Updated on 2025/06/10

Information

 

写真a

 
HANIHARA NORIHIRO
 
Organization
Faculty of Mathematics Division of Algebra and Geometry Assistant Professor
School of Sciences Department of Mathematics(Concurrent)
Graduate School of Mathematics Department of Mathematics(Concurrent)
Title
Assistant Professor
Contact information
メールアドレス
Profile
My research subject is representation theory of algebras. Given a ring (like a quiver or a commutative ring), its representation theory is about the study of categories (primarily the module category) and various related structures. I am particularly interested in homological structures appearing in Cohen-Macaulay representation theory of finite dimensional algebras or of commutative Gorenstein rings. I am mainly studying tilting theory linking their representation theories and also the theory of cluster tilting objects (or non-commutative resolutions) for these rings, through triangulated categories like derived categories, singularity categories, and cluster categories, and their enhancements by differential graded categories.

Research Areas

  • Natural Science / Algebra

Degree

  • Doctor of Philosophy (Mathematical Science)

Research History

  • 2021年4月--2022年3月 日本学術振興会特別研究員PD 名古屋大学多元数理科学研究科 2022年4月--2024年3月 日本学術振興会特別研究員PD 東京大学カブリ数物連携宇宙研究機構   

Research Interests・Research Keywords

  • Research theme: Non-commutative resolutions in triangulated categories and their enhancements

    Keyword: non-commutative resolution, derived category, dg enhancement, Cohen-Macaulay representation theory

    Research period: 2025.4 - 2028.3

  • Research theme: Calabi-Yau structures on differential graded categories

    Keyword: dg category, Calabi-Yau structure, singularity category, cluster category

    Research period: 2022.4 - 2025.3

Awards

  • 建部賢弘奨励賞

    2024.9   日本数学会  

  • 多元数理論文賞

    2019.3   名古屋大学多元数理科学研究科  

  • 理学部学修奨励賞

    2017.3   東京大学理学部  

Papers

  • Non-commutative resolutions for Segre products and Cohen-Macaulay rings of hereditary representation type Reviewed

    Norihiro Hanihara

    Trans. Amer. Math. Soc.   378 ( 4 )   2429 - 2475   2025

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1090/tran/9288

  • Morita theorem for hereditary Calabi-Yau categories Reviewed International journal

    Norihiro Hanihara

    Adv. Math.   2022

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Yoneda algebras and their singularity categories Reviewed International journal

    Norihiro Hanihara

    Proc. Lond. Math. Soc.   2022

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Cluster categories of formal dg algebras Reviewed International journal

    Norihiro Hanihara

    Forum Math. Sigma   2022

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Auslander correspondence for triangulated categories Reviewed International journal

    Norihiro Hanihara

    Algebra & Number Theory   14 ( 8 )   2037 - 2058   2020

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

MISC

  • 形式的dg代数のクラスター圏とその森田型定理

    埴原 紀宏

    第66回代数学シンポジウム報告集   2021.12

     More details

    Language:Japanese   Publishing type:Internal/External technical report, pre-print, etc.  

  • Cluster tilting for Segre products

    Norihiro Hanihara

    Oberwolfach Reports   1900

     More details

    Language:English   Publishing type:Internal/External technical report, pre-print, etc.  

Professional Memberships

  • The Mathematical Society of Japan

Research Projects

  • 三角圏とその増強の非可換特異点解消

    Grant number:25K17233  2025.4 - 2028.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Early-Career Scientists

    埴原 紀宏

      More details

    Grant type:Scientific research funding

    CiNii Research

  • 微分次数付き圏のカラビ・ヤウ構造と多元環の表現論

    Grant number:JP22J00649, 22KJ0737  2022 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for JSPS Fellows

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 三角圏のAuslander対応と団傾理論

    Grant number:JP19J21165  2019 - 2021

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for JSPS Fellows

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding