide analysis revealed that Taz1 regulates about half of chromosomal late origins, including those in subtelomeres. The Taz1-mediated mechanism prevents Dbf4-dependent kinase (DDK)-dependent Sld3 loading onto the origins. Our results demonstrate that the replication timing program in fission yeast uses the internal telomeric repeats and binding of Taz1.

    DOI: 10.1101/gad.194282.112

  • DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. 査読

    Tetsuya Handa, Mai Kanke, Tatsuro Takahashi, Takuro Nakagawa, Hisao Masukata

    Molecular Biology of the Cell   23 ( 16 )   3240 - 3253   2012年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.

  • In vitro loading of human cohesin on DNA by the human Scc2-Scc4 loader complex 査読

    Vladimir P. Bermudez, Andrea Farina, Torahiko L. Higashi, Fang Du, Inger Tappin, Tatsuro Takahashi, Jerard Hurwitz

    Proceedings of the National Academy of Sciences of the United States of America   109 ( 24 )   9366 - 9371   2012年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The loading of cohesin onto chromatin requires the heterodimeric complex sister chromatid cohesion (Scc)2 and Scc4 (Scc2/4), which is highly conserved in all species. Here, we describe the purification of the human (h)-Scc2/4 and show that it interacts with hcohesin and the heterodimeric Smc1-Smc3 complex but not with the Smc1 or Smc3 subunit alone. We demonstrate that both h-Scc2/4 and h-cohesin are loaded onto dsDNA containing the prereplication complex (pre-RC) generated in vitro by Xenopus high-speed soluble extracts. The addition of geminin, which blocks pre-RC formation, prevents the loading of Scc2/4 and cohesin. Xenopus extracts depleted of endogenous Scc2/4 with specific antibodies, although able to form pre-RCs, did not support cohesin loading unless supplemented with purified h-Scc2/4. The results presented here indicate that the Xenopus or h-Scc2/4 complex supports the loading of Xenopus and/or h-cohesin onto pre-RCs formed by Xenopus high-speed extracts. We show that cohesin loaded onto pre-RCs either by h-Scc2/4 and/or the Xenopus complex was dissociated from chromatin by low salt extraction, similar to cohesin loaded onto chromatin in G1 by HeLa cells in vivo. Replication of cohesin-loaded DNA, both in vitro and in vivo, markedly increased the stability of cohesin associated with DNA. Collectively, these in vitro findings partly recapitulate the in vivo pathway by which sister chromatids are linked together, leading to cohesion.

    DOI: 10.1073/pnas.1206840109

  • Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components 査読

    Mai Kanke, Yukako Kodama, Tatsuro Takahashi, Takuro Nakagawa, Hisao Masukata

    EMBO Journal   31 ( 9 )   2182 - 2194   2012年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The CMG complex composed of Mcm2-7, Cdc45 and GINS is postulated to be the eukaryotic replicative DNA helicase, whose activation requires sequential recruitment of replication proteins onto Mcm2-7. Current models suggest that Mcm10 is involved in assembly of the CMG complex, and in tethering of DNA polymerase α at replication forks. Here, we report that Mcm10 is required for origin DNA unwinding after association of the CMG components with replication origins in fission yeast. A combination of promoter shut-off and the auxin-inducible protein degradation (off-aid) system efficiently depleted cellular Mcm10 to <0.5% of the wild-type level. Depletion of Mcm10 did not affect origin loading of Mcm2-7, Cdc45 or GINS, but impaired recruitment of RPA and DNA polymerases. Mutations in a conserved zinc finger of Mcm10 abolished RPA loading after recruitment of Mcm10. These results show that Mcm10, together with the CMG components, plays a novel essential role in origin DNA unwinding through its zinc-finger function.

    DOI: 10.1038/emboj.2012.68

  • Abundance of prereplicative complexes (Pre-RCs) facilitates recombinational repair under replication stress in fission yeast 査読

    Kentaro Maki, Takahiro Inoue, Atsushi Onaka, Hiroko Hashizume, Naoko Somete, Yuko Kobayashi, Shigefumi Murakami, Chikako Shigaki, Tatsuro Takahashi, Hisao Masukata, Takuro Nakagawa

    Journal of Biological Chemistry   286 ( 48 )   41701 - 41710   2011年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Mcm2-7 complexes are loaded onto chromatin with the aid of Cdt1 and Cdc18/Cdc6 and form prereplicative complexes (pre- RCs) at multiple sites on each chromosome. Pre-RCs are essential for DNA replication and surviving replication stress. However, the mechanism by which pre-RCs contribute to surviving replication stress is largely unknown. Here, we isolated the fission yeast mcm6-S1 mutant that was hypersensitive to methyl methanesulfonate (MMS) and camptothecin (CPT), both of which cause forks to collapse. The mcm6-S1 mutation impaired the interaction with Cdt1 and decreased the binding of minichromosome maintenance (MCM) proteins to replication origins. Overexpression of Cdt1 restored MCM binding and suppressed the sensitivity to MMS and CPT, suggesting that the Cdt1-Mcm6 interaction is important for the assembly of pre-RCs and the repair of collapsed forks. MMS-induced Chk1 phosphorylation and Rad22/Rad52 focus formation occurred normally, whereas cells containing Rhp54/Rad54 foci, which are involved inDNAstrand exchange and dissociation of the joint molecules, were increased. Remarkably, G 1 phase extension through deletion of an S phase cyclin, Cig2, as well as Cdt1 overexpression restored pre-RC assembly and suppressed Rhp54 accumulation. A cdc18 mutation also caused hypersensitivity to MMS and CPT and accumulation of Rhp54 foci. These data suggest that an abundance of pre-RCs facilitates a late step in the recombinational repair of collapsed forks in the following S phase.

    DOI: 10.1074/jbc.M111.285619

  • CDK promotes interactions of Sld3 and Drc1 with Cut5 for initiation of DNA replication in fission yeast 査読

    Masayoshi Fukuura, Koji Nagao, Chikashi Obuse, Tatsuro Takahashi, Takuro Nakagawa, Hisao Masukata

    Molecular Biology of the Cell   22 ( 14 )   2620 - 2633   2011年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Cyclin-dependent kinase (CDK) plays essential roles in the initiation of DNA replication in eukaryotes. Although interactions of CDK-phosphorylated Sld2/Drc1 and Sld3 with Dpb11 have been shown to be essential in budding yeast, it is not known whether the mechanism is conserved. In this study, we investigated how CDK promotes the assembly of replication proteins onto replication origins in fission yeast. Phosphorylation of Sld3 was found to be dependent on CDK in S phase. Alanine substitutions at CDK sites decreased the interaction with Cut5/Dpb11 at the N-terminal BRCT motifs and decreased the loading of Cut5 onto replication origins. This defect was suppressed by overexpression of drc1 +. Phosphorylation of a conserved CDK site, Thr-111, in Drc1 was critical for interaction with Cut5 at the C-terminal BRCT motifs and was required for loading of Cut5. In a yeast three-hybrid assay, Sld3, Cut5, and Drc1 were found to form a ternary complex dependent on the CDK sites of Sld3 and Drc1, and Drc1-Cut5 binding enhanced the Sld3-Cut5 interaction. These results show that the mechanism of CDK-dependent loading of Cut5 is conserved in fission yeast in a manner similar to that elucidated in budding yeast.

    DOI: 10.1091/mbc.E10-12-0995

  • Auxin-inducible protein depletion system in fission yeast 査読

    Mai Kanke, Kohei Nishimura, Masato Kanemaki, Tatsuo Kakimoto, Tatsuro Takahashi, Takuro Nakagawa, Hisao Masukata

    BMC Cell Biology   12   2011年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Background: Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previously published strategies for protein-depletion are successful only for some proteins in some specific conditions and still do not achieve efficient depletion to cause acute phenotypes such as immediate cell cycle arrest. The aim of this work was to construct a useful and powerful protein-depletion system in Shizosaccaromyces pombe.Results: We constructed an auxin-inducible degron (AID) system, which utilizes auxin-dependent poly-ubiquitination of Aux/IAA proteins by SCFTIR1 in plants, in fission yeast. Although expression of a plant F-box protein, TIR1, decreased Mcm4-aid, a component of the MCM complex essential for DNA replication tagged with Aux/IAA peptide, depletion did not result in an evident growth defect. We successfully improved degradation efficiency of Mcm4-aid by fusion of TIR1 with fission yeast Skp1, a conserved F-box-interacting component of SCF (improved-AID system; i-AID), and the cells showed severe defect in growth. The i-AID system induced degradation of Mcm4-aid in the chromatin-bound MCM complex as well as those in soluble fractions. The i-AID system in conjunction with transcription repression (off-AID system), we achieved more efficient depletion of other proteins including Pol1 and Cdc45, causing early S phase arrest.Conclusion: Improvement of the AID system allowed us to construct conditional null mutants of S. pombe. We propose that the off-AID system is the powerful method for in vivo protein-depletion in fission yeast.

    DOI: 10.1186/1471-2121-12-8

  • DNA replication in nucleus-free xenopus egg extracts

    Ronald Lebofsky, Tatsuro Takahashi, Johannes C. Walter

    DNA Replication Methods and Protocols   521   229 - 252   2009年12月

     詳細を見る

    記述言語:英語  

    Extracts derived from Xenopus laevis eggs represent a powerful cell-free system to study eukaryotic DNA replication. A variation of the system allows for DNA replication not only in a cell-free environment, but also in the absence of a nucleus. In this nucleus-free system, DNA templates are licensed with High-Speed Supernatant (HSS) and then replicated with a concentrated NucleoPlasmic Extract (NPE). This method has the advantage of allowing replication of small plasmids with desired modifications and manipulation of the nuclear environment. This chapter describes the protocols needed to prepare HSS and NPE and how these extracts are used to study DNA replication.

    DOI: 10.1007/978-1-60327-815-7_13

  • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus 査読

    Makoto T. Hayashi, Tatsuro Takahashi, Takuro Nakagawa, Jun Ichi Nakayama, Hisao Masukata

    Nature Cell Biology   11 ( 3 )   357 - 362   2009年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Heterochromatin is a structurally compacted region of chromosomes in which transcription and recombination are inactivated. DNA replication is temporally regulated in heterochromatin, but the molecular mechanism for regulation has not been elucidated. Among heterochromatin loci in Schizosaccharomyces pombe, the pericentromeric region and the silent mating-type (mat) locus replicate in early S phase, whereas the sub-telomeric region does not, suggesting complex mechanisms for regulation of replication in heterochromatic regions. Here, we show that Swi6, an S. pombe counterpart of heterochromatin protein 1 (HP1), is required for early replication of the pericentromeric region and the mat locus. Origin-loading of Sld3, which depends on Dfp1/Dbf4-dependent kinase Cdc7 (DDK), is stimulated by Swi6. An HP1-binding motif within Dfp1 is required for interaction with Swi6 in vitro and for early replication of the pericentromeric region and mat locus. Tethering of Dfp1 to the pericentromeric region and mat locus in swi6-deficient cells restores early replication of these loci. Our results show that a heterochromatic protein positively regulates initiation of replication in silenced chromatin by interacting with an essential kinase.

    DOI: 10.1038/ncb1845

  • Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe 査読

    Ken Ichi Nakamura, Aya Okamoto, Yuki Katou, Chie Yadani, Takeshi Shitanda, Chitrada Kaweeteerawat, Tatsuro Takahashi, Takehiko Itoh, Katsuhiko Shirahige, Hisao Masukata, Takuro Nakagawa

    EMBO Journal   27 ( 22 )   3036 - 3046   2008年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Centromere that plays a pivotal role in chromosome segregation is composed of repetitive elements in many eukaryotes. Although chromosomal regions containing repeats are the hotspots of rearrangements, little is known about the stability of centromere repeats. Here, by using a minichromosome that has a complete set of centromere sequences, we have developed a fission yeast system to detect gross chromosomal rearrangements (GCRs) that occur spontaneously. Southern and comprehensive genome hybridization analyses of rearranged chromosomes show two types of GCRs: translocation between homologous chromosomes and formation of isochromosomes in which a chromosome arm is replaced by a copy of the other. Remarkably, all the examined isochromosomes contain the breakpoint in centromere repeats, showing that isochromosomes are produced by centromere rearrangement. Mutations in the Rad3 checkpoint kinase increase both types of GCRs. In contrast, the deletion of Rad51 recombinase preferentially elevates isochromosome formation. Chromatin immunoprecipitation analysis shows that Rad51 localizes at centromere around S phase. These data suggest that Rad51 suppresses rearrangements of centromere repeats that result in isochromosome formation.

    DOI: 10.1038/emboj.2008.215

  • Erratum Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast (The EMBO Journal (2007) 26 (1327-1339) DOI: 10.1038/sj.emboj.7601585) 査読

    Makoto Hayashi, Yuki Katou, Takehiko Itoh, Atsutoshi Tazumi, Yoshiki Yamada, Tatsuro Takahashi, Takuro Nakagawa, Katsuhiko Shirahige, Hisao Masukata

    EMBO Journal   26 ( 11 )   2821   2007年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1038/sj.emboj.7601708

  • Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast 査読

    Makoto Hayashi, Yuki Katou, Takehiko Itoh, Mitsutoshi Tazumi, Yoshiki Yamada, Tatsuro Takahashi, Takuro Nakagawa, Katsuhiko Shirahige, Hisao Masukata

    EMBO Journal   26 ( 5 )   1327 - 1339   2007年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DNA replication of eukaryotic chromosomes initiates at a number of discrete loci, called replication origins. Distribution and regulation of origins are important for complete duplication of the genome. Here, we determined locations of Orc1 and Mcm6, components of pre-replicative complex (pre-RC), on the whole genome of Schizosaccharomyces pombe using a high-resolution tiling array. Pre-RC sites were identified in 460 intergenic regions, where Orc1 and Mcm6 colocalized. By mapping of 5-bromo-2′-deoxyuridine (BrdU)-incorporated DNA in the presence of hydroxyurea (HU), 307 pre-RC sites were identified as early-firing origins. In contrast, 153 pre-RC sites without BrdU incorporation were considered to be late and/or inefficient origins. Inactivation of replication checkpoint by Cds1 deletion resulted in BrdU incorporation with HU specifically at the late origins. Early and late origins tend to distribute separately in large chromosome regions. Interestingly, pericentromeric heterochromatin and the silent mating-type locus replicated in the presence of HU, whereas the inner centromere or subtelomeric heterochromatin did not. Notably, MCM did not bind to inner centromeres where origin recognition complex was located. Thus, replication is differentially regulated in chromosome domains.

    DOI: 10.1038/sj.emboj.7601585

  • Multiple ORC-binding sites are required for efficient MCM loading and origin firing in fission yeast 査読

    Tatsuro Takahashi, Eri Ohara, Hideo Nishitani, Hisao Masukata

    EMBO Journal   22 ( 4 )   964 - 974   2003年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    In most eukaryotes, replication origins are composed of long chromosome regions, and the exact sequences required for origin recognition complex (ORC) and minichromosome maintenance (MCM) complex association remain elusive. Here, we show that two stretches of adenine/thymine residues are collectively essential for a fission yeast chromosomal origin. Chromatin immunoprecipitation assays revealed that the ORC subunits are located within a 1 kb region of ori2004. Analyses of deletion derivatives of ori2004 showed that adenine stretches are required for ORC binding in vivo. Synergistic interaction between ORC and adenine stretches was observed. On the other hand, MCM subunits were localized preferentially to a region near the initiation site, which is distant from adenine stretches. This association was dependent on adenine stretches and stimulated by a non-adenine element. Our results suggest that association of multiple ORC molecules with a replication origin is required for efficient MCM loading and origin firing in fission yeast.

    DOI: 10.1093/emboj/cdg079

  • Interaction of fission yeast ORC with essential adenine/thymine stretches in replication origins 査読

    Tatsuro Takahashi, Hisao Masukata

    Genes to Cells   6 ( 10 )   837 - 849   2001年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Background: Eukaryotic DNA replication is initiated from distinct regions on the chromosome. However, the mechanism for recognition of replication origins is not known for most eukaryotes. In fission yeast, replication origins are isolated as autonomously replicating sequences (ARSs). Multiple adenine/thymine clusters are essential for replication, but no short consensus sequences are found. In this paper, we examined the interaction of adenine/thymine clusters with the replication initiation factor ORC. Results: The SpOrc1 or SpOrc2 immunoprecipitates (IPs) containing at least four subunits of SpORC, interacted with the ars2004 fragment, which is derived from a predominant replication origin on the chromosome. SpORC-IPs preferentially interacted with two regions of the ars2004, which consist of consecutive adenines and AAAAT repeats and are essential for ARS activity. The nucleotide sequences required for the interaction with SpORC-IPs correspond closely to those necessary for in vivo ARS activity. Conclusion: Our results suggest that the SpORC interacts with adenine/thymine stretches, which have been shown to be the most important component in the fission yeast replication origin. The presence of multiple SpORC-binding sites, with certain sequence variations, is characteristic for the fission yeast replication origins.

    DOI: 10.1046/j.1365-2443.2001.00468.x

  • Association of fission yeast Orp1 and Mcm6 proteins with chromosomal replication origins 査読

    Yuya Ogawa, Tatsuro Takahashi, Hisao Masukata

    Molecular and Cellular Biology   19 ( 10 )   7228 - 7236   1999年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1+/cdc19+ and mis5+ genes, respectively, were associated with chromatin DNA only during the G1 and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G1 and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G1 and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.

    DOI: 10.1128/MCB.19.10.7228

  • Initiation-protein complex for eukaryotic DNA replication 査読

    Tatsuro Takahashi, H. Masukata

    Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme   44 ( 12 Suppl )   1804 - 1812   1999年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

▼全件表示

講演・口頭発表等

  • Regulation of the fidelity of homology-directed repair in Xenopus egg extracts

    @Yoshitaka Kawasoe, @Satomi Oda, #Aya Sakazume, #Taisei Miyata, @Tatsuro Takahashi

    第96回日本生化学会大会  2023年10月 

     詳細を見る

    開催年月日: 2024年4月

    記述言語:英語   会議種別:口頭発表(一般)  

    国名:日本国  

  • Mechanistic details of the chromatin remodeling reaction associated with post-replicative DNA mismatch repair 国際会議

    #Eiichiro Kanatsu, @Riki Terui, @Yasukazu Daigaku, @Tatsuro Takahashi

    Eukaryotic DNA replication & genome maintenance  2023年9月 

     詳細を見る

    開催年月日: 2024年4月

    記述言語:英語   会議種別:口頭発表(一般)  

    開催地:Cold Spring Harbor   国名:アメリカ合衆国  

  • The mechanism of a chromatin-remodeling reaction associated with replication error correction

    #金津 瑛一郎、照井 利輝、@高橋 達郎

    第45回日本分子生物学会年会  2022年12月 

     詳細を見る

    開催年月日: 2022年11月 - 2022年12月

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:千葉県幕張市   国名:日本国  

  • The mechanism of a chromatin-remodeling reaction associated with replication error correction 招待 国際会議

    #金津 瑛一郎、照井 利輝、@高橋 達郎

    Chromosome Replication in the New Era - Old and New Questions in Life Science -  2022年11月 

     詳細を見る

    開催年月日: 2022年11月

    記述言語:英語   会議種別:口頭発表(一般)  

    開催地:静岡県三島市   国名:日本国  

  • MutSαとSmarcad1はミスマッチ依存的ヌクレオソームリモデリング複合体を形成する

    @照井 利輝、#金津 瑛一郎、@高橋 達郎

    第94回日本生化学会大会  2021年11月 

     詳細を見る

    開催年月日: 2022年6月

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:オンライン   国名:日本国  

  • ミスマッチ修復に伴うクロマチンリモデリング反応の試験管内再構成による解析 招待

    @照井 利輝、#金津 瑛一郎、@高橋 達郎

    第93回日本遺伝学会年会  2021年9月 

     詳細を見る

    開催年月日: 2022年6月

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:オンライン   国名:日本国  

  • Regulation of the fidelity of homology-directed repair in Xenopus egg extracts 招待 国際会議

    Tatsuro Takahashi, Yoshitaka Kawasoe, Satomi Oda, Aya Sakazume

    The 11th quinquennial conference on DNA repair  2022年3月 

     詳細を見る

    開催年月日: 2022年3月 - 2022年4月

    記述言語:英語   会議種別:口頭発表(一般)  

    開催地:Egmond aan Zee, Hotel Zuiderduin   国名:オランダ王国  

    The mismatch repair (MMR) system protects genetic information by handling mispairs arising from DNA replication errors and homology-directed repair between divergent sequences. Replication errors are corrected by the MMR system in a strand-specific manner to restore original genetic information. In contrast, homology-directed repair between divergent sequences is suppressed through the unwinding of intermediates. Genetic studies in yeast have shown that this process, called anti-recombination or heteroduplex rejection, depends on the Msh2-Msh6 (MutSα) mismatch recognition complex and RecQ homolog DNA helicase Sgs1. However, mechanistic details and the regulation of anti-recombination remain still ambiguous, especially in vertebrates, partly due to the insufficiency of in vitro model systems. In this study, we set up a single-strand annealing (SSA) model system in Xenopus egg extracts and found that sequence divergence between two repeating units significantly delays the annealing reaction and reduces the efficiency of SSA. Immunodepletion experiments showed that this reduction of SSA is mediated by MutSα and the Werner helicase. MutSα and the Werner helicase were also important for the fidelity of SSA. We will discuss possible mechanisms and regulations of how these factors increase the SSA fidelity.

  • An interface between strand invasion and DNA synthesis during homology-directed repair

    @高橋 達郎

    国立遺伝学研究所・研究集会「染色体安定維持研究会」  2024年7月 

     詳細を見る

    開催年月日: 2024年4月

    記述言語:日本語   会議種別:口頭発表(一般)  

    国名:日本国  

  • MutSα and Smarcad1 form a mispair-activated nucleosome remodeling complex that catalyzes unidirectional nucleosome sliding 国際会議

    #Eiichiro Kanatsu, @Riki Terui, @Yasukazu Daigaku, @Tatsuro Takahashi,

    The 2nd International Symposium on REPLICATION of NON GENOME ~Cutting Edge of Epigenetics~  2023年6月 

     詳細を見る

    開催年月日: 2023年6月

    記述言語:英語  

    国名:日本国  

  • Regulation of the fidelity of homology-directed repair in Xenopus egg extracts 招待

    @高橋 達郎

    国立遺伝学研究所・研究集会「染色体安定維持研究会」  2022年7月 

     詳細を見る

    開催年月日: 2022年7月

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:静岡県三島市   国名:日本国  

  • MMRシステムによる相同組換え正確性制御のメカニズム 招待

    @高橋 達郎

    国立遺伝学研究所・研究集会「染色体安定維持研究会」  2021年8月 

     詳細を見る

    開催年月日: 2021年8月

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:オンライン   国名:日本国  

  • A balance between pro- and anti-recombination reactions determines the fidelity of homology-directed repair

    @高橋 達郎

    第38回染色体ワークショップ・第19回核ダイナミクス研究会  2021年1月 

     詳細を見る

    開催年月日: 2021年1月

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:オンライン   国名:日本国  

  • The quality control mechanism of homology-directed repair in Xenopus egg extracts 招待

    @Tatsuro Takahashi

    第43回日本分子生物学会年会  2020年12月 

     詳細を見る

    開催年月日: 2020年12月

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:オンライン   国名:日本国  

  • ミスマッチ修復システムによるクロマチンリモデリングの試験管内再構成による解析 招待

    @高橋達郎

    日本遺伝学会第92回大会  2020年9月 

     詳細を見る

    開催年月日: 2020年9月

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    国名:日本国  

  • ミスマッチ塩基に依存したクロマチンリモデリングの試験管内再構成

    @Tatsuro Takahashi, @Riki Terui, #Karin Shigenobu

    第25回複製・組換え・修復ワークショップ  2019年11月 

     詳細を見る

    開催年月日: 2020年1月

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:奈良県奈良市奈良春日野国際フォーラム甍   国名:日本国  

  • Reconstitution of a chromatin-remodeling reaction that facilitates post-replicative DNA mismatch repair

    @Riki Terui, @Tatsuro Takahashi

    第42回日本分子生物学会年会  2019年12月 

     詳細を見る

    開催年月日: 2020年1月

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:福岡県福岡市福岡国際会議場・マリンメッセ福岡   国名:日本国  

  • The quality control mechanism of homology-directed repair in Xenopus egg extracts 招待 国際会議

    Tatsuro Takahashi

    CHROMOSOME DYNAMICS, An international symposium on chromatin and chromosome stability  2019年12月 

     詳細を見る

    開催年月日: 2020年1月

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:Friedrich Miescher Institute, Basel   国名:スイス連邦  

  • ミスマッチ塩基に依存したヌクレオソームリモデリングの試験管内再構成

    @Tatsuro Takahashi, @Riki Terui, #Karin Shigenobu

    第37回染色体ワークショップ・第18回核ダイナミクス研究会  2019年12月 

     詳細を見る

    開催年月日: 2020年1月

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:新潟県新発田市月岡温泉ホテル華鳳   国名:日本国  

  • In vitro reconstitution of a mismatch-induced nucleosome remodeling reaction 招待

    照井 利輝、高橋 達郎

    第92回日本生化学会大会  2019年9月 

     詳細を見る

    開催年月日: 2019年9月

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:神奈川県横浜市パシフィコ横浜   国名:日本国  

  • 真核生物 DNA ミスマッチ修復機構による遺伝情報維持反応の解析

    高橋達郎

    国立遺伝学研究所・研究集会「染色体安定維持研究会」  2019年6月 

     詳細を見る

    開催年月日: 2019年6月

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    開催地:静岡県三島市 国立遺伝学研究所   国名:日本国  

  • ミスマッチ修復による相同組み換え制御の試験管内解析

    高橋 達郎

    国立遺伝学研究所・研究集会「生物ゲノム安定性の分子機構」  2016年10月 

     詳細を見る

    開催地:国立遺伝学研究所   国名:日本国  

  • Interplay between DNA synthesis, chromatin assembly, and mismatch repair 国際会議

    Tatsuro Takahashi, Yoshitaka Kawasoe, Riki Terui, koji Nagao, Seiji Tanaka, Takuro Nakagawa, Chikashi Obuse, Hisao Masukata

    The 10th 3R symposium  2016年11月 

     詳細を見る

    開催地:島根県松江市   国名:日本国  

  • In vitro analysis of interplay between chromatin replication, homology-directed repair, and mismatch repair 招待

    Tatsuro Takahashi, Riki Terui, Satomi Oda, Yoshitaka Kawasoe, Takuro Nakagawa, Hisao Masukata

    第39回日本分子生物学会年会  2016年12月 

     詳細を見る

    開催地:神奈川県横浜市   国名:日本国  

  • ミスマッチ修復依存的なヘテロ二重鎖解消反応の試験管内解析

    Satomi Oda, Takuro Nakagawa, Hisao Masukata, Tatsuro Takahashi

    第34回染色体ワークショップ・第15回核ダイナミクス研究会  2017年1月 

     詳細を見る

    開催地:千葉県木更津市   国名:日本国  

  • An in vitro model system for functional interaction of mismatch repair with chromatin assembly and homology-directed repair 招待 国際会議

    Tatsuro Takahashi

    The 6th US-Japan DNA Repair Meeting  2017年5月 

     詳細を見る

    開催地:Berkeley, CA  

  • A PCNA-dependent reaction facilitates replication-coupled Sororin loading in Xenopus egg extracts 国際会議

    Torahiko Higashi, Sae Hayashi, Kodai Hara, Hiroshi Hashimoto, Takuro Nakagawa, Hisao Masukata, Tatsuro Takahashi

    Cold Spring Harbor Laboratory Meeting "Eukaryotic DNA replication & Genome Maintenance"  2017年9月 

     詳細を見る

    開催地:Cold Spring Harbor, NY  

  • PCNAを介したDNA複製と染色体接着の機能的カップリング 

    Tatsuro Takahashi

    国立遺伝学研究所・研究集会「染色体構築と安定化を担う分子機構」  2017年10月 

     詳細を見る

    開催地:静岡県三島市   国名:日本国  

  • In vitro analysis of the mismatch-repair-dependent anti-recombination reaction

    Satomi Oda, Yoshitaka Kawasoe, Aya Sakazume, Takuro Nakagawa, Hisao Masukata, Tatsuro Takahashi

    2017年度生命科学系学会合同年次大会  2017年12月 

     詳細を見る

    開催地:兵庫県神戸市   国名:日本国  

  • 類似配列間の相同性依存的組換えを抑制する反応の試験管内再現

    Satomi Oda, Aya Sakazume, Yoshitaka Kawasoe, Takuro Nakagawa, Hisao Masukata, Tatsuro Takahashi

    第35回染色体ワークショップ・第16回核ダイナミクス研究会  2017年12月 

     詳細を見る

    開催地:愛知県西尾市   国名:日本国  

  • 相同性依存的修復の品質管理機構を試験管内再現系によって探る 招待

    Satomi Oda, Aya Sakazume, Yoshitaka Kawasoe, Takuro Nakagawa, Hisao Masukata, Tatsuro Takahashi

    第3回ゲノム編集学会年会  2018年6月 

     詳細を見る

    記述言語:日本語  

    開催地:広島県広島市   国名:日本国  

▼全件表示

MISC

  • Sister acts Coordinating DNA replication and cohesion establishment

    Rebecca Sherwood, Tatsuro Takahashi, Prasad V. Jallepalli

    Genes and Development   2010年12月

     詳細を見る

    記述言語:英語  

    The ring-shaped cohesin complex links sister chromatids and plays crucial roles in homologous recombination and mitotic chromosome segregation. In cycling cells, cohesin's ability to generate cohesive linkages is restricted to S phase and depends on loading and establishment factors that are intimately connected to DNA replication. Here we review how cohesin is regulated by the replication machinery, as well as recent evidence that cohesin itself influences how chromosomes are replicated.

    DOI: 10.1101/gad.1976710

  • Pumps, paradoxes and ploughshares Mechanism of the MCM2-7 DNA helicase

    Tatsuro Takahashi, Dale B. Wigley, Johannes C. Walter

    Trends in Biochemical Sciences   2005年8月

     詳細を見る

    記述言語:英語  

    In eukaryotes, numerous lines of evidence have coalesced into a convincing case that the MCM2-7 complex - a heterohexameric ATPase - is the replicative DNA helicase. However, almost nothing is known about how this enzyme functions in a cellular context. Some models for the mechanism of the MCM2-7 helicase envision that it translocates along single-stranded DNA (ssDNA), whereas, more recently, it is has been suggested that it pumps double-stranded DNA (dsDNA) through its central channel. In particular, one model in which a double hexamer of MCM2-7 pumps dsDNA towards the hexamer interface and extrudes ssDNA laterally as a result of torsional strain is gaining popularity. Here, we discuss existing models and propose a new variation in which a single hexamer is the functional unit of the helicase. Duplex DNA is pumped into MCM2-7 and, as it emerges from the complex, a rigid protein that we term the 'ploughshare' splits the duplex.

    DOI: 10.1016/j.tibs.2005.06.007

所属学協会

  • 分子生物学会

  • 日本生化学会

  • 日本遺伝学会

学術貢献活動

  • シンポジウムオーガナイザー

    第47回日本分子生物学会年会  ( 福岡国際会議場 ) 2024年11月

     詳細を見る

    種別:大会・シンポジウム等 

  • ローカルオーガナイザー 国際学術貢献

    The 12th 3R+3C International Symposium  ( 福岡県福岡市 アクロス福岡 ) 2024年11月

     詳細を見る

    種別:大会・シンポジウム等 

  • シンポジウムオーガナイザー

    日本遺伝学会第96回大会  ( 高知工科大学永国寺キャンパス ) 2024年9月

     詳細を見る

    種別:大会・シンポジウム等 

  • シンポジウムオーガナイザー

    第96回日本生化学会大会  ( 福岡県福岡市 ) 2023年10月 - 2023年11月

     詳細を見る

    種別:大会・シンポジウム等 

    参加者数:80

  • ミーティングオーガナイザー

    国立遺伝学研究所・研究集会「染色体安定維持研究会」  ( 静岡県三島市 ) 2023年7月

     詳細を見る

    種別:大会・シンポジウム等 

    参加者数:40

  • オーガナイザー

    第27回DNA複製・組換え・修復ワークショップ  ( 福岡県福岡市 ) 2023年6月

     詳細を見る

    種別:大会・シンポジウム等 

    参加者数:100

  • 学術論文等の審査

    役割:査読

    2023年

     詳細を見る

    種別:査読等 

    外国語雑誌 査読論文数:1

  • The Journal of Biochemistry 国際学術貢献

    2022年1月 - 2024年12月

     詳細を見る

    種別:学会・研究会等 

  • 学術論文等の審査

    役割:査読

    2022年

     詳細を見る

    種別:査読等 

    外国語雑誌 査読論文数:1

    日本語雑誌 査読論文数:0

    国際会議録 査読論文数:0

    国内会議録 査読論文数:0

  • シンポジウムオーガナイザー

    第94回日本生化学会大会  ( 神奈川県横浜市 ) 2021年11月

     詳細を見る

    種別:大会・シンポジウム等 

  • オーガナイザー

    第38回染色体ワークショップ・第19回核ダイナミクス研究会  ( オンライン ) 2021年1月

     詳細を見る

    種別:大会・シンポジウム等 

    参加者数:230

  • 学術論文等の審査

    役割:査読

    2021年

     詳細を見る

    種別:査読等 

    外国語雑誌 査読論文数:2

  • 学術論文等の審査

    役割:査読

    2020年

     詳細を見る

    種別:査読等 

    外国語雑誌 査読論文数:2

  • ミーティングオーガナイザー

    国立遺伝学研究所・研究集会「染色体安定維持研究会」  ( 静岡県三島市 国立遺伝学研究所 ) 2019年6月

     詳細を見る

    種別:大会・シンポジウム等 

    参加者数:30

  • 学術論文等の審査

    役割:査読

    2019年

     詳細を見る

    種別:査読等 

    外国語雑誌 査読論文数:1

  • The Journal of Biochemistry 国際学術貢献

    役割:査読

    2018年4月 - 2020年3月

     詳細を見る

    種別:学会・研究会等 

  • 学術論文等の審査

    役割:査読

    2018年

     詳細を見る

    種別:査読等 

    外国語雑誌 査読論文数:2

  • ワークショップオーガナイザー

    2017年度生命科学系学会合同年次大会  ( 兵庫県神戸市 ) 2017年12月

     詳細を見る

    種別:大会・シンポジウム等 

    参加者数:200

  • ミーティングオーガナイザー

    国立遺伝学研究所・研究集会「染色体構築と安定化を担う分子機構」  ( 静岡県三島市 ) 2017年10月

     詳細を見る

    種別:大会・シンポジウム等 

    参加者数:40

  • 学術論文等の審査

    役割:査読

    2016年

     詳細を見る

    種別:査読等 

    外国語雑誌 査読論文数:1

▼全件表示

共同研究・競争的資金等の研究課題

  • タンパク質相互作用ネットワークから解き明かすミスマッチ応答機構の多様な機能

    2024年4月 - 2025年3月

    共同研究

      詳細を見る

    担当区分:研究代表者  資金種別:その他産学連携による資金

  • エピコードを規定するクロマチンの基盤構造とその動作原理の解明

    研究課題/領域番号:24H02328  2024年 - 2028年

    日本学術振興会・文部科学省  科学研究費助成事業  学術変革領域研究(A)

      詳細を見る

    担当区分:研究分担者  資金種別:科研費

  • 相同組換えの正確性を保証するメカニズムの試験管内再現系による解明

    研究課題/領域番号:24K01956  2024年 - 2026年

    日本学術振興会  科学研究費助成事業  基盤研究(B)

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

  • 真核生物Mcm8–9ヘリカーゼの機能制御機構の解明

    2023年4月 - 2024年3月

    共同研究

      詳細を見る

    担当区分:研究代表者  資金種別:その他産学連携による資金

  • 複製および組換エラーに応答するタンパク質相互作用ネットワークの解明

    2023年4月 - 2024年3月

    共同研究

      詳細を見る

    担当区分:研究代表者  資金種別:その他産学連携による資金

  • 真核生物Mcm8–9ヘリカーゼの機能制御機構の解明

    2023年4月 - 2024年3月

    共同研究

      詳細を見る

    担当区分:研究代表者  資金種別:その他産学連携による資金

  • 塩基ミスマッチを起点とするゲノム複製正確性維持反応と非ゲノム情報の機能的相関

    研究課題/領域番号:22H04697  2022年 - 2023年

    日本学術振興会・文部科学省  科学研究費助成事業  新学術領域研究

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

  • 豊田理研スカラー

    2021年

      詳細を見る

    資金種別:寄附金

  • 山田科学振興財団研究援助/相同組換えの正確性を保証するメカニズムの理解

    2021年

      詳細を見る

    資金種別:寄附金

  • 豊田理研スカラー 共同研究Phase1

    2021年

      詳細を見る

    資金種別:寄附金

  • DNA複製と相同性依存的修復の正確性維持機構を統御する反応の解明

    研究課題/領域番号:20H03186  2020年 - 2023年

    日本学術振興会  科学研究費助成事業  基盤研究(B)

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

  • 損傷チェックポイント機構によるDNA二重鎖切断修復の正確性制御メカニズム

    研究課題/領域番号:20K21399  2020年 - 2021年

    日本学術振興会  科学研究費助成事業  挑戦的研究(萌芽)

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

  • ゲノム情報の複製正確性維持機構と非ゲノム情報維持反応のクロストークの解明

    研究課題/領域番号:20H05392  2020年 - 2021年

    日本学術振興会・文部科学省  科学研究費助成事業  新学術領域研究

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

  • オーキシンデグロン法を用いた複製クランプPCNAの新規機能の解析

    2018年4月 - 2019年3月

    共同研究

      詳細を見る

    担当区分:研究代表者  資金種別:その他産学連携による資金

  • 相同性依存的修復の品質管理機構を次世代シーケンス技術を用いて探る

    研究課題/領域番号:18H04716  2018年 - 2019年

    日本学術振興会・文部科学省  科学研究費助成事業  新学術領域研究

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

  • ミスマッチ修復システムによる相同組換え品質保証機構の動作原理の解明

    研究課題/領域番号:17H01876  2017年 - 2019年

    日本学術振興会  科学研究費助成事業  基盤研究(B)

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

  • 上原記念生命科学振興財団・研究助成金

    2017年

      詳細を見る

    資金種別:寄附金

  • 武田科学振興財団・ライフサイエンス研究助成

    2017年

      詳細を見る

    資金種別:寄附金

  • ミスマッチ修復による合成エラー修復と誤った相同組み換え抑制の統一的理解

    研究課題/領域番号:16K14671  2016年 - 2018年

    科学研究費助成事業  挑戦的萌芽研究

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

  • 持田記念医学薬学振興財団

    2016年

      詳細を見る

    資金種別:寄附金

  • コヒーシンが染色体接着と二重鎖切断修復に機能する機構の試験管内再構成による解析

    研究課題/領域番号:25711022  2013年 - 2016年

    科学研究費助成事業  若手研究(A,B)

      詳細を見る

    担当区分:研究代表者  資金種別:科研費

▼全件表示

教育活動概要

  • 基幹教育科目 細胞生物学
    理学部専門科目 分子生物学、先端生命科学、生物学演習および卒業研究
    大学院講義 生物科学I、生物科学特論IIを担当

担当授業科目

  • 細胞生物学

    2024年10月 - 2025年3月   後期

  • Biology, Advanced CouresⅡ

    2024年6月 - 2024年8月   夏学期

  • 生物科学特論Ⅱ

    2024年6月 - 2024年8月   夏学期

  • 先端生命科学

    2024年4月 - 2024年9月   前期

  • 分子生物学

    2024年4月 - 2024年9月   前期

  • 生物科学I

    2024年4月 - 2024年6月   春学期

  • Basic BiologyⅠ

    2024年4月 - 2024年6月   春学期

  • 細胞生物学

    2023年10月 - 2024年3月   後期

  • 先端生命科学

    2023年4月 - 2023年9月   前期

  • 分子生物学

    2023年4月 - 2023年9月   前期

  • 生物科学I

    2023年4月 - 2023年6月   春学期

  • 細胞生物学

    2022年10月 - 2023年3月   後期

  • 生物科学特論Ⅱ

    2022年6月 - 2022年8月   夏学期

  • Biology, Advanced CouresⅡ

    2022年6月 - 2022年8月   夏学期

  • 先端生命科学

    2022年4月 - 2022年9月   前期

  • 分子生物学

    2022年4月 - 2022年9月   前期

  • Basic BiologyⅠ

    2022年4月 - 2022年6月   春学期

  • 生物科学Ⅰ

    2022年4月 - 2022年6月   春学期

  • 細胞生物学

    2021年10月 - 2022年3月   後期

  • 分子生物学

    2021年4月 - 2021年9月   前期

  • 先端生命科学

    2021年4月 - 2021年9月   前期

  • 生物科学Ⅰ

    2021年4月 - 2021年6月   春学期

  • Basic BiologyⅠ

    2021年4月 - 2021年6月   春学期

  • 細胞生物学

    2020年10月 - 2021年3月   後期

  • 分子生命科学特論Ⅱ

    2020年6月 - 2020年8月   夏学期

  • 分子生物学

    2020年4月 - 2020年9月   前期

  • 先端生命科学

    2020年4月 - 2020年9月   前期

  • 分子生命科学I

    2020年4月 - 2020年6月   春学期

  • 細胞生物学

    2019年10月 - 2020年3月   後期

  • 分子生物学

    2019年4月 - 2019年9月   前期

  • 先端生命科学

    2019年4月 - 2019年9月   前期

  • 分子生命科学I

    2019年4月 - 2019年6月   春学期

  • 細胞生物学

    2018年10月 - 2019年3月   後期

  • 分子生物学

    2018年4月 - 2018年9月   前期

  • 先端生命科学

    2018年4月 - 2018年9月   前期

  • 分子生命科学I

    2018年4月 - 2018年6月   春学期

  • 分子生命科学特論Ⅱ

    2018年4月 - 2018年6月   春学期

  • 細胞生物学

    2017年10月 - 2018年3月   後期

  • 分子生物学

    2017年4月 - 2017年9月   前期

  • 先端生命科学

    2017年4月 - 2017年9月   前期

  • 分子生命科学Ⅰ

    2017年4月 - 2017年6月   春学期

▼全件表示

FD参加状況

  • 2024年3月   役割:参加   名称:有体物管理センターの業務および成果有体物収入の配分率の変更について

    主催組織:全学

  • 2023年3月   役割:参加   名称:【生物学科】大学発明の出願・権利化に関するFD

    主催組織:学科

  • 2022年3月   役割:参加   名称:入学者選抜試験に関するFD

    主催組織:学科

  • 2022年3月   役割:参加   名称:【生物学科】入学者選抜試験に関するFD

    主催組織:学科

  • 2020年12月   役割:参加   名称:新型コロナウィルス感染拡大状況での学生のメンタルヘルス

    主催組織:部局

  • 2019年10月   役割:参加   名称:(生物学科FD)科研費改革後の学術研究動向について

    主催組織:学科

  • 2018年5月   役割:参加   名称:生物科学部門ファカルティディベロプメント(FD)講演会

    主催組織:学科

  • 2017年9月   役割:参加   名称:生物科学部門ファカルティディベロプメント(FD)講演会

    主催組織:学科

▼全件表示

他大学・他機関等の客員・兼任・非常勤講師等

  • 2022年  名古屋大学理学部  区分:集中講義  国内外の区分:国内 

    学期、曜日時限または期間:2022/12/12〜13

  • 2019年  北海道大学理学部  区分:集中講義  国内外の区分:国内 

    学期、曜日時限または期間:2019/9/25~26

  • 2019年  大阪大学理学部  区分:集中講義  国内外の区分:国内 

    学期、曜日時限または期間:2019/12/16~17

  • 2018年  熊本大学発生医学研究所  区分:非常勤講師  国内外の区分:国内 

社会貢献・国際連携活動概要

  • 2017年度 公開講座 講師
    2017年度 高校における模擬講義
    2018年度 オープンキャンパス担当・講師
    2018年度 ESSP担当
    2018年度 リカレント教育担当
    2021年度 夢ナビ担当

社会貢献活動

  • 夢ナビ講義

    2021年6月

     詳細を見る

    対象:幼稚園以下, 小学生, 中学生, 高校生

    種別:セミナー・ワークショップ

  • 生物学科公開講座

    九州大学大学院理学研究院生物科学部門  2017年8月

     詳細を見る

    対象:社会人・一般, 学術団体, 企業, 市民団体, 行政機関

    種別:講演会

  • 福岡県立東筑高校における模擬講義

    福岡県立東筑高校  2017年7月

     詳細を見る

    対象:社会人・一般, 学術団体, 企業, 市民団体, 行政機関

    種別:講演会

海外渡航歴

  • 2022年3月 - 2022年4月

    滞在国名1:オランダ王国   滞在機関名1:Hotel Zuiderduin, Egmond aan Zee

  • 2019年12月

    滞在国名1:スイス連邦   滞在機関名1:Friedrich Miescher Institute

  • 2019年9月

    滞在国名1:アメリカ合衆国   滞在機関名1:Cold Spring Harbor Laboratory

  • 2018年5月

    滞在国名1:スウェーデン王国   滞在機関名1:Karolinska institute

  • 2017年9月

    滞在国名1:アメリカ合衆国   滞在機関名1:Cold Spring Harbor Laboratory

  • 2017年5月

    滞在国名1:アメリカ合衆国   滞在機関名1:Stanford University

▼全件表示

学内運営に関わる各種委員・役職等

  • 2024年4月 - 2025年3月   学府 システム生命科学府副学府長

  • 2023年4月 - 2025年3月   全学 遺伝子組換え実験安全委員

  • 2023年4月 - 2024年3月   学科 生物学科長

  • 2023年4月 - 2024年3月   研究院 生物科学部門長

  • 2022年4月 - 2023年3月   部門 研究施設委員

  • 2021年4月 - 2023年3月   全学 遺伝子組換え実験安全委員

  • 2021年4月 - 2023年3月   部門 カリキュラム委員

  • 2021年4月 - 2022年3月   研究院 教務委員

  • 2021年4月 - 2022年3月   部門 研究施設委員

  • 2020年4月 - 2021年3月   部門 研究施設委員

  • 2019年4月 - 2021年3月   全学 遺伝子組換え実験安全委員

  • 2017年4月 - 2019年3月   全学 遺伝子組換え実験安全委員

▼全件表示