Updated on 2025/06/11

Information

 

写真a

 
NAKAJO NOBUSHIGE
 
Organization
Faculty of Science Department of Biology Lecturer
School of Sciences Department of Biology(Concurrent)
Graduate School of Systems Life Sciences Department of Systems Life Sciences(Concurrent)
Title
Lecturer
Profile
研究の概要:体細胞は4つの相からなる細胞周期を繰り返しながら、成長・増殖する。この4つの相はそれぞれ、第一間期(G1期)、DNA合成期(S期)、第二間期(G2期)、分裂期(M期)と呼ばれている。しかし、動物卵の初期発生過程における細胞周期の様式は、これとは大きく異なっている。例えば、卵成熟過程(減数分裂)はS期のない2回の連続したM期よりなっており、受精後の卵割は G1期やG2期をもたず、S期とM期のみより構成されている。そして多くの生物で胞胚期になるとG1期やG2期が出現し、体細胞型の細胞周期に近付いていく。細胞の分化や形態形成が細胞周期を通して起こることを考えれば、初期発生過程における細胞周期の変遷がどのように制御されているかは重要な問題といえる。初期発生過程におけるダイナミックな細胞周期様式の変遷は、これらの時期に特異的に働く因子と、(体細胞に共通した)一般的な細胞周期制御因子との相互作用の変遷の結果と捉えることができる。我々は、アフリカツメガエルを用いて、初期発生過程における細胞周期の変化がどのようなメカニズムで起きているかについて研究を行っている。これまでに、卵母細胞の第一減数分裂前期における細胞周期静止にチエックポイントキナーゼ(Chk1)が関与していること、またWee1 キナーゼが存在しない(あるいは、量的に少ない)ことが、卵成熟の進行に重要であることを明らかにした。また初期卵割期における細胞周期の変遷に、Wee1キナーゼ及びCdc25ホスファターゼに対する初期発生過程特有の制御機構が関与していることを明らかにしつつある。 教育の概要:基幹教育の理系ディシプリン科目として、「細胞生物学」を担当している。理学部生物学科専攻教育科目としては「発生生物学」と「応用分子生物学実験」を担当している。研究室では学部4年生と大学院生の研究指導を行っている。
External link

Research Areas

  • Life Science / Developmental biology

  • Life Science / Molecular biology

Degree

  • ph.D.

Research History

  • Kyushu University Faculty of Science Department of Biology  Lecturer 

    2007.3 - Present

Education

  • Kyushu University   Faculty of Science   Department of Biology

    1987.4 - 1991.3

      More details

    Country:Japan

Research Interests・Research Keywords

  • Research theme: 細胞周期

    Keyword: 細胞周期

    Research period: 2024

  • Research theme: 発生生物学

    Keyword: 発生生物学

    Research period: 2024

  • Research theme: 活性酸素種

    Keyword: 活性酸素種

    Research period: 2024

  • Research theme: 卵割

    Keyword: 卵割

    Research period: 2024

  • Research theme: 分子生物学

    Keyword: 分子生物学

    Research period: 2024

  • Research theme: アフリカツメガエル

    Keyword: アフリカツメガエル

    Research period: 2024

  • Research theme: Molecular Biology

    Keyword: Molecular Biology

    Research period: 2024

  • Research theme: developmental Biology

    Keyword: developmental Biology

    Research period: 2024

  • Research theme: Cell cycle control in Xenopus embryogenesis

    Keyword: Xenopus laevis, cell cycle

    Research period: 2009.10 - 2010.10

  • Research theme: Cell cycle control in Xenopus embryogenesis

    Keyword: Xenopus laevis, cell cycle

    Research period: 2008.10 - 2025.3

  • Research theme: アフリカツメガエルの神経形成期における細胞増殖と細胞分化についての研究

    Keyword: 神経形成 神経誘導 アフリカツメガエル 細胞周期 細胞増殖

    Research period: 2007.4 - 2008.3

  • Research theme: Cell cycle control in Xenopus early development.

    Keyword: Cell cycle, Xenopus

    Research period: 1997.1 - 2012.3

Papers

  • Regulation of Myt1 kinase activity via its N-terminal region in Xenopus meiosis and mitosis Reviewed International journal

    Yukito Aiba, Jihoon Kim, Arata Imamura, Kanji Okumoto, Nobushige Nakajo

    Cells & Development   169   203754 - 203754   2022.3   ISSN:2667-2901

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    Immature animal oocytes are naturally arrested at the first meiotic prophase (Pro-I), which corresponds to the G2 phase of the cell cycle. In Xenopus oocytes, Myt1 kinase phosphorylates and inactivates cyclin-dependent kinase 1 (Cdk1) at Pro-I, thereby preventing oocytes from entering meiosis I (MI) prematurely. Previous studies have shown that, upon resuming MI, Cdk1 and p90rsk, which is a downstream kinase of the Mos-MAPK pathway, in turn phosphorylate the C-terminal region of Myt1, to suppress its activity, thereby ensuring high Cdk1 activity during M phase. However, the roles of the N-terminal region of Myt1 during meiosis and mitosis remain to be elucidated. In the present study, we show that the N-terminal region of Myt1 participates in the regulation of Myt1 activity in the Xenopus cell cycle. In particular, we found that a short, conserved sequence in the N-terminal region, termed here as the PAYF motif, is required for the normal activity of Myt1 in oocytes. Furthermore, multiple phosphorylations by Cdk1 at the Myt1 N-terminal region were found to be involved in the negative regulation of Myt1. In particular, phosphorylations at Thr11 and Thr16 of Myt1, which are adjacent to the PAYF motif, were found to be important for the inactivation of Myt1 in the M phase of the cell cycle. These results suggest that in addition to the regulation of Myt1 activity via the C-terminal region, the N-terminal region of Myt1 also plays an important role in the regulation of Myt1 activity.

    DOI: 10.1016/j.cdev.2021.203754

    Web of Science

    Scopus

    PubMed

    researchmap

  • Regulation of Myt1 kinase activity via its N-terminal region in Xenopus meiosis and mitosis. Reviewed International journal

    #Aiba Y, #Kim J, #Imamura A, @Okumoto K, @Nakajo N.

    Cells Dev.   2021.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: doi: 10.1016/j.cdev.2021.203754.

  • Involvement of Myt1 kinase in the G2 phase of the first cell cycle in Xenopus laevis. Reviewed International journal

    Yoshitome S, Aiba Y, Yuge M, Furuno N, Watanabe M, Nakajo N.

    Biochem Biophys Res Commun.   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Reviewed International journal

    Nakajo, N., Yoshitome, S., Iwashita, J., Iida, M., Uto, K., Ueno, S., Okamoto, K., and Sagata N.

    Genes & Development   14 ( 3 )   328 - 338   2000.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Inhibition of Fertilized Egg Division in Xenopus laevis by Weak AC Electric Fields

    KAWANO Tamaki, AIBA Yukito, NAKAJO Nobushige, TAKAMATSU Hiroshi, KURATA Kosaku

    The Proceedings of the JSME Conference on Frontiers in Bioengineering   2022.33 ( 0 )   1E08   2022   eISSN:24242810

     More details

    Language:Japanese   Publisher:The Japan Society of Mechanical Engineers  

    DOI: 10.1299/jsmebiofro.2022.33.1e08

    CiNii Research

  • Universal glass-forming behavior of in vitro and living cytoplasm Reviewed

    Kenji Nishizawa, Kei Fujiwara, Masahiro Ikenaga, Nobushige Nakajo, Miho Yanagisawa, Daisuke Mizuno

    Scientific reports   7 ( 1 )   2017.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Physiological processes in cells are performed efficiently without getting jammed although cytoplasm is highly crowded with various macromolecules. Elucidating the physical machinery is challenging because the interior of a cell is so complex and driven far from equilibrium by metabolic activities. Here, we studied the mechanics of in vitro and living cytoplasm using the particle-tracking and manipulation technique. The molecular crowding effect on cytoplasmic mechanics was selectively studied by preparing simple in vitro models of cytoplasm from which both the metabolism and cytoskeletons were removed. We obtained direct evidence of the cytoplasmic glass transition; a dramatic increase in viscosity upon crowding quantitatively conformed to the super-Arrhenius formula, which is typical for fragile colloidal suspensions close to jamming. Furthermore, the glass-forming behaviors were found to be universally conserved in all the cytoplasm samples that originated from different species and developmental stages; they showed the same tendency for diverging at the macromolecule concentrations relevant for living cells. Notably, such fragile behavior disappeared in metabolically active living cells whose viscosity showed a genuine Arrhenius increase as in typical strong glass formers. Being actively driven by metabolism, the living cytoplasm forms glass that is fundamentally different from that of its non-living counterpart.

    DOI: 10.1038/s41598-017-14883-y

  • Voltage-dependent anion channel (VDAC-1) is required for olfactory sensing in Caenorhabditis elegans Reviewed

    Takayuki Uozumi, Masayuki Hamakawa, Yu ki Deno, Nobushige Nakajo, Takaaki Hirotsu

    Genes to Cells   20 ( 10 )   802 - 816   2015.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The Ras-MAP kinase signaling pathway plays important roles for the olfactory reception in olfactory neurons in Caenorhabditis elegans. However, given the absence of phosphorylation targets of MAPK in the olfactory neurons, the mechanism by which this pathway regulates olfactory function is unknown. Here, we used proteomic screening to identify the mitochondrial voltage-dependent anion channel VDAC-1 as a candidate target molecule of MAPK in the olfactory system of C. elegans. We found that Amphid Wing "C" (AWC) olfactory neuron-specific knockdown of vdac-1 caused severe defects in chemotaxis toward AWC-sensed odorants. We generated a new vdac-1 mutant using the CRISPR-Cas9 system, with this mutant also showing decreased chemotaxis toward odorants. This defect was rescued by AWC-specific expression of vdac-1, indicating that functions of VDAC-1 in AWC neurons are essential for normal olfactory reception in C. elegans. We observed that AWC-specific RNAi of vdac-1 reduced AWC calcium responses to odorant stimuli and caused a decrease in the quantity of mitochondria in the sensory cilia. Behavioral abnormalities in vdac-1 knockdown animals might therefore be due to reduction of AWC response, which might be caused by loss of mitochondria in the cilia. Here, we showed that the function of VDAC-1 is regulated by phosphorylation and identified Thr175 as the potential phosphorylation site of MAP kinase.

    DOI: 10.1111/gtc.12269

  • Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2 Reviewed

    Kazuhiro Suzuki, Kosuke Sako, Kazuhiro Akiyama, Michitaka Isoda, Chiharu Senoo, Nobushige Nakajo, Noriyuki Sagata

    Scientific reports   5   2015.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The cyclin B-dependent protein kinase Cdk1 is a master regulator of mitosis and phosphorylates numerous proteins on the minimal consensus motif Ser/Thr-Pro (S/T-P). At least in several proteins, however, not well-defined motifs lacking a Pro in the +1 position, referred herein to as non-S/T-P motifs, have been shown to be phosphorylated by Cdk1. Here we show that non-S/T-P motifs in fact form consensus sequences for Cdk1 and probably play roles in mitotic regulation of physiologically important proteins. First, we show, by in vitro kinase assays, that previously identified non-S/T-P motifs all harbour one or more C-terminal Arg/Lys residues essential for their phosphorylation by Cdk1. Second, using Arg/Lys-scanning oriented peptide libraries, we demonstrate that Cdk1 phosphorylates a minimal sequence S/T-X-X-R/K and more favorable sequences (P)-X-S/T-X-[R/K] 2-5 as its non-S/T-P consensus motifs. Third, on the basis of these results, we find that highly conserved linkers (typically, T-G-E-K-P) of C2H2 zinc finger proteins and a nuclear localization signal-containing sequence (matching P-X-S-X-[R/K] 5) of the cytokinesis regulator Ect2 are inhibitorily phosphorylated by Cdk1, well accounting for the known mitotic regulation and function of the respective proteins. We suggest that non-S/T-P Cdk1 consensus motifs identified here may function to regulate many other proteins during mitosis.

    DOI: 10.1038/srep07929

  • Emi2 mediates meiotic MII arrest by competitively inhibiting the binding of Ube2S to the APC/C Reviewed

    Kosuke Sako, Kazuhiro Suzuki, Michitaka Isoda, Satomi Yoshikai, Chiharu Senoo, Nobushige Nakajo, Munemichi Ohe, Noriyuki Sagata

    Nature communications   5   2014.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Emi2, a direct inhibitor of the APC/C ubiquitin ligase. Two different ubiquitin-conjugating enzymes, UbcH10 and Ube2S, work with the APC/C to target APC/C substrates for degradation. However, their possible roles and regulations in unfertilized/fertilized eggs are not known. Here we use Xenopus egg extracts to show that both UbcH10 and Ube2S are required for rapid cyclin B degradation at fertilization, when APC/C binding of Ube2S, but not of UbcH10, increases several fold, coincidently with (SCFβ-TrCP-dependent) Emi2 degradation. Interestingly, before fertilization, Emi2 directly inhibits APC/C-Ube2S binding via the C-terminal tail, but on fertilization, its degradation allows the binding mediated by the Ube2S C-terminal tail. Significantly, Emi2 and Ube2S bind commonly to the APC/C catalytic subunit APC10 via their similar C-terminal tails. Thus, Emi2 competitively inhibits APC/C-Ube2S binding before fertilization, while its degradation on fertilization relieves the inhibition for APC/C activation.

    DOI: 10.1038/ncomms4667

  • Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early xenopus development Reviewed

    Nobushige Nakajo, Yu Ki Deno, Hiroyuki Ueno, Chihiro Kenmochi, Ken Shimuta, Noriyuki Sagata

    International Journal of Developmental Biology   55 ( 6 )   627 - 632   2011.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In early animal development, cell proliferation and differentiation are tightly linked and coordinated. It is important, therefore, to know how the cell cycle is controlled during early development. Cdc25 phosphatases activate cyclin-dependent kinases (Cdks) and thereby promote cell-cycle progression. In Xenopus laevis, three isoforms of cdc25 have been identified, viz. cdc25A, cdc25B and cdc25C. In this study, we isolated a cDNA encoding a novel Xenopus Cdc25 phosphatase (named cdc25D). We investigated the temporal and spatial expression patterns of the four cdc25 isoforms during early Xenopus development, using RT-PCR and whole-mount in situ hybridization. cdc25A and cdc25C were expressed both maternally and zygotically, whereas cdc25B and cdc25D were expressed zygotically. Both cdc25A and cdc25C were expressed mainly in prospective neural regions, whereas cdc25B was expressed preferentially in the central nervous system (CNS), such as the spinal cord and the brain. Interestingly, cdc25D was expressed in the epidermal ectoderm of the late-neurula embryo, and in the liver diverticulum endoderm of the midtailbud embryo. In agreement with the spatial expression patterns in whole embryos, inhibition of bone morphogenetic protein (BMP), a crucial step for neural induction, induced an upregulation of cdc25B, but a downregulation of cdc25D in animal cap assays. These results indicate that different cdc25 isoforms are differently expressed and play different roles during early Xenopus development.

    DOI: 10.1387/ijdb.113287nn

  • Dynamic Regulation of Emi2 by Emi2-Bound Cdk1/Plk1/CK1 and PP2A-B56 in Meiotic Arrest of Xenopus Eggs Reviewed

    Michitaka Isoda, Kosuke Sako, Kazuhiro Suzuki, Kazuaki Nishino, Nobushige Nakajo, Munemichi Ohe, Takanori Ezaki, Yoshinori Kanemori, Daigo Inoue, Hiroyuki Ueno, Noriyuki Sagata

    Developmental Cell   21 ( 3 )   506 - 519   2011.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Mos and Emi2, an inhibitor of the APC/C ubiquitin ligase. In Xenopus, Cdk1 phosphorylates Emi2 and both destabilizes and inactivates it, whereas Mos recruits PP2A phosphatase to antagonize the Cdk1 phosphorylation. However, how Cdk1 phosphorylation inhibits Emi2 is largely unknown. Here we show that multiple N-terminal Cdk1 phosphorylation motifs bind cyclin B1-Cdk1 itself, Plk1, and CK1δ/ε to inhibit Emi2. Plk1, after rebinding to other sites by self-priming phosphorylation, partially destabilizes Emi2. Cdk1 and CK1δ/ε sequentially phosphorylate the C-terminal APC/C-docking site, thereby cooperatively inhibiting Emi2 from binding the APC/C. In the presence of Mos, however, PP2A-B56β/ε bind to Emi2 and keep dephosphorylating it, particularly at the APC/C-docking site. Thus, Emi2 stability and activity are dynamically regulated by Emi2-bound multiple kinases and PP2A phosphatase. Our data also suggest a general role for Cdk1 substrate phosphorylation motifs in M phase regulation.

    DOI: 10.1016/j.devcel.2011.06.029

  • Emi2 inhibition of the anaphase-promoting complex/cyclosome absolutely requires Emi2 binding via the C-terminal RL tail Reviewed

    Munemichi Ohe, Yoshiko Kawamura, Hiroyuki Ueno, Daigo Inoue, Yoshinori Kanemori, Chiharu Senoo, Michitaka Isoda, Nobushige Nakajo, Noriyuki Sagata

    Molecular biology of the cell   21 ( 6 )   905 - 913   2010.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Emi2 (also called Erp1) inhibits the anaphase-promoting complex/cyclosome (APC/C) and thereby causes metaphase II arrest in unfertilized vertebrate eggs. Both the D-box and the zinc-binding region (ZBR) of Emi2 have been implicated in APC/C inhibition. However, it is not well known how Emi2 interacts with and hence inhibits the APC/C. Here we show that Emi2 binds the APC/C via the C-terminal tail, termed here the RL tail. When expressed in Xenopus oocytes and egg extracts, Emi2 lacking the RL tail fails to interact with and inhibit the APC/C. The RL tail itself can directly bind to the APC/C, and, when added to egg extracts, either an excess of RL tail peptides or anti-RL tail peptide antibody can dissociate endogenous Emi2 from the APC/C, thus allowing APC/C activation. Furthermore, and importantly, the RL tail-mediated binding apparently promotes the inhibitory interactions of the D-box and the ZBR (of Emi2) with the APC/C. Finally, Emi1, a somatic paralog of Emi2, also has a functionally similar RL tail. We propose that the RL tail of Emi1/Emi2 serves as a docking site for the APC/C, thereby promoting the interaction and inhibition of the APC/C by the D-box and the ZBR.

    DOI: 10.1091/mbc.E09-11-0974

  • FoxM1-driven cell division is required for neuronal differentiation in early Xenopus embryos Reviewed International journal

    Ueno, H. Nakajo, N. Watanabe, M. Isoda, M. Sagata, N.

    Development   2009.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCFβ-TrCP- dependent degradation for cell cycle arrest Reviewed

    Michitaka Isoda, Yoshinori Kanemori, Nobushige Nakajo, Sanae Uchida, Katsumi Yamashita, Hiroyuki Ueno, Noriyuki Sagata

    Molecular biology of the cell   20 ( 8 )   2186 - 2195   2009.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The extracellular signal-regulated kinase (ERK) pathway is generally mitogenic, but, upon strong activation, it causes cell cycle arrest by a not-yet fully understood mechanism. In response to genotoxic stress, Chkl hyperphosphorylates Cdc25A, a positive cell cycle regulator, and targets it for Skpl/Cullinl/F-box protein (SCF)β-TrCP ubiquitin ligase-dependent degradation, thereby leading to cell cycle arrest. Here, we show that strong ERK activation can also phosphorylate and target Cdc25A for SCFβ-TrCP-dependent degradation. When strongly activated in Xenopus eggs, the ERK pathway induces prominent phosphorylation and SCF β-TrCP-dependent degradation of Cdc25A. p90rsk, the kinase downstream of ERK, directly phosphorylates Cdc25A on multiple sites, which, interestingly, overlap with Chkl phosphorylation sites. Furthermore, ERK itself phosphorylates Cdc25A on multiple sites, a major site of which apparently is phosphorylated by cyclin-dependent kinase (Cdk) in Chkl-induced degradation. p90rsk phosphorylation and ERK phosphorylation contribute, roughly equally and additively, to the degradation of Cdc25A, and such Cdc25A degradation occurs during oocyte maturation in which the endogenous ERK pathway is fully activated. Finally, and importantly, ERK-induced Cdc25A degradation can elicit cell cycle arrest in early embryos. These results suggest that strong ERK activation can target Cdc25A for degradation in a manner similar to, but independent of, Chkl for cell cycle arrest.

    DOI: 10.1091/mbc.E09-01-0008

  • Involvement of Xtr (Xenopus tudor repeat) in microtubule assembly around nucleus and karyokinesis during cleavage in Xenopus laevis Reviewed

    Masateru Hiyoshi, Nobushige Nakajo, Sin Ichi Abe, Kazufumi Takamune

    Development Growth and Differentiation   47 ( 2 )   109 - 117   2005.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We have previously shown that the transcriptional product of the novel gene, Xenopus tudor repeat (Xtr), occurred exclusively in germline cells and early embryonic cells and that the putative Xtr contained plural tudor domains which are thought to play a role in the protein-protein interactions. To understand the role of Xtr, we produced an antibody against a polypeptide containing Xtr tudor domains as an antigen and investigated the distribution and the function of the Xtr. Immunoprecipitation/Western blot and immunohistochemical analyses indicated a similar occurrence of the Xtr to the mRNA except for a slightly different profile of its amount during spermatogenesis. In spite of a large amount of Xtr mRNA at late-secondary spermatogonial stage, the amount of Xtr was kept at a low level until this stage and increased after entering into the meiotic phase. Depletion of the Xtr function in the activated eggs by injection of the anti-Xtr antibody caused the inhibition both of microtubule assembly around nucleus and of karyokinesis progression after prophase, but not of the oscillation of H1 kinase activity. These results suggest that the karyokinesis of at least early embryonic cells are regulated by unique mechanisms in which the Xtr is involved.

    DOI: 10.1111/j.1440-169x.2005.00787.x

  • Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism Reviewed

    Katsuhiro Uto, Daigo Inoue, Ken Shimuta, Nobushige Nakajo, Noriyuki Sagata

    EMBO Journal   23 ( 16 )   3386 - 3396   2004.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Cdc25 phosphatases activate cyclin-dependent kinases (Cdks) and thereby promote cell cycle progression. In vertebrates, Chk1 and Chk2 phosphorylate Cdc25A at multiple N-terminal sites and target it for rapid degradation in response to genotoxic stress. Here we show that Chk1, but not Chk2, phosphorylates Xenopus Cdc25A at a novel C-terminal site (Thr504) and inhibits it from C-terminally interacting with various Cdk-cyclin complexes, including Cdk1-cyclin A, Cdk1-cyclin B, and Cdk2-cyclin E. Strikingly, this inhibition, rather than degradation itself, of CdcZSA is essential for the Chk1-induced cell cycle arrest and the DNA replication checkpoint in early embryos. 14-3-3 proteins bind to Chk1-phosphorylated Thr504, but this binding is not required for the inhibitory effect of Thr504 phosphorylation. A C-terminal site presumably equivalent to Thr504 exists in all known Cdc25 family members from yeast to humans, and its phosphorylation by Chk1 (but not Chk2) can also inhibit all examined Cdc25 family members from C-terminally interacting with their Cdk-cyclin substrates. Thus, Chk1 but not Chk2 seems to inhibit virtually all Cdc25 phosphatases by a novel common mechanism.

    DOI: 10.1038/sj.emboj.7600328

  • Mr 25 000 protein, a substrate for protein serine/threonine kinases, is identified as a part of Xenopus laevis vitellogenin B1 Reviewed

    Satoshi Yoshitome, Hiroyasu Nakamura, Nobushige Nakajo, Kengo Okamoto, Isamu Sugimoto, Hiromi Kohara, Kaori Kitayama, Kazuaki Igarashi, Susumu Ito, Noriyuki Sagata, Eikichi Hashimoto

    Development Growth and Differentiation   45 ( 3 )   283 - 294   2003.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A phosphorylated protein with a molecular mass of 25 000 (pp25) previously purified from the cytosolic fraction of Xenopus laevis oocytes is an effective phosphate acceptor for casein kinases and protein kinase C. In this study, based on the partial amino acid sequence of pp25, a cDNA was isolated that encodes a new yolk precursor protein, Xenopus vitellogenin B1, which contained the sequence encoding pp25. Both mRNA and protein of vitellogenin B1 were expressed in all of the female organs examined. In agreement with a previous report, the amount of vitellogenin B1 protein in the liver increased after stimulation with estrogen. These results suggest that pp25 is a cytosolic non-crystallized yolk protein nutnent source, but it might also play a role in rapid development.

    DOI: 10.1046/j.1524-4725.2003.696.x

  • The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B-Cdc2 complex Reviewed

    Tadahiro Goda, Takashi Ishii, Nobushige Nakajo, Noriyuki Sagata, Hideki Kobayashi

    Journal of Biological Chemistry   278 ( 21 )   19032 - 19037   2003.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The FLRRXSK sequence is conserved in the second cyclin box fold of B-type cyclins. We show that this conserved sequence in Xenopus cyclin B2, termed the RRASK motif, is required for the substrate recognition by the cyclin B-Cdc2 complex of Cdc25C. Mutations to charged residues of the RRASK motif of cyclin B2 abolished its ability to activate Cdc2 kinase without affecting its capacity to bind to Cdc2. Cdc2 bound to the cyclin B2 RRASK mutant was not dephosphorylated by Cdc25C, and as a result, the complex was inactive. The cyclin B2 RRASK mutants can form a complex with the constitutively active Cdc2, but a resulting active complex did not phosphorylate a preferred substrate Cdc25C in vitro, although it can phosphorylate the non-specific substrate histone H1. The RRASK mutations prevented the interaction of Cdc25C with the cyclin B2-Cdc2 complex. Consistently, the RRASK mutants neither induced germinal vesicle breakdown in Xenopus oocyte maturation nor activated in vivo Cdc2 kinase during the cell cycle in mitotic extracts. These results suggest that the RRASK motif in Xenopus cyclin B2 plays an important role in defining the substrate specificity of the cyclin B-Cdc2 complex.

    DOI: 10.1074/jbc.M300210200

  • Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition Reviewed

    Ken Shimuta, Nobushige Nakajo, Katsuhiro Uto, Yoshimasa Hayano, Kenji Okazaki, Noriyuki Sagata

    EMBO Journal   21 ( 14 )   3694 - 3703   2002.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In Xenopus embryos, cell cycle elongation and degradation of Cdc25A (a Cdk2 Tyr15 phosphatase) occur naturally at the midblastula transition (MBT), at which time a physiological DNA replication checkpoint is thought to be activated by the exponentially increased nucleo-cytoplasmic ratio. Here we show that the checkpoint kinase Chk1, but not Cds1 (Chk2), is activated transiently at the MBT in a maternal/zygotic gene product-regulated manner and is essential for cell cycle elongation and Cdc25A degradation at this transition. A constitutively active form of Chk1 can phosphorylate Cdc25A in vitro and can target it rapidly for degradation in pre-MBT embryos. Intriguingly, for this degradation, however, Cdc25A also requires a prior Chk1-independent phosphorylation at Ser73. Ectopically expressed human Cdc25A can be degraded in the same way as Xenopus Cdc25A. Finally, Cdc25A degradation at the MBT is a prerequisite for cell viability at later stages. Thus, the physiological replication checkpoint is activated transiently at the MBT by developmental cues, and activated Chkl, only together with an unknown kinase, targets Cdc25A for degradation to ensure later development.

    DOI: 10.1093/emboj/cdf357

  • The existence of two distinct Wee1 isoforms in Xenopus Implications for the developmental regulation of the cell cycle Reviewed

    Kengo Okamoto, Nobushige Nakajo, Noriyuki Sagata

    EMBO Journal   21 ( 10 )   2472 - 2484   2002.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In eukaryotic cells, the Wee1 protein kinase phosphorylates and inhibits Cdc2, thereby creating an interphase of the cell cycle. In Xenopus, the conventional Wee1 homolog (termed Xe-Wee1A, or Wee1A for short) is maternally expressed and functions in pregastrula embryos with rapid cell cycles. Here, we have isolated a second, zygotic isoform of Xenopus Wee1, termed Xe-Wee1B (or Wee1B for short), that is expressed in postgastrula embryos and various adult tissues. When ectopically expressed in immature oocytes, Wee1B inhibits Cdc2 activity and oocyte maturation (or entry into M phase) much more strongly than Wee1A, due to its short C-terminal regulatory domain. Moreover, ectopic Wee1B, unlike Wee1A, is very labile during meiosis II and cannot accumulate in mature oocytes due to the presence of PEST-like sequences in its N-terminal regulatory domain. Finally, when expressed in fertilized eggs, ectopic Wee1B but not Wee1A does affect cell division and impair cell viability in early embryos, due primarily to its very strong kinase activity. These results suggest strongly that the differential expression of Wee1A and Wee1B is crucial for the developmental regulation of the cell cycle in Xenopus.

    DOI: 10.1093/emboj/21.10.2472

  • Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes Reviewed

    Tomoya Oe, Nobushige Nakajo, Yoshinori Katsuragi, Kenji Okazaki, Noriyuki Sagata

    Developmental Biology   229 ( 1 )   250 - 261   2001.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Chk1, a nuclear DNA damage/replication G2 checkpoint kinase, phosphorylates Cdc25 and causes its nuclear exclusion in yeast and mammalian cells, thereby arresting the cell at the G2 phase until DNA repair/replication is completed. Chk1 is also involved, at least in part, in the natural G2 arrest of immature Xenopus oocytes, but it is unknown how Chk1 inhibits Cdc25 function and undergoes regulation during oocyte maturation. By using enucleated oocytes, we show here that Chk1 inhibits Cdc25 function in the cytoplasm of G2-arrested oocytes and that Cdc25 is activated exclusively in the cytoplasm of maturing oocytes. Moreover, we show that Chk1 activity is not appreciably altered during maturation, being maintained at basal levels, and that C-terminal truncation mutants of Chk1 have very high kinase activities, strong abilities to inhibit maturation, and altered subcellular localization in oocytes. These results, together with other results, suggest that the Chk1/Cdc25 pathway is involved cytoplasmically in G2 arrest of Xenopus oocytes, but moderately and independent of the G2 checkpoint, and that the C-terminal region of Chk1 negatively regulates its kinase activity and also determines its subcellular localization. Based on these results, we discuss the possibility that Chk1 (with the basal activity) may function as an ordinary regulator of Cdc25 in oocytes (and in other cell types) and that Chk1 might be hyperactivated in response to the G2 checkpoint via its dramatic conformational change.

    DOI: 10.1006/dbio.2000.9968

  • Two structural variants of Nek2 kinase, termed Nek2A and Nek2B, are differentially expressed in Xenopus tissues and development Reviewed

    Katsuhiro Uto, Nobushige Nakajo, Noriyuki Sagata

    Developmental Biology   208 ( 2 )   456 - 464   1999.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Nek2 kinase, a NIMA-related kinase, has been suggested to play both meiotic and mitotic roles in mammals, but its function(s) during development is poorly understood. We have isolated here cDNAs encoding a Xenopus homolog of mammalian Nek2 and have shown that Xenopus Nek2 has two structural variants, termed Nek2A and Nek2B. Nek2A, most likely a C-terminally spliced form, corresponds to the previously described human and mouse Nek2, while Nek2B is most probably a novel, C-terminally unspliced form of Nek2. As a consequence of this (probable) alternative splicing, Nek2B lacks the C- terminal 70-amino-acid sequence of Nek2A, which contains a PEST sequence (or a motif for rapid degradation). Western blot analysis reveals that Nek2A is expressed predominantly in the testis (presumably in spermatocytes) and very weakly in the stomach and, during development, only after the neurula stage. By contrast, Nek2B is expressed mainly in the ovary and in both primary and secondary oocytes and early embryos up to the neurula stage. These results suggest that Nek2A and Nek2B may play both meiotic and mitotic roles, but in a spatially and temporally complementary manner during Xenopus development, and thai: Nek2B, rather than Nek2A (or the conventional form of Nek2), may play an important role in early development. We discuss the possibility that a counterpart of Xenopus Nek2B might also exist and function in early mammalian development.

    DOI: 10.1006/dbio.1999.9231

  • Involvement of Chk1 kinase in prophase I arrest of Xenopus oocytes Reviewed

    Nobushige Nakajo, Tomoya Oe, Katsuhiro Uto, Noriyuki Sagata

    Developmental Biology   207 ( 2 )   432 - 444   1999.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Chk1 kinase, a DNA damage/replication G2 checkpoint kinase, has recently been shown to phosphorylate and inhibit Cdc25C, a Cdc2 Tyr-15 phosphatase, thereby directly linking the G2 checkpoint to negative regulation of Cdc2. Immature Xenopus oocytes are arrested naturally at the first meiotic prophase (prophase I) or the late G2 phase, with sustained Cdc2 Tyr-15 phosphorylation. Here we have cloned a Xenopus homolog of Chk1, determined its developmental expression, and examined its possible role in prophase I arrest of oocytes. Xenopus Chk1 protein is expressed at approximately constant levels throughout oocyte maturation and early embryogenesis. Overexpression of wild-type Chk1 in oocytes prevents the release from prophase I arrest by progesterone. Conversely, specific inhibition of endogenous Chk1 either by overexpression of a dominant-negative Chk1 mutant or by injection of a neutralizing anti-Chk1 antibody facilitates prophase I release by progesterone. Moreover, when ectopically expressed in oocytes, a Chk1-nonphosphorylatable Cdc25C mutant alone can induce prophase I release much more efficiently than wild-type Cdc25C; if endogenous Chk1 function is inhibited, however, even wild-type Cdc25C can induce the release very efficiently. These results suggest strongly that Chk1 is involved in physiological prophase I arrest of Xenopus oocytes via the direct phosphorylation and inhibition of Cdc25C. We discuss the possibility that Chk1 might function either as a G2 checkpoint kinase or as an ordinary cell cycle regulator in prophase-I-arrested oocytes.

    DOI: 10.1006/dbio.1998.9178

  • Meiotic cell cycle in Xenopus oocytes is independent of cdk2 kinase Reviewed

    Nobuaki Furuno, Yasuki Ogawa, Jun Iwashita, Nobushige Nakajo, Noriyuki Sagata

    EMBO Journal   16 ( 13 )   3860 - 3865   1997.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is proposed to be involved in metaphase II arrest in mature oocytes. In addition, cdk2 kinase has been shown recently to be essential for MPF activation in Xenopus embryonic mitosis. Here we report injection of Xenopus oocytes with the cdk2 kinase inhibitor p21(Cip) in order to (re)evaluate the role of cdk2 kinase in oocyte meiosis. Immature oocytes injected with p21(Cip) can enter both meiosis I and meiosis II normally, as evidenced by the typical fluctuations in MPF activity. Moreover, mature oocytes injected with p21(Cip) are retained normally in metaphase II for a prolonged period, whereas those injected with neutralizing anti-Mos antibody are released readily from metaphase II arrest. These results argue strongly against a role for cdk2 kinase in MPF activation and its proposed role in metaphase II arrest, in Xenopus oocyte meiosis. We discuss the possibility that cdk2 kinase stored in oocytes may function, as a maternal protein, solely for early embryonic cell cycles.

    DOI: 10.1093/emboj/16.13.3860

  • Occurrence of a novel fucose-containing pentaglycosylceramide with blood-group-B active determinant in Xenopus blastula cells Its possible involvement in cell-cell adhesion Reviewed

    Kazuya Nomura, Nobushige Nakajo, K. L.P.J. Hidari, H. Nomura, M. Murata, M. Suzuki, K. Yamana, Y. Hirabayashi

    Biochemical Journal   306 ( 3 )   821 - 827   1995.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    For understanding of the biological function of glycoconjugates during embryogenesis and morphogenesis, Xenopus laevis is considered a very useful animal model. We have found that blood-group-active molecules characteristically were distributed in the cell-cell contact region of Xenopus blastula cells. The chemical nature of blood-group-active glycoconjugates, including glycosphingolipids, is little known. T.l.c.-immunostaining using anti-blood-group-antigen antibodies showed that many species of blood group-B-active glycosphingolipids existed in the neutral glycosphingolipid fraction extracted from Xenopus laevis eggs. Among the B-active glycosphingolipids detected, two major components with the fastest mobility on a t.l.c. plate, tentatively termed XN-1 and XN-2, were isolated, and their chemical structures were characterized by gas chromatography-mass spectrometry, immunological analysis, fast-atom-bombardment mass spectrometry and 1H-n.m.r, spectroscopy. Both XN-1 and XN-2 had an identical pentaoligosaccharide structure, but differed in their ceramide moiety. The chemical structure is: Galα1-3 Galβ1-3Galβ1-4Glcβ1-1'Cer Fucα1-2 This is a novel type of pentaglycosylceramide with blood-group B activity, in that it lacks N-acetylhexosamine in its core carbohydrate structure, In this paper, a possible involvement of the blood-group antigen in the cell-adhesion process of Xenopus embryonic cells is discussed.

    DOI: 10.1042/bj3060821

  • Suppression of DNA replication via mos function during meiotic divisions in xenopus oocytes Reviewed

    Nobuaki Furuno, Mayumi Nishizawa, Kenji Okazaki, Hirotaka Tanaka, Jun Iwashita, Nobushige Nakajo, Yasuki Ogawa, Noriyuki Sagata

    EMBO Journal   13 ( 10 )   2399 - 2410   1994.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Meiosis is characterized by the absence of DNA replication between the two successive divisions. In Xenopus eggs, the ability to replicate DNA develops during meiotic maturation, but is normally suppressed until fertilization. Here we show that development of the DNA-replicating ability depends on new protein synthesis during meiosis I, and that mere ablation of the endogenous c-mos product Mos allows maturing oocytes to enter interphase and replicate DNA just after meiosis I. Moreover, we demonstrate that during normal maturation cdc-2 kinase undergoes precocious inactivation in meiosis I and then premature reactivation before meiosis II; importantly, this premature cdc-2 reactivation absolutely requires Mos function and its direct inhibition by a dominant-negative cdc-2 mutant also results in nuclear reformation and DNA replication immediately after meiosis I. These findings indicate that suppression of DNA replication during meiotic divisions in Xenopus oocytes is accomplished by the Mos-mediated premature reactivation of cdc-2 kinase. We suggest that these mechanisms for suppressing DNA replication may be specific for meiosis in animal oocytes, and that the ultimate biological function, including the well known cytostatic factor activity, of Mos during meiotic maturation may be to prevent undesirable DNA replication or parthenogenetic activation before fertilization.

  • A mouse B16 melanoma mutant deficient in glycolipids Reviewed

    Shinichi Ichikawa, Nobushige Nakajo, Hisako Sakiyama, Yoshio Hirabayashi

    Proceedings of the National Academy of Sciences of the United States of America   91 ( 7 )   2703 - 2707   1994.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Mouse B16 melanoma cell line, GM-95 (formerly designated as MEC-4), deficient in sialyllactosylceramide was examined for its primary defect. Glycolipids from the mutant cells were analyzed by high-performance TLC. No glycolipid was detected in GM-95 cells, even when total lipid from 107 cells was analyzed. In contrast, the content of ceramide, a precursor lipid molecule of glycolipids, was normal. Thus, the deficiency of glycolipids was attributed to the first glucosylation step of ceramide. The ceramide glucosyltransferase (EC 2.4.1.80) activity was not detected in GM-95 cells. There was no significant difference of sialyllactosylceramide synthase activity, however, between GM-95 and the parental cells. The deficiency of glycolipids in GM-95 cells was associated with changes of the cellular morphology and growth rate. The parental cells showed irregular shapes and tended to overlap each other. On the other hand, GM-95 cells exhibited an elongated fibroblastic morphology and parallel arrangement. The population- doubling times of GM-95 and the parental cells in serum-free medium were 28 hr and 19 hr, respectively.

    DOI: 10.1073/pnas.91.7.2703

  • A Novel Monoclonal Antibody disrupting Cell Type Specific Substratum Adhesion of Frog (Xenopus laevis) Epithelial Cells and Endothelial Cells (frog, Xenopus laevis/cell substratum adhesion/cell adhesion/endothelial cells) Reviewed

    Kazuya Nomura, Tatsuya Tajima, Hajime Nomura, Kiyomi Tsuno, Yasuo Fujimura, Nobushige Nakajo, Kiyotaka Yamana

    Development, Growth & Differentiation   33 ( 6 )   639 - 649   1991.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We isolated a mouse monoclonal antibody (FAD‐II) that disrupts cell‐substratum adhesion of amphibian (Xenopus laevis) epithelial cells and endothelial cells. The effect of the antibody was cell‐type specific, and the antibody had no effect on fibroblastic cells while fibronectin peptide blocked cell‐substratum adhesion of all the cell types examined. In developing frog embryos, the epitopes recognized by the antibody were detected in pronephrotic ducts and in other tissue cells of embryos (from stage 33/34 afterwards). In adult tissues, the antibody mainly recognized antigens in extracelluar matrices. The antigens recognized by the antibody seems to be novel glycoepitopes in frog cells.

    DOI: 10.1111/j.1440-169X.1991.00639.x

▼display all

Presentations

  • APC/C阻害因子Emi1の分解機構

    中條 信成, 佐方 功幸, 原野由衣

    第35回日本分子生物学会年会  2012.12 

     More details

    Event date: 2012.12

    Language:Japanese  

    Venue:福岡国際会議場、マリンメッセ福岡   Country:Japan  

  • アフリカツメガエルの胚発⽣における p27Kip1 の機能

    #Jihoon Kim, #相⽻ ⾏⼈, #今村 新, #⼭崎 七海, @中條 信成

    第46回日本分子生物学会年会  2023.12 

     More details

    Event date: 2023.12 - 2024.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神戸ポートアイランド   Country:Japan  

  • アフリカツメガエルの胚発⽣における p27Kip1 の機能

    #Jihoon Kim, #相⽻ ⾏⼈, #今村 新, #⼭崎 七海, @中條 信成

    両⽣類研究センターバイオリソース棟 落成記念シンポジウム  2023.3 

     More details

    Event date: 2023.3

    Language:Japanese  

    Venue:広島大学   Country:Japan  

  • 卵第⼆減数分裂中期の解除における過酸化⽔素の機能

    #相知紀史, @寺本 孝⾏, @奥本 寛治, #⾦ 智熏, #今村 新, @中條信成

    両⽣類研究センターバイオリソース棟 落成記念シンポジウム  2023.3 

     More details

    Event date: 2023.3

    Language:Japanese  

    Venue:広島大学   Country:Japan  

  • アフリカツメガエル胚発生におけるp27Kip1の発現と機能

    #金智熏, #相羽行人, #山崎七海, #今村新, 中條信成

    第44回日本分子生物学会  2021.12 

     More details

    Event date: 2021.12

    Language:Japanese  

    Venue:オンライン   Country:Japan  

  • 「アフリカツメガエル第一卵割期におけるCdk1のリン酸化/不活性化の制御機構」

    相羽行人, 吉留賢, 飯島慎也, 弓削昌弘, 古野伸明, 中條信成

    第12回日本ツメガエル研究集会, 第4回次世代両生類研究会合同シンポジウム  2018.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:広島   Country:Japan  

  • アフリカツメガエル第1卵割におけるCdc25AとEmi2の役割

    相羽行人,中山侑哉,飯島慎也,吉留賢,中條信成

    第40回日本分子生物学会年会  2017.12 

     More details

    Event date: 2018.12

    Language:Japanese  

    Venue:神戸   Country:Japan  

  • アフリカツメガエル第一卵割期におけるCdk1の制御機構

    吉留賢,相羽行人,飯島慎也,中山侑哉,渡辺稔,古野伸明,弓削昌弘,中條信成

    第40回日本分子生物学会年会  2017.12 

     More details

    Event date: 2018.12

    Language:Japanese  

    Venue:神戸   Country:Japan  

  • アフリカツメガエル第一卵割期におけるCdk1のリン酸化/不活性化の制御機構

    #相羽行人、@吉留賢、#飯島慎也、@弓削昌弘、@古野伸明、@中條信成

    日本分子生物学会  2018.11 

     More details

    Event date: 2018.11

    Language:Japanese  

    Venue:横浜   Country:Japan  

  • アフリカツメガエル初期胚の受精後最初のG2期におけるCdk1リン酸化・脱リン酸化制御機構解析の試み

    吉留賢,相羽行人,飯島慎也,中山侑哉,渡部稔,古野伸明,弓削昌弘,中條信成

    第11回アフリカツメガエル研究集会  2017.9 

     More details

    Event date: 2018.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:宮崎   Country:Japan  

  • アフリカツメガエル初期胚発生過程におけるWee1Bの筋形成における役割

    #中山侑哉,#相羽行人,#飯島慎也,中條信成

    第39回日本分子生物学会年会  2016.11 

     More details

    Event date: 2016.11 - 2016.12

    Language:Japanese  

    Venue:横浜   Country:Japan  

  • cyclin E2 is required for neurogenesis in early Xenopus embryos.

    飯島慎也,檜垣太郎,中條信成

    第38回日本分子生物学会年会、第88回日本生化学会大会 合同大会  2015.12 

     More details

    Event date: 2015.12 - 2018.12

    Language:Japanese  

    Venue:横浜   Country:Japan  

  • Cdk1の非Ser/Thr-Proコンセンサス配列の同定、及びC2H2 Zinc Finger タンパク質とEct2の同配列リン酸化による分裂期機能の制御

    中條 信成, 鈴木和広, 迫洸佑, 秋山和広, 磯田道孝, 妹尾千春, 佐方 功幸

    第37回日本分子生物学会年会  2014.11 

     More details

    Event date: 2014.11

    Language:Japanese  

    Venue:パシフィコ横浜   Country:Japan  

  • サイクリンE2は原腸胚期以降のツメガエル正常発生に必要である

    中條信成、住友洋美、毛利宣子、渡部稔、佐方功幸

    日本発生生物学会  2005.6 

     More details

    Presentation type:Oral presentation (general)  

    Country:Japan  

  • 細胞周期制御因子FoxM1はツメガエル胚神経領域の細胞分裂と神経分化に必須である

    上野裕之、中條信成、渡部稔、佐方功幸

    日本分子生物学会2006フォーラム  2006.12 

     More details

    Presentation type:Symposium, workshop panel (public)  

    Venue:名古屋   Country:Japan  

  • 神経形成における細胞周期制御とその重要性

    上野裕之、中條信成、渡部稔、佐方功幸

    第1回日本ツメガエル研究会  2007.8 

     More details

    Presentation type:Oral presentation (general)  

    Venue:札幌   Country:Japan  

  • 細胞周期制御因子FoxM1はツメガエル神経領域の細胞分裂と神経分化に必須である

    上野裕之、中條信成、渡部稔、磯田道孝、佐方功幸

    第30回日本分子生物学会年会、第80回日本生化学会大会 合同大会  2007.12 

     More details

    Presentation type:Symposium, workshop panel (public)  

    Venue:横浜   Country:Japan  

  • アフリカツメガエル神経形成における細胞周期制御とその重要性 Invited

    上野裕之、中條信成、渡部稔、磯田道孝、佐方功幸

    井川シンポジウム「生物科学の魅力:不完結性」  2008.2 

     More details

    Presentation type:Symposium, workshop panel (public)  

    Venue:箱根   Country:Japan  

▼display all

MISC

  • 実験医学増刊「ヒトと医学のステージへ拡大する細胞周期2013」

    中條 信成, 佐方 功幸

    羊土社   2013.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 母性因子と胚性因子による細胞周期制御.

    中條信成,宇都克裕,大江智也,岡本健吾,佐方功幸

    実験医学(羊土社)   2000.5

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

Professional Memberships

  • 日本分子生物学会

  • 日本発生生物学会

  • 発生生物会学

      More details

  • 分子生物学会

      More details

Academic Activities

  • 世話人

    第一回日本ツメガエル研究会  ( Japan ) 2007.8 - Present

     More details

    Type:Competition, symposium, etc. 

    Number of participants:38

  • 庶務幹事

    第28回日本分子生物学会年会  ( Japan ) 2005.12

     More details

    Type:Competition, symposium, etc. 

Research Projects

  • 初期発生における細胞周期制御の研究

    2004.5 - 2009.3

      More details

    Authorship:Coinvestigator(s) 

Educational Activities

  • 学部教育:分子生物学的手法の習得を目的とした学部学生対象の実習を担当している。授業では、発生生物学に関する科目を担当している。学生実習では応用分子生物学実験を担当している。

Class subject

  • 生物学演習1

    2025.10 - 2026.3   Fall quarter

  • 細胞生物学

    2025.10 - 2026.2   Second semester

  • 細胞生物学

    2024.10 - 2025.3   Second semester

  • 発生生物学

    2024.10 - 2025.3   Second semester

  • 分子発生学

    2024.10 - 2025.3   Second semester

  • 生物学演習1

    2024.10 - 2025.3   Second semester

  • 生物科学特論II

    2024.6 - 2024.8   Summer quarter

  • 生物科学II

    2024.4 - 2024.9   First semester

  • 応用分子生物学実験

    2024.4 - 2024.6   Spring quarter

  • 生物学演習1

    2023.10 - 2024.3   Second semester

  • 分子発生学

    2023.10 - 2024.3   Second semester

  • 発生生物学

    2023.10 - 2024.3   Second semester

  • 細胞生物学

    2023.10 - 2024.3   Second semester

  • 応用分子生物学実験

    2023.4 - 2023.6   Spring quarter

  • 生物学演習1

    2022.10 - 2023.3   Second semester

  • 細胞生物学

    2022.10 - 2023.3   Second semester

  • 発生生物学

    2022.10 - 2023.3   Second semester

  • 分子発生学

    2022.10 - 2023.3   Second semester

  • 生物科学II

    2022.10 - 2022.12   Fall quarter

  • 応用分子生物学実験

    2022.4 - 2022.6   Spring quarter

  • 発生生物学

    2021.10 - 2022.3   Second semester

  • 分子発生学

    2021.10 - 2022.3   Second semester

  • 細胞生物学

    2021.10 - 2022.3   Second semester

  • 生物科学II

    2021.10 - 2021.12   Fall quarter

  • 応用分子生物学実験

    2021.4 - 2021.9   First semester

  • 発生生物学

    2020.10 - 2021.3   Second semester

  • 細胞生物学

    2020.10 - 2021.3   Second semester

  • 応用分子生物学実験

    2020.10 - 2020.12   Fall quarter

  • 分子生命科学特論II

    2020.4 - 2020.9   First semester

  • 自然科学総合実験(発展)

    2019.12 - 2020.2   Winter quarter

  • 細胞生物学

    2019.10 - 2020.3   Second semester

  • 分子細胞生物学

    2019.10 - 2020.3   Second semester

  • 自然科学総合実験(基礎)

    2019.10 - 2019.12   Fall quarter

  • 自然科学総合実験(発展)

    2019.6 - 2019.8   Summer quarter

  • 分子生命科学特論 II

    2019.4 - 2019.9   First semester

  • 応用分子生物学実験

    2019.4 - 2019.9   First semester

  • 自然科学総合実験(基礎)

    2019.4 - 2019.6   Spring quarter

  • 自然科学総合実験(発展)

    2018.12 - 2019.2   Winter quarter

  • 細胞生物学

    2018.10 - 2019.3   Second semester

  • 分子細胞生物学

    2018.10 - 2019.3   Second semester

  • 分子発生学

    2018.10 - 2019.3   Second semester

  • 自然科学総合実験(基礎)

    2018.10 - 2018.12   Fall quarter

  • 基礎分子生命科学 I

    2018.4 - 2018.9   First semester

  • 応用分子生物学実験

    2018.4 - 2018.9   First semester

  • 分子細胞生物学

    2017.10 - 2018.3   Second semester

  • 分子発生学

    2017.10 - 2018.3   Second semester

  • 発生生物学

    2017.10 - 2018.3   Second semester

  • 応用分子生物学実験

    2017.4 - 2017.9   First semester

  • 分子発生学

    2016.10 - 2017.3   Second semester

  • 発生生物学

    2016.10 - 2017.3   Second semester

  • 分子細胞生物学

    2016.10 - 2017.3   Second semester

  • 応用分子生物学実験

    2016.4 - 2016.9   First semester

  • 分子発生学

    2015.10 - 2016.3   Second semester

  • 発生生物学

    2015.10 - 2016.3   Second semester

  • 分子細胞生物学

    2015.10 - 2016.3   Second semester

  • 応用分子生物学実験

    2015.4 - 2015.9   First semester

  • 自然科学総合実験

    2014.10 - 2015.3   Second semester

  • 分子細胞発生学特論

    2014.10 - 2015.3   Second semester

  • 分子発生学

    2014.10 - 2015.3   Second semester

  • 細胞生物学 I

    2014.10 - 2015.3   Second semester

  • 応用分子生物学実験

    2014.4 - 2014.9   First semester

  • 自然科学総合実験

    2014.4 - 2014.9   First semester

  • 生命科学通論

    2014.4 - 2014.9   First semester

  • 応用分子生物学実験

    2014.4 - 2014.9   First semester

  • 分子発生細胞生物学基礎

    2013.10 - 2014.3   Second semester

  • 分子発生生物学

    2013.10 - 2014.3   Second semester

  • 教育実践演習

    2013.10 - 2014.3   Second semester

  • 生物学通論

    2013.10 - 2014.3   Second semester

  • 自然科学総合実験

    2013.4 - 2013.9   First semester

  • 応用分子生物学実験

    2013.4 - 2013.9   First semester

  • コアセミナー

    2013.4 - 2013.9   First semester

  • 発生生物学実験

    2012.10 - 2013.3   Second semester

  • 分子発生生物学

    2012.10 - 2013.3   Second semester

  • 分子発生生物学

    2012.10 - 2013.3   Second semester

  • コアセミナー

    2012.4 - 2012.9   First semester

  • 自然科学総合実験

    2012.4 - 2012.9   First semester

  • 分子発生生物学

    2010.10 - 2011.3   Second semester

  • コアセミナー

    2010.4 - 2010.9   First semester

  • コアセミナー

    2009.4 - 2009.9   First semester

  • 発生生物学実習

    2008.10 - 2009.3   Second semester

  • コアセミナー

    2008.4 - 2008.9   First semester

  • 発生生物学実習

    2007.10 - 2008.3   Second semester

  • コアセミナー

    2007.4 - 2007.9   First semester

  • 応用分子生物学実験

    Spring quarter

  • 発生生物学

    Second semester

▼display all

FD Participation

  • 2023.3   Role:Participation   Title:【生物学科】大学発明の出願・権利化に関するFD

    Organizer:Undergraduate school department

  • 2022.3   Role:Planning   Title:【生物学科】入学者選抜試験に関するFD

    Organizer:Undergraduate school department

  • 2022.3   Role:Participation   Title:全学FD:メンタルヘルス講演会

    Organizer:University-wide

  • 2021.6   Role:Participation   Title:理系研究室の運営技術 ― ラボラトリーマネジメントという考え方 ―

    Organizer:Undergraduate school department

  • 2020.12   Role:Participation   Title:【オンライン配信】新型コロナウィルス感染拡大状況での学生のメンタルヘルス

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.11   Role:Participation   Title:全学FD:メンタルヘルス講演会

    Organizer:University-wide

  • 2019.10   Role:Participation   Title:(生物学科FD)科研費改革後の学術研究動向について

    Organizer:Undergraduate school department

  • 2019.7   Role:Participation   Title:3ポリシーに関する全学FD ~日本学術会議分野別参照基準に基づく理学部物理学科の3ポリシー~

    Organizer:University-wide

  • 2019.3   Role:Participation   Title:一般選抜における主体性評価について

    Organizer:University-wide

  • 2018.5   Role:Speech   Title:生物科学部門FD

    Organizer:Undergraduate school department

  • 2017.9   Role:Participation   Title:生物科学部門FD

    Organizer:Undergraduate school department

  • 2016.9   Role:Participation   Title:障害者支援に関する教職員FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2016.8   Role:Participation   Title:生物科学部門FD

    Organizer:Undergraduate school department

  • 2013.11   Role:Participation   Title:平成25年度九州大学メンタルヘルス研修会

    Organizer:University-wide

  • 2013.9   Role:Participation   Title:平成25年度学生相談セミナー

    Organizer:University-wide

  • 2013.3   Role:Participation   Title:「アクティブ•ラーニング:入門と実践」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2024  福岡女子大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:1st. quarter 水1,2限

  • 2024  広島大学両生類研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2023  広島大学両生類研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2023  福岡女子大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2022  広島大学両生類研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2021  広島大学両生類研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2020  広島大学両生類研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2019  広島大学両生類研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

▼display all

Other educational activity and Special note

  • 2024  Class Teacher  学部

  • 2024  Coaching of Students' Association  男子硬式ソフトボール部

     詳細を見る

    顧問

  • 2023  Class Teacher  学部

  • 2023  Coaching of Students' Association  男子硬式ソフトボール部

     詳細を見る

    顧問

  • 2022  Class Teacher  学部

  • 2021  Class Teacher  学部

  • 2021  Coaching of Students' Association  九州大学トライアスロン部gaia

     詳細を見る

    顧問

  • 2020  Class Teacher  学部

  • 2020  Coaching of Students' Association  九州大学トライアスロン部gaia

     詳細を見る

    顧問

  • 2019  Class Teacher  学部

  • 2019  Coaching of Students' Association  九州大学トライアスロン部gaia

     詳細を見る

    顧問

  • 2019  Special Affairs  徳島大学教育改革FD講演会において「成績不振学生への働きかけと対応」という演題で講演を行った。

     詳細を見る

    徳島大学教育改革FD講演会において「成績不振学生への働きかけと対応」という演題で講演を行った。

  • 2018  Class Teacher  学部

  • 2018  Coaching of Students' Association  九州大学トライアスロン部gaia

     詳細を見る

    顧問

  • 2017  Class Teacher  学部

  • 2016  Class Teacher  学部

  • 2016  Special Affairs  学内における『学生相談セミナー』の講師として生物学科における修学指導について発表した。

     詳細を見る

    学内における『学生相談セミナー』の講師として生物学科における修学指導について発表した。

  • 2015  Class Teacher  学部

  • 2014  Class Teacher  学部

  • 2013  Class Teacher  学部

▼display all

Outline of Social Contribution and International Cooperation activities

  • なし

Social Activities

  • エクセレント•スチューデント•イン•サイエンス育成プロジェクト (ESSP ver.2)

    Role(s):Lecturer, Planner

    九州大学理学部  2024.8

  • 第24回九州大学理学部生物学科公開講座

    Role(s):Appearance, Planner

    九州大学理学部生物学科  2024.8

  • エクセレント•スチューデント•イン•サイエンス育成プロジェクト (ESSP ver.2)

    Role(s):Lecturer, Planner

    九州大学理学部  2023.8

  • 第22回九州大学理学部生物学科公開講座 : 生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    理学部生物学科  オンライン開催  2022.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト (ESSP ver.2)」の生物学セミナー担当委員としてこの事業の管理運営を担当した。

    九州大学理学部  九州大学理学部  2022.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

    科学に強い興味のある高校生を選抜試験を課して九州大学に招き、大学学部レベルの講義と実習を行なった。講義・実験で学んだことについて高校生自身に口頭でプレゼンテーションをしてもらった。

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト (ESSP ver.2)」の生物学セミナー担当委員としてこの事業の管理運営を担当した。

    九州大学理学部  九州大学理学部  2021.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

    科学に強い興味のある高校生を選抜試験を課して九州大学に招き、大学学部レベルの講義と実習を行なった。講義・実験で学んだことについて高校生自身に口頭でプレゼンテーションをしてもらった。

  • 第21回九州大学理学部生物学科公開講座 : 生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    理学部生物学科  オンライン開催  2021.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 第20回九州大学理学部生物学科公開講座 : 生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    理学部生物学科  オンライン  2020.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

    生物学科での研究活動について一般市民や中高生にわかりやすく説明する場として公開講座を行っている。この公開講座の管理運営に携わった。令和2年度は新型コロナ感染症拡大防止のため、例年とは違ってオンラインで行った。

  • 第18回九州大学理学部生物学科公開講座 : 生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    九州大学理学部生物学科  福岡市科学館  2019.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト (ESSP ver.2)」の生物学セミナー担当委員としてこの事業の管理運営を担当した。

    2019.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

  • 第17回九州大学理学部生物学科公開講座 : 生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    理学部生物学科  福岡市科学館サイエンスホール  2018.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト (ESSP ver.2)」の生物学セミナー担当委員としてこの事業の管理運営を担当した。

    2018.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Other

  • 『理学部で学ぶこと』 理学部の紹介と共に発生生物学の基礎について講演を行った。

    熊本県立済々黌高等学校  2017.11

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

  • 第16回九州大学理学部生物学科公開講座  生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    理学部生物学科  九州大学伊都地区センター2号館  2017.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト」の生物学セミナー担当委員として参加した。

    2017.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Other

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト」の生物学セミナー担当委員として参加した。

    2016.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Other

  • 第15回九州大学理学部生物学科公開講座  生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    理学部生物学科  九州大学伊都地区センター2号館  2016.7

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

    生物学科公開講座は一般市民の方や高校生を対象として九州大学理学部生物学科での研究をわかりやすく伝える。

  • 第14回九州大学理学部生物学科公開講座  生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    理学部生物学科  九州大学箱崎地区旧工学部本館  2015.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト」の生物学セミナー担当委員として参加した。

    2015.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Other

  • 第13回九州大学理学部生物学科公開講座  生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    九州大学生物学科  九州大学箱崎地区国際ホール  2014.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト」の生物学セミナー担当委員として参加した。

    2014.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Other

  • 生物学科公開講座は一般市民の方や、高校生を対象とした公開講座を行う。本公開講座では、生物学科の教員が現在行っている第一線級の研究をわかりやすく紹介致し、特に高校生についてはは、生物に対する知識と理解を深め、理科(科学)に対する興味・関心を高めていただくことを目的とする。この開催の運営を担当した。

    九州大学理学部生物学科  九州大学国際ホール  2013.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 未来の科学者委員/理学部の高大連携事業、「エクセレント•スチューデント•イン•サイエンス育成プロジェクト」の生物学セミナー担当委員として参加した。

    2013.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Other

  • 発生における遺伝子発現制御とDNA複製の分子機構/高校生にわかりやすく、初期発生過程における遺伝子発現制御とDNA複製におけるライセンス機構について解説した。

    沖縄県立球陽高等学校  2013.7

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

▼display all