Updated on 2024/11/22

Information

 

写真a

 
MASUDA TOSHIHIKO
 
Organization
Faculty of Mathematics Division of Analysis Professor
School of Sciences Department of Mathematics(Concurrent)
Graduate School of Mathematics Department of Mathematics(Concurrent)
Joint Graduate School of Mathematics for Innovation (Concurrent)
Title
Professor
Contact information
メールアドレス
Profile
My research field is the theory of operator algebras. In the theory of operator algebras, we research subalgebras of bounded linear operators on Hilbert spaces. There are two classes of operator algebras, the class of C^*-algebras and that of von Neumann algebras. I mainly study von Neumann algebras. My main interests are the theory of subfactors, and automorphism groups and group actions on von Neumann algebras. In subfactor theory, I analyze the construction introduced by Longo and Rehren, and the structure of subfactors of type III_1. I also study coactions of finite groups by using subfactor theory. Now I try to apply this argument for study of actions of compact groups.
External link

Research Areas

  • Natural Science / Mathematical analysis

Degree

  • Ph. D. (Mathematical Sciences)

Research History

  • 1999年4月〜2004年3月 高知大学理学部数理情報学科助手   

Research Interests・Research Keywords

  • Research theme: 作用素環

    Keyword: 作用素環

    Research period: 2024

  • Research theme: Operator algebras

    Keyword: Operator algebras

    Research period: 2024

  • Research theme: Research of one-parameter automorphism groups on factors

    Keyword: one-parameter automorphism groups

    Research period: 2010.1 - 2014.3

  • Research theme: Research of outer actions of discrete groups on factors

    Keyword: outer action

    Research period: 2010.1

  • Research theme: Research of actions of compact groups on factors

    Keyword: factor, compact group, action

    Research period: 2005.4

  • Research theme: Group actions on subfactors

    Keyword: subfactor, group action

    Research period: 1997.4 - 2004.4

Papers

  • On the relative bicentralizer flows and the relative flow of weights of inclusions of factors of type III Reviewed

    Toshihiko Masuda

    Publications of the Research Institute for Mathematical Sciences   56 ( 2 )   391 - 400   2020.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We show that the relative bicentralizer ow and the relative ow of weights are isomorphic for an inclusion of injective factors of type III1 with Inite index, or an irreducible discrete inclusion whose small algebra is an injective factor of type III

    DOI: 10.4171/PRIMS/56-2-4

  • Classification of Roberts actions of strongly amenable C-*-tensor categories on the injective factor of type III1 Reviewed International journal

    Toshihiko Masuda

    INTERNATIONAL JOURNAL OF MATHEMATICS   28 ( 7 )   2017.6

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    In this paper, we generalize Izumi's result on uniqueness of realization of nite
    C∗-tensor categories in the endomorphism category of the injective factor of type
    III1 for nitely generated strongly amenable C∗-tensor categories by applying Popa's
    classication theorem of strongly amenable subfactors of type III1.

    DOI: 10.1142/S0129167X17500525

  • Classification of actions of discrete Kac algebras on injective factors Reviewed International journal

    Toshihiko Masuda, Reiji Tomatsu

    Memoirs of American Mathematical Society   245 ( 1160 )   2016.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We will study two kinds of actions of a discrete amenable Kac algebra. The first one is an action whose modular part is normal. We will construct a new invariant which generalizes a characteristic invariant for a discrete group action, and we will present a complete classification. The second is a centrally free action. By constructing a Rohlin tower in an asymptotic centralizer, we will show that the Connes–Takesaki module is a complete invariant.

    DOI: DOI: http://dx.doi.org/10.1090/memo/1160

  • Rohlin flows on von Neumann algebras Reviewed International journal

    Toshihiko Masuda, Reiji Tomatsu

    Memoirs of American Mathematical Society   244 ( 1153 )   2016.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We will classify Rohlin flows on von Neumann algebras up to strong cocycle conjugacy. This result provides alternative approaches to some preceding results such as Kawahigashi’s classification of flows on the injective type II1 factor, the classification of injective type III factors due to Connes, Krieger and Haagerup and the non-fullness of type III0 factors. Several concrete examples are also studied.

    DOI: DOI: http://dx.doi.org/10.1090/memo/1153

  • Unified approach to classification of actions of discrete amenable groups on injective factors Reviewed International journal

    増田 俊彦

    Journal für die reine und angewandte Mathematik   683   1 - 47   2013.10

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    We present a simple unified proof of the classification of discrete amenable group actions on injective factors. Our argument does not depend on the types of factors, and is based on the technique of Evans and Kishimoto.

    DOI: 10.1515/crelle-2011-0011

    Repository Public URL: http://hdl.handle.net/2324/4485865

  • Classification of minimal actions of a compact Kac algebra with amenable dual Reviewed International journal

    Toshihiko Masuda, Reiji Tomatsu

    Commucations in Mathematical Physics   2007.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Classification of actions of discrete amenable groups on subfactors of type III_\lambda Reviewed International journal

    Masuda, Toshihiko

    Proceedings of American Mathematical Society   1999.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Classification of strongly free actions of discrete amenable actions on subfactors of type III_0 Invited Reviewed International journal

    Masuda, Toshihiko

    Pacific Journal of Mathematics   1999.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • An analogue of Longo's canonical endomorphism in bimodule theory and its application to asymptotic inclusions Reviewed International journal

    Masuda, Toshihiko

    International Journal of Mathematics   1999.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Classification of outer actions of discrete amenable groupoids on injective factors Invited Reviewed International journal

    Toshihiko Masuda

    Journal of Mathematical Society of Japan   74 ( 3 )   873 - 901   2022.7

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    We classify outer actions (or $\mathscr{G}$-kernels) of discrete amenable groupoids on injective factors.
    Our method based on unified approach for classification of discrete amenable groups actions, and
    cohomology reduction theorem of discrete amenable equivalence relations.
    We do not use Katayama-Takesaki type resolution group approach.

    DOI: DOI: 10.2969/jmsj/86328632

  • A simple sufficient condition for triviality of obstructions in the orbifold construction for subfactors Reviewed

    Toshihiko Masuda

    Mathematica Scandinavica   121 ( 1 )   101 - 110   2017.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We present a simple sufficient condition for triviality of obstructions in the orbifold construction. As an application, we can show the existence of subfactors with principal graph D2n without full use of Ocneanu's paragroup theory.

    DOI: 10.7146/math.scand.a-26240

  • Classification of minimal actions of a compact Kac algebra with amenable dual on injective factors of type III Reviewed International journal

    Toshihiko Masuda and Reiji Tomatsu

    Journal of Functional Analysis   258   2010.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Approximate innerness and central triviality of endomorphisms Reviewed International journal

    Toshihiko Masuda, Reiji Tomatsu

    Advance in Mathematics   2009.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Classification of actions of duals of finite groups on the AFD factor of type II_1 Reviewed International journal

    Toshihiko Masuda

    Journal of Operator theory   2008.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Evans-Kishimoto type argument for actions of discrete amenable groups on McDuff factors Reviewed International journal

    Toshihiko Masuda

    Mathematica Scandianvica   2007.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • An analogue of Connes-Haagerup approach for classification of subfactors of type III_1 Reviewed International journal

    Toshihiko Masuda

    Journal of Mathematical Society of Japan   57 ( 4 )   959 - 1001   2005.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.2969/jmsj/1150287301

  • Classification of approximately inner actions of discrete amenable groups on strongly amenable subfactors Reviewed International journal

    Toshihiko Masuda

    International Journal of Mathematics   16 ( 10 )   1193 - 1206   2005.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1142/S0129167X05003296

  • Notes on group actions on subfactors Reviewed International journal

    MASUDA, Toshihiko

    Journal of Mathematical Society of Japan   2003.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • On non-strongly free automorphisms of subfactors of type III_0 Reviewed International journal

    MASUDA, Toshihiko

    Canadian Mathematical Bulletin   2003.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Extension of automorphisms of a subfactor to the symmetric enveloping algebra Reviewed International journal

    MASUDA, Toshihiko

    International Journal of Mathematics   2001.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Generalization of Longo-Rehren construction to subfactors of infinite depth and amenability of fusion algebras Reviewed International journal

    MASUDA, Toshihiko

    Journal of Funcitional Analysis   2000.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Actions of discrete amenable groups into the normalizers of full groups of ergodic transformations Reviewed

    Toshihiko Masuda

    Ergodic theory and Dynamical Systems   1900

     More details

    Language:English  

    We apply Evans-Kishimoto's intertwining argument to the classification of
    actions of discrete amenable groups into the normalizer of a full group of an
    ergodic transformation. Our proof does not depend on the types of ergodic
    transformations.

  • Classification of outer actions of discrete amenable groupoids on injective factors Reviewed International journal

    Toshihiko Masuda

    Journal of Mathematical Society of Japan   1900

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    We classify outer actions (or $mathscr{G}$-kernels) of discrete amenable
    groupoids on injective factors. Our method based on unified approach for
    classification of discrete amenable groups actions, and cohomology reduction
    theorem of discrete amenable equivalence relations. We do not use
    Katayama-Takesaki type resolution group approach.

▼display all

Presentations

  • フォンノイマン環へのロホリン的流れ入門

    増田俊彦

    RIMS共同研究「作用素環論と種々の対称性」  2024.1 

     More details

    Event date: 2024.1

    Language:Others  

    Country:Other  

    Introduction to Rohlin flows on von Neumann algebras

  • エルゴード変換の充足群の正規化群への離散従順群の作用

    増田俊彦

    日本数学会秋季総合分科会函数解析分科会  2023.9 

     More details

    Event date: 2023.9

    Language:Japanese  

    Country:Other  

    Actions of discrete amenable groups into the normalizers of full groups of ergodic transformations

  • III型因子環への離散カッツ環のモジュラー作用

    増田 俊彦

    研究集会「作用素環論の最近の進展」  2023.9 

     More details

    Event date: 2023.9

    Language:Others  

    Country:Other  

    Modular actions of a discrete Kac algebras on type III factors

  • Actions of discrete amenable groups into the normalizer of full groups of ergodic tranformations

    増田俊彦

    RIMS 共同研究プログラム 「作用素環論における群作用と数理物理の関連」  2023.1 

     More details

    Event date: 2023.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Outer actions (G-kernels) of discrete amenable groupoids on injective factors,

    増田俊彦

    研究集会「作用素環論の最近の進展」  2021.9 

     More details

    Event date: 2021.9

    Language:English   Presentation type:Oral presentation (general)  

    Venue:オンラインセミナー   Country:Japan  

    単射的因子環へ従順離散亜群の外部的作用を完全分類した。また与えられた不変量を実現する作用の構成も行った。
    従来の方法と異なり、モデル作用を使用しない証明を与えた。

  • Outer actions (G-kernels) of discrete amenable groupoids on injective factors,

    増田俊彦

    日本数学会  2021.9 

     More details

    Event date: 2021.9

    Language:English  

    Venue:オンライン   Country:Japan  

    単射的因子環へ従順離散亜群の外部的作用を完全分類した。また与えられた不変量を実現する作用の構成も行った。
    従来の方法と異なり、モデル作用を使用しない証明を与えた。

  • Outer actions (G-kernels) of discrete amenable groupoids on injective factors,

    増田俊彦

    東大京大合同オンライン作用素環セミナー  2020.6 

     More details

    Event date: 2020.6

    Language:English   Presentation type:Oral presentation (general)  

    Venue:オンラインセミナー   Country:Japan  

    単射的因子環へ従順離散亜群の外部的作用を完全分類した。また与えられた不変量を実現する作用の構成も行った。
    従来の方法と異なり、モデル作用を使用しない証明を与えた。

  • On the relative bicentralizer flows and the relative flow of weights of inclusions of factors of type III1

    増田俊彦

    作用素論作用素環論研究集会  2019.12 

     More details

    Event date: 2019.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神奈川大学   Country:Japan  

    Ando-Haagerup-Houdayer-Marrakchiが導入した相対的再中心化環上の流れについて、彼らのあげた問題のうちの一つを解決した。
    すなわち相対的荷重の流れと同型ではないか、というのが彼らの問題であったが、これをしかるべき条件のもとで肯定的に解決した。

  • On the relative bicentralizer flows and the relative flow of weights of inclusions of factors of type III1

    増田俊彦

    日本数学会  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:金沢大学   Country:Japan  

  • Tannaka-Krein-Woronowicz duality from the viewpoint of Q-systems

    増田俊彦

    日本数学会  2018.3 

     More details

    Event date: 2018.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京大学   Country:Japan  

  • 冨田竹崎理論の紹介とそれに関連する話題

    増田俊彦

    第56回実函数論函数解析合同シンポジウム  2017.8 

     More details

    Event date: 2017.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:お茶の水大学   Country:Japan  

  • 強従順なC^*テンソル圏のロバーツ作用の分類について

    増田俊彦

    日本数学会  2018.5 

     More details

    Event date: 2017.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:首都大学東京   Country:Japan  

  • 離散従順群の単射的因子環への外部的作用(G-kernel)の分類について

    増田 俊彦

    日本数学会  2016.9 

     More details

    Event date: 2016.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京都産業大学   Country:Japan  

  • Connes の単射的III$_1$型因子環の分類についての議論の紹介と補足 (モジュラー 自己同型の近似的内部性について),

    増田俊彦

    作用素環の分類理論とその周辺  2015.2 

     More details

    Event date: 2015.2 - 2014.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京都大学   Country:Japan  

  • Braided system上のgradingとLongo-Rehren inclusion

    増田俊彦

    作用素環とその周辺分野の発展  2014.1 

     More details

    Event date: 2014.1 - 2014.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京都大学   Country:Japan  

  • Orbifold構成法での障害が消えるための十分条件

    増田俊彦

    日本数学会  2013.9 

     More details

    Event date: 2013.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:愛媛大学   Country:Japan  

  • フォンノイマン環上のロホリン的な流れの分類について

    増田 俊彦

    第52回実函数論・函数解析学合同シンポジウム  2013.9 

     More details

    Event date: 2013.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:青山学院大学   Country:Japan  

  • Classification of group actions on von Neumann algebras

    増田 俊彦

    Workshop on Operator Algebras ― for the 80th birthday of Masamichi Takesaki  2013.5 

     More details

    Event date: 2013.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:東京大学数理科学研究科   Country:Japan  

  • Rohlin flows on injective factors Invited International conference

    Toshihiko Masuda

    Conference on von Neumann Algebras and Related Topics  2012.1 

     More details

    Event date: 2012.1

    Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

  • Rohlin flows on injective factors

    増田俊彦

    作用素論作用素環論研究集会  2011.11 

     More details

    Event date: 2011.11

    Presentation type:Oral presentation (general)  

    Venue:琉球大学   Country:Japan  

  • フォンノイマン環への群・量子群作用の分類

    増田俊彦

    作用素環論とその関連分野の研究  2011.1 

     More details

    Event date: 2011.1 - 2011.2

    Presentation type:Oral presentation (general)  

    Venue:京都大学   Country:Japan  

  • 離散従順群の単射的因子環へのモデル作用の構成について

    増田俊彦

    日本数学会  2010.9 

     More details

    Event date: 2010.9 - 2009.9

    Presentation type:Oral presentation (general)  

    Venue:大阪大学   Country:Japan  

  • Evans-岸本型のintertwining argumentの一般化と離散従順群の単射的因子環への作用の分類

    増田俊彦

    日本数学会  2009.9 

     More details

    Event date: 2009.9

    Presentation type:Oral presentation (general)  

    Venue:大阪大学   Country:Japan  

  • Evans-Kishimoto intertwining argumentの一般化による単射的因子環への離散従順群の作用の分類

    増田俊彦

    作用素環論とその関連分野の研究  2009.9 

     More details

    Event date: 2009.9

    Presentation type:Oral presentation (general)  

    Venue:京都大学   Country:Japan  

  • III$_0$ subfactorのnon-strongly free automorphismについて Invited

    T.Masuda

    研究集会「作用素環論の多様性」  2001.1 

     More details

    Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

  • On non-strongly free automorphisms for subfactor of type III$_0$ Invited International conference

    T.Masuda

    Universita di Roma, seminar  2001.9 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Universita di Roma   Country:Italy  

  • On Longo-Rehren inclusions and Popa's symmetric enveloping algebras Invited International conference

    .T.Masuda

    mini-workshop ``Index Theorems and Modularity in Operator  2002.6 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Oberwolfach   Country:Germany  

  • III$_1$型部分因子環におけるrelative bicentralizerについて Invited

    増田 俊彦

    「作用素論・作用素環論」研究集会  2002.10 

     More details

    Presentation type:Oral presentation (general)  

    Venue:熊本大学   Country:Japan  

  • 因子環の自己同型にまつわる話題 Invited

    増田 俊彦

    第43回実函数論・函数解析学合同シンポジウム  2004.7 

     More details

    Presentation type:Oral presentation (general)  

    Venue:岩手大学   Country:Japan  

  • On classification of minimal actions of a compact Kac algebra with amenable dual, (joint work with (R. Tomatsu.) Invited International conference

    Toshihiko Masuda

    US-Japan seminar  2007.1 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Hawaii University   Country:United States  

  • エルゴード変換の充足群の正規化群への離散従順群の作用

    増田俊彦

    京都作用素環セミナー  2023.6 

     More details

    Language:Japanese  

    Country:Other  

    Actions of discrete amenable groups into the normalizers of full groups of ergodic transformations

▼display all

MISC

  • Tomita-Takesaki theory and its application to the structure theory of factors of type III Reviewed

    Masuda Toshihiko

    Mathematical Journal of Okayama University   2018.1

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    Tomita-Takesaki theory and its application to the structure theory of factors of type III
    We give a survey of Tomita-Takesaki theory and the development of analysis of structure of type III factors, which started from Tomita-Takesaki theory.

    DOI: 10.18926/mjou/56009

  • Actions of groups and quantum groups on amenable factors

    Toshihiko Masuda, Reiji Tomatsu

    Sugaku exposition   2017.6

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: doi.org/10.1090/suga/420

  • 従順因子環への群・量子群作用について Reviewed

    戸松 玲治, 増田 俊彦

    數學   2012.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 単射的${ m III_1}$型因子環の一意性に関する覚書 (作用素環論における最近の分類問題について)

    増田 俊彦

    数理解析研究所講究録   2005.5

     More details

    Language:Japanese  

  • $III_1$型部分因子環の分類について (作用素環における量子解析の展開)

    増田 俊彦

    数理解析研究所講究録   2004.1

     More details

    Language:Japanese  

  • M. Takesaki著"Theory of Operator algebras, II, III"

    増田俊彦

    数学   2003.10

     More details

    Language:Japanese   Publishing type:Book review, literature introduction, etc.  

  • $III_0$ subfactorのnon-strongly free automorphismについて (作用素環論の多様性)

    増田 俊彦

    数理解析研究所講究録   2001.10

     More details

    Language:Japanese  

  • On classification of approximately inner actions of discrete amenable groups on strongly amenble subfactors (作用表環論の進展)

    増田 俊彦

    数理解析研究所講究録   2000.2

     More details

    Language:English  

    On classification of approximately inner actions of discrete amenable groups on strongly amenable subfactors (Progress in Operator Algebras)

  • Extension of automorphisms of a subfactor to the symmetric enveloping algebra (Hilbert $C^*$-modules and groupoid $C^*$-algebras)

    増田 俊彦

    数理解析研究所講究録   1999.8

     More details

    Language:Japanese  

    Extension of automorphisms of a subfactor to the symmetric enveloping algebra (Hilbert $C^*$-modules and groupoid $C^*$-algebras)

  • Asymptotic inclusion と Longo-Rehren の構成について(作用素環論における最近の発展)

    増田 俊彦

    数理解析研究所講究録   1997.2

     More details

    Language:Japanese  

  • An analogue of Longo's canonical endomorphism for bimodule theory and its application to the asymptotic inclusion

    増田 俊彦

    数理解析研究所講究録   1996.8

     More details

    Language:Japanese  

    An analogue of Longo's canonical endomorphism for bimodule theory and its application to the asymptotic inclusion

▼display all

Professional Memberships

Committee Memberships

  • 日本数学会   函数解析分科会委員   Domestic

    2020.3 - 2022.3   

  • 日本数学会   Councilor   Domestic

    2015.3 - 2016.2   

  • 日本数学会   地方区代議員   Domestic

    2015.3 - 2016.2   

Academic Activities

  • 世話人 International contribution

    Operator Algebras and Mathematical Physics (Yasu Festa 60)  ( Japan ) 2023.7

     More details

    Type:Competition, symposium, etc. 

    Number of participants:70

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:1

  • 世話人

    作用素論作用素環論研究集会  ( Japan ) 2021.11

     More details

    Type:Competition, symposium, etc. 

    Number of participants:60

  • 世話人

    作用素論作用素環論研究集会  ( Japan ) 2020.11

     More details

    Type:Competition, symposium, etc. 

    Number of participants:60

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

  • 数学

    2014.9 - 2018.6

     More details

    Type:Academic society, research group, etc. 

▼display all

Research Projects

  • 作用素環とその対称性についての研究

    Grant number:22K03341  2022 - 2025

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 作用素環における自己同型からくる対称性の研究

    Grant number:16K05180  2016 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 作用素環論における自己同型群及び群作用の研究

    Grant number:19740088  2007 - 2010

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 作用素環論における部分因子環の構造に関する研究

    Grant number:14740119  2002 - 2004

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

Class subject

  • 数理科学特論8

    2023.10 - 2024.3   Second semester

  • 数理科学特別講義Ⅷ

    2023.10 - 2024.3   Second semester

  • 線形代数学Ⅱ

    2023.10 - 2024.3   Second semester

  • 数学概論Ⅰ・演習

    2023.4 - 2023.9   First semester

  • 関数解析大意

    2023.4 - 2023.9   First semester

  • 線形代数学Ⅰ

    2023.4 - 2023.9   First semester

  • 数学特論9

    2023.4 - 2023.9   First semester

  • 入門微分積分Ⅱ

    2022.12 - 2023.2   Winter quarter

  • 微分積分学Ⅱ

    2022.10 - 2023.3   Second semester

  • 入門微分積分Ⅰ

    2022.10 - 2022.12   Fall quarter

  • 数学概論Ⅰ・演習

    2022.4 - 2022.9   First semester

  • 微分積分学Ⅰ

    2022.4 - 2022.9   First semester

  • 微分積分学Ⅱ

    2021.10 - 2022.3   Second semester

  • 作用素環論基礎・演習

    2021.10 - 2022.3   Second semester

  • 微分積分学Ⅱ

    2021.10 - 2022.3   Second semester

  • 微分積分学Ⅰ

    2021.4 - 2021.9   First semester

  • 微分積分学Ⅰ

    2021.4 - 2021.9   First semester

  • 微分積分学・同演習B

    2020.10 - 2021.3   Second semester

  • 微分積分学

    2020.10 - 2021.3   Second semester

  • 線形代数学・同演習B

    2020.10 - 2021.3   Second semester

  • 微分積分学・同演習A

    2020.4 - 2020.9   First semester

  • 線形代数学・同演習A

    2020.4 - 2020.9   First semester

  • 微分積分学・同演習Ⅲ

    2020.4 - 2020.9   First semester

  • 関数解析の基礎

    2019.10 - 2020.3   Second semester

  • 微分積分学・同演習Ⅱ

    2019.10 - 2020.3   Second semester

  • 微分積分学・同演習Ⅱ

    2019.10 - 2020.3   Second semester

  • 解析学Ⅲ

    2019.10 - 2020.3   Second semester

  • 関数解析

    2019.10 - 2020.3   Second semester

  • 数学概論Ⅰ・演習

    2019.4 - 2019.9   First semester

  • 数理科学特別講義Ⅴ

    2019.4 - 2019.9   First semester

  • 微分積分学・同演習Ⅰ

    2019.4 - 2019.9   First semester

  • 微分積分学・同演習Ⅰ

    2019.4 - 2019.9   First semester

  • 数理科学特論5

    2019.4 - 2019.9   First semester

  • 関数解析の基礎

    2018.10 - 2019.3   Second semester

  • 解析学Ⅲ

    2018.10 - 2019.3   Second semester

  • 微分積分学・同演習B

    2018.10 - 2019.3   Second semester

  • 関数解析の基礎

    2018.10 - 2019.3   Second semester

  • 関数解析

    2018.10 - 2019.3   Second semester

  • 数学概論Ⅰ・演習

    2018.4 - 2018.9   First semester

  • 微分積分学・同演習A

    2018.4 - 2018.9   First semester

  • 微分積分学・同演習Ⅲ

    2018.4 - 2018.9   First semester

  • MMA講究C

    2018.4 - 2018.9   First semester

  • 微分積分学・同演習Ⅲ

    2017.12 - 2018.2   Winter quarter

  • 解析学Ⅲ

    2017.10 - 2018.3   Second semester

  • 微分積分学・同演習Ⅱ

    2017.10 - 2017.12   Fall quarter

  • 微分積分学・同演習Ⅰ

    2017.4 - 2017.9   First semester

  • MMA講究C

    2017.4 - 2017.9   First semester

  • 線形代数学同演習B

    2016.10 - 2017.3   Second semester

  • 微分積分学同演習B

    2016.10 - 2017.3   Second semester

  • 関数解析

    2016.4 - 2016.9   First semester

  • 微分積分学同演習A

    2016.4 - 2016.9   First semester

  • 微分積分学

    2016.4 - 2016.9   First semester

  • 線形代数学同演習A

    2016.4 - 2016.9   First semester

  • 線形代数学同演習B

    2015.10 - 2016.3   Second semester

  • 微分積分学同演習B

    2015.10 - 2016.3   Second semester

  • 線形代数学同演習A

    2015.4 - 2015.9   First semester

  • 数学概論II

    2015.4 - 2015.9   First semester

  • 微分積分学同演習A

    2015.4 - 2015.9   First semester

  • 線形代数学同演習B

    2014.10 - 2015.3   Second semester

  • 微分積分学同演習II

    2014.10 - 2015.3   Second semester

  • 微分積分学同演習I

    2014.4 - 2014.9   First semester

  • 線形代数学同演習A

    2014.4 - 2014.9   First semester

  • 数学展望

    2014.4 - 2014.9   First semester

  • 作用素環基礎演習

    2014.4 - 2014.9   First semester

  • 数学IIA

    2013.10 - 2014.3   Second semester

  • 線形代数学同演習B

    2013.10 - 2014.3   Second semester

  • 解析学I

    2013.4 - 2013.9   First semester

  • 線形代数学同演習A

    2013.4 - 2013.9   First semester

  • 数学IIA

    2012.10 - 2013.3   Second semester

  • 微分積分学同演習B

    2012.10 - 2013.3   Second semester

  • 解析学I

    2012.4 - 2012.9   First semester

  • 微分積分学同演習A

    2012.4 - 2012.9   First semester

  • 数学基礎演習III

    2012.4 - 2012.9   First semester

  • 数学IIA

    2011.10 - 2012.3   Second semester

  • 微分積分学同演習B

    2011.10 - 2012.3   Second semester

  • 作用素環論大意

    2011.4 - 2011.9   First semester

  • 微分積分学同演習A

    2011.4 - 2011.9   First semester

  • 線形代数学同演習B

    2010.10 - 2011.3   Second semester

  • 数学IIA

    2010.10 - 2011.3   Second semester

  • 線形代数学同演習A

    2010.4 - 2010.9   First semester

  • 作用素環論大意

    2010.4 - 2010.9   First semester

  • 微分積分学同演習B

    2009.10 - 2010.3   Second semester

  • 数学IIA

    2009.10 - 2010.3   Second semester

  • 線形代数学同演習B

    2009.10 - 2010.3   Second semester

  • 線形代数学同演習A

    2009.4 - 2009.9   First semester

  • 微分積分学同演習A

    2009.4 - 2009.9   First semester

  • 微分積分学同演習B

    2008.10 - 2009.3   Second semester

  • 数学IIA

    2008.10 - 2009.3   Second semester

  • 線形代数同演習B

    2008.10 - 2009.3   Second semester

  • 線形代数同演習A

    2008.4 - 2008.9   First semester

  • 微分積分学同演習A

    2007.4 - 2007.9   First semester

  • 数学IA

    2007.4 - 2007.9   First semester

  • 微分積分学・同演習B

    2006.10 - 2007.3   Second semester

  • 作用素環論基礎・演習

    2006.10 - 2007.3   Second semester

  • 微分積分学・同演習A

    2006.4 - 2006.9   First semester

  • 基礎数学演習III

    2006.4 - 2006.9   First semester

  • 数学基礎演習Ⅲ

    2005.4 - 2005.9   First semester

  • 作用素環論基礎・演習

    2005.4 - 2005.9   First semester

  • 微分積分続論

    2004.4 - 2004.9   First semester

  • 微分積分A

    2004.4 - 2004.9   First semester

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2012  東京大学数理科学研究院  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:7/4-7/8

Social Activities

  • 2023年5月21日に開催された入試連絡会において九州内の高校教員を対象とした講演を行った。

    2023

     More details

    2023年5月21日に開催された入試連絡会において九州内の高校教員を対象とした講演を行った。

  • 鹿児島県の教員を対象とした、令和5年度教材研究会において講演を行った。

    2023

     More details

    鹿児島県の教員を対象とした、令和5年度教材研究会において講演を行った。

  • 公開講座「現代数学入門」の世話人、及び講師

    九州大学数理学研究院、マスフォアインダストリ研究所  九州大学伊都キャンパスウェスト1号館IMIオーディトリアム  2014.7

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

Travel Abroad

  • 2008.11

    Staying countory name 1:Austria   Staying institution name 1:シュレーディンガー研究所

  • 2007.10 - 2007.12

    Staying countory name 1:Canada   Staying institution name 1:フィールズ研究所