Updated on 2024/10/03

Information

 

写真a

 
KAWASOE YOSHITAKA
 
Organization
Faculty of Science Department of Biology Assistant Professor
School of Sciences Department of Biology(Concurrent)
Graduate School of Systems Life Sciences Department of Systems Life Sciences(Concurrent)
Title
Assistant Professor
Profile
染色体DNA はすべての生物の設計図であり、その正確な複製や生じた損傷に対する適切な修復は生物において必須の反応である。ミスマッチ修復機構は、DNA複製やDNA二重鎖切断修復の正確性に大きく寄与する修復機構である。私は、ツメガエル卵抽出液を利用した生化学解析系と精製タンパク質を用いた試験管内再構成系の2つのアプローチ方法を用いて、ミスマッチ修復反応とその関連反応を研究している。 教育面では、主に研究室での大学院生・学部学生の指導を行っている。また、基幹教育における自然科学総合実験を担当している。
Homepage

Degree

  • Ph. D. (Dr. of Science)

Research History

  • 2016年10月〜2017年3月 大阪大学大学院理学研究科特任研究員   

Research Interests・Research Keywords

  • Research theme: The regulation of PCNA dynamics by the mismatch repair system

    Keyword: PCNA unloading, mismatch repair, DNA replication, Xenopus egg extracts, in vitro reconstitution

    Research period: 2017.4

  • Research theme: A biochemical analysis that the mismatch repair system improves the fidelity of DNA double strand break repair

    Keyword: homologous recombination, mismatch repair, Xenopus egg extracts, in vitro reconstitution

    Research period: 2017.4

  • Research theme: The analysis of the mechanism of mismatch repair coupled with DNA replication

    Keyword: DNA repair, mismatch repair, PCNA, Xenopus egg extracts, in vitro reconstitution

    Research period: 2010.4

Awards

  • 第23回 DNA複製・修復・組換えワークショップ 優秀発表賞

    2015.10  

  • 第21回DNA複製・修復・ゲノム安定性ワークショップ 優秀発表賞

    2011.10  

  • 大阪大学理学部賞

    2011.3   大阪大学  

Papers

  • Resection of DNA double-strand breaks activates Mre11-Rad50-Nbs1- and Rad9-Hus1-Rad1-dependent mechanisms that redundantly promote ATR checkpoint activation and end processing in Xenopus egg extracts. Reviewed International journal

    #Kensuke Tatsukawa, #Reihi Sakamoto, Yoshitaka Kawasoe, @Yumiko Kubota, Toshiki Tsurimoto, Tatsuro S. Takahashi, and Eiji Ohashi

    Nucleic Acids Research   52 ( 6 )   3146 - 3163   2024.2   ISSN:0305-1048 eISSN:1362-4962

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Nucleic Acids Research  

    Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.

    DOI: 10.1093/nar/gkae082

    Web of Science

    Scopus

    PubMed

    researchmap

    Other Link: https://academic.oup.com/nar/article/52/6/3146/7606968?login=true

  • The Atad5 RFC-like complex is the major unloader of proliferating cell nuclear antigen in Xenopus egg extracts Reviewed International journal

    Yoshitaka Kawasoe, #Sakiko Shimokawa, @Peter J. Gillespie, @J. Julian Blow, Toshiki Tsurimoto, and Tatsuro S. Takahashi

    Journal of Biological Chemistry   300 ( 1 )   105588   2024.1   ISSN:00219258

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Journal of Biological Chemistry  

    Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.

    DOI: 10.1016/j.jbc.2023.105588

    Scopus

    PubMed

    Other Link: https://www.sciencedirect.com/science/article/pii/S0021925823026169?via%3Dihub

  • The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5 Reviewed International journal

    Ryota Miyashita, Atsuya Nishiyama, Weihua Qin, Yoshie Chiba, Satomi Kori, Norie Kato, Chieko Konishi, Soichiro Kumamoto, Hiroko Kozuka-Hata, Masaaki Oyama, Yoshitaka Kawasoe, @Toshiki Tsurimoto, @Tatsuro S Takahashi, Heinrich Leonhardt, Kyohei Arita, Makoto Nakanishi

    eLife   12 ( e79013 )   2023.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, the mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified. This study shows that deubiquitylation by USP7 and unloading by ATAD5 (ELG1 in yeast) are pivotal processes for the removal of PAF15 from chromatin. On replicating chromatin, USP7 specifically interacts with PAF15Ub2 in a complex with DNMT1. USP7 depletion or inhibition of the interaction between USP7 and PAF15 results in abnormal accumulation of PAF15Ub2 on chromatin. Furthermore, we also find that the non-ubiquitylated form of PAF15 (PAF15Ub0) is removed from chromatin in an ATAD5-dependent manner. PAF15Ub2 was retained at high levels on chromatin when the catalytic activity of DNMT1 was inhibited, suggesting that the completion of maintenance DNA methylation is essential for the termination of UHRF1-mediated ubiquitin signaling. This finding provides a molecular understanding of how the maintenance DNA methylation machinery is disassembled at the end of the S phase.

    DOI: https://doi.org/10.7554/eLife.79013

    Other Link: https://elifesciences.org/articles/79013

  • Human DDK rescues stalled forks and counteracts checkpoint inhibition at unfired origins to complete DNA replication. Reviewed International journal

    Mathew J K Jones, Camille Gelot, Stephanie Munk, Amnon Koren, Yoshitaka Kawasoe, Kelly A George, Ruth E Santos, Jesper V Olsen, Steven A McCarroll, Mark G Frattini, Tatsuro S Takahashi, Prasad V Jallepalli

    Molecular cell   81 ( 3 )   426 - 441   2021.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Eukaryotic genomes replicate via spatially and temporally regulated origin firing. Cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) promote origin firing, whereas the S phase checkpoint limits firing to prevent nucleotide and RPA exhaustion. We used chemical genetics to interrogate human DDK with maximum precision, dissect its relationship with the S phase checkpoint, and identify DDK substrates. We show that DDK inhibition (DDKi) leads to graded suppression of origin firing and fork arrest. S phase checkpoint inhibition rescued origin firing in DDKi cells and DDK-depleted Xenopus egg extracts. DDKi also impairs RPA loading, nascent-strand protection, and fork restart. Via quantitative phosphoproteomics, we identify the BRCA1-associated (BRCA1-A) complex subunit MERIT40 and the cohesin accessory subunit PDS5B as DDK effectors in fork protection and restart. Phosphorylation neutralizes autoinhibition mediated by intrinsically disordered regions in both substrates. Our results reveal mechanisms through which DDK controls the duplication of large vertebrate genomes.

    DOI: 10.1016/j.molcel.2021.01.004

    Other Link: https://www.sciencedirect.com/science/article/pii/S1097276521000046?via%3Dihub

  • Nucleosomes around a mismatched base pair are excluded via an Msh2-dependent reaction with the aid of SNF2 family ATPase Smarcad1 Reviewed International journal

    Riki Terui, Koji Nagao, Yoshitaka Kawasoe, Kanae Taki, Torahiko L. Higashi, Seiji Tanaka, Takuro Nakagawa, Chikashi Obuse, Hisao Masukata, Tatsuro S. Takahashi

    Genes and Development   32 ( 11-12 )   806 - 821   2018.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Post-replicative correction of replication errors by the mismatch repair (MMR) system is critical for suppression of mutations. Although the MMR system may need to handle nucleosomes at the site of chromatin replication, how MMR occurs in the chromatin environment remains unclear. Here, we show that nucleosomes are excluded from a >1-kb region surrounding a mismatched base pair in Xenopus egg extracts. The exclusion was dependent on the Msh2–Msh6 mismatch recognition complex but not the Mlh1-containing MutL homologs and counteracts both the HIRA- and CAF-1 (chromatin assembly factor 1)-mediated chromatin assembly pathways. We further found that the Smarcad1 chromatin remodeling ATPase is recruited to mismatch-carrying DNA in an Msh2-dependent but Mlh1-independent manner to assist nucleosome exclusion and that Smarcad1 facilitates the repair of mismatches when nucleosomes are preassembled on DNA. In budding yeast, deletion of FUN30, the homolog of Smarcad1, showed a synergistic increase of spontaneous mutations in combination with MSH6 or MSH3 deletion but no significant increase with MSH2 deletion. Genetic analyses also suggested that the function of Fun30 in MMR is to counteract CAF-1. Our study uncovers that the eukaryotic MMR system has an ability to exclude local nucleosomes and identifies Smarcad1/Fun30 as an accessory factor for the MMR reaction.

    DOI: 10.1101/gad.310995.117

    Other Link: http://genesdev.cshlp.org/content/32/11-12/806.long

  • Sensing and Processing of DNA Interstrand Crosslinks by the Mismatch Repair Pathway Reviewed International journal

    Niyo Kato, Yoshitaka Kawasoe, Hannah Williams, Elena Coates, Upasana Roy, Yuqian Shi, Lorena S. Beese, Orlando D. Scharer, Hong Yan, Max E. Gottesman, Tatsuro S. Takahashi, Jean Gautier

    CELL REPORTS   21 ( 5 )   1375 - 1385   2017.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DNA interstrand crosslinks (ICLs) that are repaired in non-dividing cells must be recognized independently of replication-associated DNA unwinding. Using cell-free extracts from Xenopus eggs that support neither replication nor transcription, we establish that ICLs are recognized and processed by the mismatch repair (MMR) machinery. We find that ICL repair requires MutS alpha (MSH2-MSH6) and the mismatch recognition FXE motif in MSH6, strongly suggesting that MutS alpha functions as an ICL sensor. MutS alpha recruits MutL alpha and EXO1 to ICL lesions, and the catalytic activity of both these nucleases is essential for ICL repair. As anticipated for a DNA unwinding-independent recognition process, we demonstrate that least distorting ICLs fail to be recognized and repaired by the MMR machinery. This establishes that ICL structure is a critical determinant of repair efficiency outside of DNA replication.

    DOI: 10.1016/j.celrep.2017.10.032

    Other Link: https://www.sciencedirect.com/science/article/pii/S221112471731464X?via%3Dihub

  • MutSα maintains the mismatch repair capability by inhibiting PCNA unloading. Reviewed International journal

    Yoshitaka Kawasoe, Toshiki Tsurimoto, Takuro Nakagawa, Hisao Masukata, Tatsuro S. Takahashi

    eLife   5 ( 2016JULY )   2016.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Eukaryotic mismatch repair (MMR) utilizes single-strand breaks as signals to target the strand to be repaired. DNA-bound PCNA is also presumed to direct MMR. The MMR capability must be limited to a post-replicative temporal window during which the signals are available. However, both identity of the signal(s) involved in the retention of this temporal window and the mechanism that maintains the MMR capability after DNA synthesis remain unclear. Using Xenopus egg extracts, we discovered a mechanism that ensures long-term retention of the MMR capability. We show that DNA-bound PCNA induces strand-specific MMR in the absence of strand discontinuities. Strikingly, MutS a inhibited PCNA unloading through its PCNA-interacting motif, thereby extending significantly the temporal window permissive to strand-specific MMR. Our data identify DNA-bound PCNA as the signal that enables strand discrimination after the disappearance of strand discontinuities, and uncover a novel role of MutS a in the retention of the post-replicative MMR capability.

    DOI: 10.7554/eLife.15155

    Other Link: https://elifesciences.org/articles/15155

  • MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner Reviewed International journal

    Atsuhiro Shimada, Yoshitaka Kawasoe, Yoshito Hata, Tatsuro S. Takahashi, Ryoji Masui, Seiki Kuramitsu, Kenji Fukui

    FEBS JOURNAL   280 ( 14 )   3467 - 3479   2013.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In the initial steps of DNA mismatch repair, MutS recognizes a mismatched base and recruits the latent endonuclease MutL onto the mismatch-containing DNA in concert with other proteins. MutL then cleaves the error-containing strand to introduce an entry point for the downstream excision reaction. Because MutL has no intrinsic ability to recognize a mismatch and discriminate between newly synthesized and template strands, the endonuclease activity of MutL is strictly regulated by ATP-binding in order to avoid nonspecific degradation of the genomic DNA. However, the activation mechanism for its endonuclease activity remains unclear. In this study, we found that the coexistence of a mismatch, ATP and MutS unlocks the ATP-binding-dependent suppression of MutL endonuclease activity. Interestingly, ATPase-deficient mutants of MutS were unable to activate MutL. Furthermore, wild-type MutS activated ATPase-deficient mutants of MutL less efficiently than wild-type MutL. We concluded that ATP hydrolysis by MutS and MutL is involved in the mismatch-dependent activation of MutL endonuclease activity.

    DOI: 10.1111/febs.12344

    Other Link: https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.12344

  • The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5. International journal

    Ryota Miyashita, Atsuya Nishiyama, Weihua Qin, Yoshie Chiba, Satomi Kori, Norie Kato, Chieko Konishi, Soichiro Kumamoto, Hiroko Kozuka-Hata, Masaaki Oyama, Yoshitaka Kawasoe, Toshiki Tsurimoto, Tatsuro S Takahashi, Heinrich Leonhardt, Kyohei Arita, Makoto Nakanishi

    eLife   12   2023.2   ISSN:2050-084X

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Cold Spring Harbor Laboratory  

    Abstract

    UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified. This study shows that deubiquitylation by USP7 and unloading by ATAD5 (ELG1 in yeast) are pivotal processes for the removal of PAF15 from chromatin. On replicating chromatin, USP7 specifically interacts with PAF15Ub2 in a complex with DNMT1. USP7 depletion or inhibition of the interaction between USP7 and PAF15 results in abnormal accumulation of PAF15Ub2 on chromatin. Furthermore, we also find that the non-ubiquitylated form of PAF15 (PAF15Ub0) is removed from chromatin in an ATAD5-dependent manner. PAF15Ub2 was retained at high levels on chromatin when the catalytic activity of DNMT1 was inhibited, suggesting that the completion of maintenance DNA methylation is essential for termination of UHRF1-mediated ubiquitin signaling. This finding provides a molecular understanding of how the maintenance DNA methylation machinery is disassembled at the end of the S phase.

    DOI: 10.7554/eLife.79013

    Web of Science

    Scopus

    PubMed

    researchmap

▼display all

Presentations

  • WernerヘリカーゼとMutLαエンドヌクレアーゼは⼀本鎖アニーリングの正確性を制御する

    河添 好孝、@織⽥ ⾥美、#坂詰 彩、#久持 涼⼦、#宮田 太成、高橋 達郎

    第27回 DNA複製・組換え・修復ワークショップ  2023.6 

     More details

    Event date: 2023.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡県福岡市   Country:Japan  

  • 試験管内再構成による抗組換え反応のメカニズムの解析

    #久持 涼⼦、#坂詰 彩、河添 好孝、高橋 達郎

    第45回日本分子生物学会年会  2022.11 

     More details

    Event date: 2022.11 - 2022.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:千葉県千葉市   Country:Japan  

  • WernerヘリカーゼとMutLαエンドヌクレアーゼは⼀本鎖アニーリングの正確性を制御する Invited

    河添 好孝、@織⽥ ⾥美、#坂詰 彩、高橋 達郎

    第95回日本生化学会大会  2022.11 

     More details

    Event date: 2022.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:愛知県名古屋市   Country:Japan  

  • WernerヘリカーゼとMutLαエンドヌクレアーゼはDNA二重鎖切断修復の正確性を制御する

    河添 好孝、#坂詰 彩、@織田 里美、高橋 達郎

    第44回日本分子生物学会年会  2021.12 

     More details

    Event date: 2021.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神奈川県横浜市   Country:Japan  

  • クロマチンを基質としたミスマッチ修復反応の試験管内再構成に向けた解析

    #福田 翔太、河添 好孝、高橋 達郎

    第44回日本分子生物学会年会  2021.12 

     More details

    Event date: 2021.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神奈川県横浜市   Country:Japan  

  • WernerヘリカーゼとMutLαエンドヌクレアーゼは⼀本鎖アニーリングの正確性を制御する

    河添 好孝、@織⽥ ⾥美、#坂詰 彩、#久持 涼⼦、高橋 達郎

    第45回日本分子生物学会年会  2022.11 

     More details

    Event date: 2021.11 - 2021.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:千葉県千葉市   Country:Japan  

  • WernerヘリカーゼとMutLαエンドヌクレアーゼは⼀本鎖アニーリングの正確性を制御する

    河添好孝、@織⽥⾥美、#坂詰彩、#久持涼⼦、高橋達郎

    第26回 DNA複製・組換え・修復ワークショップ  2021.10 

     More details

    Event date: 2021.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン開催   Country:Japan  

  • WRNヘリカーゼはDNA二重鎖切断修復の正確性維持に重要である

    河添 好孝,#坂詰 彩, @織田 里美、高橋 達郎

    第38回染色体ワークショップ・第19回核ダイナミクス研究会  2021.1 

     More details

    Event date: 2021.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Other  

  • ツメガエル卵抽出液におけるPCNAアンローディングは主にElg1-RFCが担う

    河添 好孝, #下川 紗貴子 , 釣本 敏樹 , 高橋 達郎

    第42回日本分子生物学会年会  2019.12 

     More details

    Event date: 2019.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡県福岡市   Country:Other  

    The Elg1-RFC complex is the major PCNA unloader in Xenopus egg extracts

  • The Elg1-Rfc2–5 complex (Elg1-RFC) is the major PCNA-unloading complex in Xenopus egg extracts International conference

    Yoshitaka Kawasoe, #Sakiko Shimokawa, Toshiki Tsurimoto and Tatsuro Takahashi

    岡崎フラグメント—不連続DNA 複製モデル 50周年記念国際シンポジウム  2018.12 

     More details

    Event date: 2018.12

    Language:English   Presentation type:Oral presentation (general)  

    Venue:愛知県名古屋市   Country:Japan  

    The Elg1-Rfc2–5 complex (Elg1-RFC) is the major PCNA-unloading complex in Xenopus egg extracts

  • Elg1‒Rfc2‒5複合体(Elg1‒RFC)はツメガエル卵抽出液における主たるPCNAアンローディング複合体である

    河添 好孝、#下川 紗貴子、釣本 敏樹、高橋 達郎

    第41回日本分子生物学会年会  2018.11 

     More details

    Event date: 2018.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神奈川県横浜市   Country:Other  

    The Elg1‒RFC2‒5 complex (Elg1‒RFC) is the major PCNA‒unloading complex in Xenopus egg extracts

  • MutSα prevents dissociation of PCNA from DNA to keep strand information for eukaryotic mismatch repair International conference

    Yoshitaka Kawasoe, Toshiki Tsurimoto, @Takuro Nakagawa, @Hisao Masukata and Tatsuro Takahashi

    3R Symposium  2014.11 

     More details

    Event date: 2014.11

    Language:English   Presentation type:Oral presentation (general)  

    Venue:静岡県御殿場市   Country:Other  

    MutSα prevents dissociation of PCNA from DNA to keep strand information for eukaryotic mismatch repair

  • PCNA plays a key role in identification of the newly synthesized DNA strand in eukaryotic mismatch repair

    河添 好孝、釣本 敏樹、@中川 拓郎、@升方 久夫、高橋達郎

    第21回 DNA複製・組換え・ゲノム安定性制御ワークショップ  2011.10 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡県福津市   Country:Other  

    PCNA plays a key role in identification of the newly synthesized DNA strand in eukaryotic mismatch repair

  • PCNAはミスマッチ修復反応のDNA鎖特異性を決定する

    河添 好孝、釣本 敏樹、@中川 拓郎、@升方 久夫、高橋達郎

    第35回 日本分子生物学会年会  2012.12 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡県福岡市   Country:Other  

    PCNA is a molecular determinant for the strand specificity in eukaryotic mismatch repair

  • Orientation of PCNA loading determines the strand specificity of the eukaryotic mismatch repair reaction International conference

    河添好孝

    National Tsing Hua University‐Osaka University Life Science Student Activity Fair 2013 Student Symposium  2013.5 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    Venue:大阪府吹田市   Country:Other  

    Orientation of PCNA loading determines the strand specificity of the eukaryotic mismatch repair reaction

  • Evidence that DNA-loaded PCNA acts as the strand marker for eukaryotic mismatch repair International conference

    Yoshitaka Kawasoe, Toshiki Tsurimoto, @Takuro Nakagawa, @Hisao Masukata and Tatsuro Takahashi

    Cold Spring Harbor Laboratory Meeting 2013, EUKARYOTIC DNA REPLICATION & GENOME MAINTENANCE  2013.9 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    Venue:America, New York   Country:Other  

    Evidence that DNA-loaded PCNA acts as the strand marker for eukaryotic mismatch repair

  • ミスマッチ修復因子MutSαはPCNAのDNAからの解離を阻害することで新生鎖の記憶を保持する

    河添 好孝、釣本 敏樹、@中川 拓郎、@升方 久夫、高橋達郎

    第37回 日本分子生物学会年会  2014.11 

     More details

    Language:Japanese  

    Venue:神奈川県横浜市   Country:Other  

    MutSα prevents dissociation of PCNA from DNA to keep strand information for eukaryotic mismatch repair

  • ミスマッチ修復因子MutSαはPCNAのDNAからの解離を阻害して 修復の鎖特異性を保持する

    河添 好孝、釣本 敏樹、@中川 拓郎、@升方 久夫、高橋達郎

    第23回DNA複製・組換え・修復ワークショップ  2015.10 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:静岡県焼津市   Country:Other  

▼display all

MISC

  • 放射標識ヌクレオチドを用いた染色体複製・維持研究

    河添好孝, 高橋達郎

    九州大学アイソトープ統合安全管理センター   2018.10

     More details

    Language:Japanese   Publishing type:Internal/External technical report, pre-print, etc.  

Professional Memberships

  • THE MOLECULAR BIOLOGY SOCIETY OF JAPAN

  • The Japanese Biochemical Society

Academic Activities

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

    Number of peer-reviewed articles in Japanese journals:0

    Proceedings of International Conference Number of peer-reviewed papers:0

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • オーガナイザー

    第95回 日本生化学会大会  ( Japan ) 2022.11

     More details

    Type:Competition, symposium, etc. 

  • 座長

    第38回染色体ワークショップ・第19回核ダイナミクス研究会  ( Japan ) 2021.1

     More details

    Type:Competition, symposium, etc. 

Research Projects

  • 試験管内再構成による相同組換えの正確性制御機構の理解

    Grant number:24K09328  2024 - 2026

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 光照射による特定反応誘導可能な新規試験管内生命現象解析ツールの構築とその評価

    2023

    2023年度スカラー共同研究Phase1

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 相同組換えの正確性制御メカニズムの試験管内再構成による解明

    Grant number:22K15036  2022 - 2023

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Early-Career Scientists

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 試験管内再構成による相同組換え反応正確性制御メカニズムの解明

    2022

    2022年度 豊田理研スカラー

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 試験管内再構成によるDNA二重鎖切断修復の正確性を高める反応の制御メカニズムの解明

    2021 - 2022

    令和3(2021)年度理学研究院若手支援プロジェクト・プロジェクト支援

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • ミスマッチ修復機構によるPCNAダイナミクス制御メカニズムの解明

    Grant number:19K16042  2019 - 2021

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Early-Career Scientists

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 合成エラー修復/抗組換え反応の分岐機構の生化学解析

    2019

    2019年度上原記念生命科学財団研究奨励金

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • PCNAアンローディングをミスマッチ修復機構が制御するメカニズムの解明

    Grant number:17H06935  2017 - 2018

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Research Activity start-up

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • ミスマッチ修復機構がDNA複製と協調して働くメカニズムの解明

    2013 - 2015

    Japan Society for the Promotion of Science  Research Fellowships for Young Scientists

      More details

    Authorship:Principal investigator  Grant type:Joint research

▼display all

Educational Activities

  • I mainly teach students attending school of sciences and graduate school of systems life sciences in our laboratory. I also teach practical courses for undergraduate students.

Class subject

  • 基礎科学実習

    2023.12 - 2024.2   Winter quarter

  • 生物学演習I

    2023.10 - 2024.3   Second semester

  • 基礎遺伝学実験

    2023.10 - 2024.3   Second semester

  • 自然科学総合実験

    2023.10 - 2023.12   Fall quarter

  • 自然科学総合実験

    2022.12 - 2023.2   Winter quarter

  • 生物学演習I

    2022.10 - 2023.3   Second semester

  • 応用生物化学実験

    2022.4 - 2022.9   First semester

  • 生物学演習I

    2021.10 - 2022.3   Second semester

  • 自然科学総合実験

    2021.6 - 2021.8   Summer quarter

▼display all

FD Participation

  • 2023.3   Role:Participation   Title:【生物学科】大学発明の出願・権利化に関するFD

    Organizer:Undergraduate school department

  • 2022.4   Role:Participation   Title:令和4年度 第1回全学FD(新任教員の研修)The 1st All-University FD (training for new faculty members) in FY2022

    Organizer:University-wide

  • 2022.3   Role:Participation   Title:【生物学科】入学者選抜試験に関するFD

    Organizer:Undergraduate school department

Social Activities

  • エクセレント・スチューデント・イン・サイエンス育成プロジェクト −ESSP ver.2− 高校生を対象とし、1週間の実験指導ならびに、その実験に関する講義を行った。

    九州大学  2018.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop