Updated on 2024/10/22

Information

 

写真a

 
ISHII YUTAKA
 
Organization
Faculty of Mathematics Division of Analysis Professor
School of Sciences Department of Mathematics(Concurrent)
Graduate School of Mathematics Department of Mathematics(Concurrent)
Joint Graduate School of Mathematics for Innovation (Concurrent)
Title
Professor
Contact information
メールアドレス
Profile
The main theme of my research is a combinatorial study of complex dynamical systems in dimension two, namely the complex Henon maps. I am now working on a criterion of their hyperbolicity, topology and combinatorics of their Julia sets and of their parameter loci, and applications of such complex methods to real dynamics. I gave a series of lectures on the dynamics of complex Henon maps both in Tokyo Institute of Technology and in Hokkaido University, on symbolic dynamics and data storage in Tokushima University. I gave a public lecture under the title "Dimension, Fractals and Dynamical Systems" organized by the Department of Mathematics, Kyushu University.
External link

Degree

  • Ph D (Mathematical Sciences), University of Tokyo, March 1998

Research Interests・Research Keywords

  • Research theme: Visualization of 4D spaces with VR

    Keyword: higher-dimensional spaces, virtual reality, Julia sets

    Research period: 2018.4

  • Research theme: 高次元ラップ数公式とエントロピーの誤差評価付き計算

    Keyword: ラップ数公式、エントロピー、区間演算

    Research period: 1998.1

  • Research theme: 量子トンネル効果と高次元複素力学系

    Keyword: トンネル効果、Julia 集合、Laputa 鎖

    Research period: 1998.1

  • Research theme: Combinatorial study of complex Henon maps

    Keyword: Henon maps, complex dynamics, Julia sets, hyperbolicity, parameter loci

    Research period: 1997.10

  • Research theme: Lozi 写像に対する kneading 理論

    Keyword: Lozi 写像、二ーディング理論、エントロピー、単調性

    Research period: 1992.4

Papers

  • Polyvision 4D space manipulation through multiple projections International journal

    Keigo Matsumoto, Nami Ogawa, Hiroyuki Inou, Shizuo Kaji, Yutaka Ishii, Michitaka Hirose

    SIGGRAPH Asia 2019 Emerging Technologies - International Conference on Computer Graphics and Interactive Techniques, SA 2019 SIGGRAPH Asia 2019 Emerging Technologies, SA 2019   36 - 37   2019.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    Seeing is believing. Our novel virtual reality system, Polyvision, applies this old saying to the fourth dimension. Various shadows of an object in a four-dimensional (4D) space are simultaneously projected onto multiple three-dimensional (3D) screens created in a virtual environment to reveal its intricate shape. The understanding of high-dimensional shapes and data can essentially be enhanced when good visualization is complemented by interactive functionality. However, a method to implement an interface for handling complex 4D transformations in a user-friendly manner must be developed. Using our Polyvision system, the user can manipulate each shadow as if it were a 3D object in their hand. The user’s action on each projection is reflected to the original 4D object, and in turn its projections, in real time. While controlling the object’s orientation minutely on one shadow, the user can grasp its global structure from multiple changing projections. Our system has a wide variety of applications in visualization, education, mathematical research, and entertainment, as we demonstrate with a variety of 4D objects that appear in mathematics and data sciences.

    DOI: 10.1145/3355049.3360518

  • On parameter loci of the H'enon family. Invited Reviewed International journal

    Zin ARAI, Yutaka ISHII

    Commun. Math. Phys.   2018.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We characterize the hyperbolic horseshoe locus and the maximal entropy locus of the Henon family. The proof employs a combination of complex analytic and complex dynamical methods together with rigorous numerics.

    Repository Public URL: http://hdl.handle.net/2324/4123945

  • Dynamics of polynomial diffeomorphisms of C^2: Combinatorial and topological aspects. Invited Reviewed International journal

    Yutaka ISHII

    Arnold Math. J.   2017.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The purpose of this paper is to survey some results, questions and problems on the dynamics of polynomial diffeomorphisms of C^2 including complex Henon maps with an emphasis on the combinatorial and topological aspects of their Julia sets.

    Repository Public URL: http://hdl.handle.net/2324/4123946

  • Hyperbolic polynomial diffeomorphisms of C^2. III: Iterated monodromy groups. Reviewed International journal

    Yutaka ISHII

    Advances in Mathematics   255   242 - 304   2014.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Homotopy shadowing. Reviewed International journal

    Yutaka Ishii, John Smillie

    Amer. J. Math.   132 ( 4 )   2010.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Michael Shub proved in 1969 that the topological conjugacy class of an expanding endomorphism on a compact manifold is determined by its homotopy type. In this article we generalize this result in two directions. In one direction we consider certain expanding maps on metric spaces. In a second direction we consider maps which are hyperbolic with respect to product cone fields on a product manifold. A key step in the proof is to establish a shadowing theorem for pseudo-orbits with some additional homotopy information.

  • Symbolic dynamics for Henon maps near the boundary of the horseshoe locus

    Hironaka, Y; Ishii, Y

    ERGODIC THEORY AND DYNAMICAL SYSTEMS   2024.5   ISSN:0143-3857 eISSN:1469-4417

     More details

    Publisher:Ergodic Theory and Dynamical Systems  

    Bedford and Smillie [A symbolic characterization of the horseshoe locus in the Hénon family. Ergod. Th. & Dynam. Sys. 37(5) (2017), 1389-1412] classified the dynamics of the Hénon map <![CDATA[ $f_{a, b}: (x, y)\mapsto (x^2-a-by, x)$ ]]> defined on <![CDATA[ $\mathbb {R}^2$ ]]> in terms of a symbolic dynamics when <![CDATA[ $(a, b)$ ]]> is close to the boundary of the horseshoe locus. The purpose of the current article is to generalize their results for all <![CDATA[ $b\ne 0$ ]]> (including the case <![CDATA[ $b < 0$ ]]> as well). The method of the proof is first to regard <![CDATA[ $f_{a, b}$ ]]> as a complex dynamical system in <![CDATA[ $\mathbb {C}^2$ ]]> and second to introduce the new Markov-like partition in <![CDATA[ $\mathbb {R}^2$ ]]> constructed by us [On parameter loci of the Hénon family. Comm. Math. Phys. 361(2) (2018), 343-414].

    DOI: 10.1017/etds.2024.34

    Web of Science

    Scopus

  • On the Hausdorff dimension of the recurrent sets induced from endomorphisms of free groups. Reviewed International journal

    Yutaka Ishii, Tatsuya Oka

    J. Fractal Geom.   9 ( 1 )   171 - 192   2023.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • 複素力学系の諸問題 Invited International journal

    石井豊

    数理解析研究所講究録   2211   2022.4

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 複素力学系の問題 (複素幾何学の諸問題 II)

    ISHII YUTAKA

    RIMS Kokyuroku   2211   23 - 44   2022.1   ISSN:18802818

     More details

    Language:Japanese   Publisher:京都大学数理解析研究所  

    CiNii Research

  • On the Hausdorff dimension of the recurrent sets induced from endomorphisms of free groups

    Ishii, Y; Oka, T

    JOURNAL OF FRACTAL GEOMETRY   9 ( 1-2 )   171 - 192   2022   ISSN:2308-1309 eISSN:2308-1317

     More details

    Publisher:Journal of Fractal Geometry  

    We show that F. Dekking’s recurrent sets in R2, which correspond to Markov partitions for conformally expanding maps of the 2-torus, have Hausdorff dimension strictly greater than one. This is a counterpart to the classical result of R. Bowen on the non-smoothness of the Markov partitions for Anosov diffeomorphisms of the 3-torus. We also present a non-conformal example where the recurrent set is a parallelogram and hence its Hausdorff dimension is one.

    DOI: 10.4171/JFG/120

    Web of Science

    Scopus

  • バーチャル・リアリティを用いた4次元可視化プロジェクト

    Ishii Yutaka

    数学通信   3   49 - 54   2022

     More details

  • 複素力学系の問題

    石井 豊

    数理解析研究所講究録「複素幾何学の諸問題II」   2211   23 - 44   2022

     More details

  • M_4 is regular-closed. Invited Reviewed International journal

    Yutaka ISHII, Yutaro HIMEKI

    Ergod. Th. & Dynam. Sys.   2020.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Repository Public URL: http://hdl.handle.net/2324/4123944

  • Boundary of the horseshoe locus for the H'enon family Reviewed International journal

    Zin Arai, Yutaka Ishii, Hiroki Takahasi

    SIAM J. Appl. Dyn. Syst.   17 ( 3 )   2234 - 2248   2018.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Corrigendum to ``Hyperbolic polynomial diffeomorphisms of C^2. II: Hubbard trees.'' Reviewed International journal

    Yutaka Ishii

    Advances in Mathematics   226 ( 4 )   2011.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Julia sets and chaotic tunneling II. Reviewed International journal

    Akira Shudo, Yutaka Ishii, Kensuke S. Ikeda

    J. Phys. A: Math. Theor.   42   2009.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Julia sets and chaotic tunneling I. Reviewed International journal

    Akira Shudo, Yutaka Ishii, Kensuke S. Ikeda

    J. Phys. A: Math. Theor.   42   2009.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Hyperbolic polynomial diffeomorphisms of C^2. II: Hubbard trees. Reviewed International journal

    Yutaka Ishii

    Advances in Mathematics   220 ( 4 )   2009.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Hyperbolic polynomial diffeomorphisms of C^2. I: A non-planar map. Reviewed International journal

    Yutaka Ishii

    Advances in Mathematics   218 ( 2 )   2008.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Chaos attracts tunneling trajectories: A universal mechanism of chaotic tunneling. Reviewed International journal

    Akira Shudo, Yutaka Ishii, Kensuke S. Ikeda

    Europhysics Letters   2008.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Lap number entropy formula for piecewise affine and projective maps. Reviewed International journal

    Yutaka Ishii, Duncan Sands

    Nonlinearity   2007.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Note on a paper by Kawasaki and Sasa on Bernoulli coupled map lattices. Reviewed International journal

    Yutaka Ishii

    Journal of Physics A: Mathematical and General   2006.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Julia set describes quantum tunnelling in the presence of chaos. Reviewed International journal

    Akira Shudo, Yutaka Ishii, Kensuke S. Ikeda

    Journal of Physics A: Mathematical and General   35 ( 17 )   L225 - L231   2002.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1088/0305-4470/35/17/101

  • Monotonicity of the Lozi family near the tent-maps. Reviewed International journal

    Yutaka Ishii, Duncan Sands

    Communications in Mathematical Physics   1998.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Towards a kneading theory for Lozi mappings. II: Monotonicity of the topological entropy and Hausdorff dimension of attractors. Reviewed International journal

    Yutaka Ishii

    Communications in Mathematical Physics   1997.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Towards a kneading theory for Lozi mappings I: A solution of the pruning front conjecture and the first tangency problem. Reviewed International journal

    Yutaka Ishii

    Nonlinearity   1997.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Ising models, Julia sets, and similarity of the maximal entropy measures. Reviewed International journal

    Yutaka Ishii

    J.Statist.Phys.   1995.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

▼display all

Books

  • カオス力学系入門 第2版

    国府 寛司・石井 豊・新居 俊作・木坂 正史(Role:Joint translator)

    共立出版  2003.11 

     More details

    Language:Japanese   Book type:Scholarly book

    Japanese translation of "An Introduction to Chaotic Dynamical Systems, by Robert L. Devaney"

    Repository Public URL: http://hdl.handle.net/2324/1001123577

Presentations

  • Information theory and symbolic dynamics Invited

    Y.Ishii

    TIN workshop  2009.7 

     More details

    Event date: 2009.4

    Presentation type:Oral presentation (general)  

    Country:Japan  

  • Global monotonicity conjecture and renormalization for the skew-Lozi family. Invited International conference

    Y.Ishii

    Semi-annual conference on dynamical systems  1999.10 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Pennsylvania State University, University Park   Country:United States  

  • Global monotonicity conjecture and renormalization for the skew-Lozi family. Invited International conference

    Y.Ishii

    Dynamics and geometry seminar  1999.11 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Cornell University, Ithaca   Country:United States  

  • Global monotonicity conjecture and renormalization for the skew-Lozi family. Invited International conference

    Y.Ishii

    Dynamics seminar  2000.4 

     More details

    Presentation type:Oral presentation (general)  

    Venue:State University of New York at Stony Brook, New York   Country:United States  

  • On the hyperbolicity of some complex H?'enon maps. Invited International conference

    Y.Ishii

    Hayama Symposium on Several Complex Variables  2000.12 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Shonan Village Center, Hayama   Country:Japan  

  • Sur l'hyperbolicit?'e de quelques applications de H?'enon complexes. Invited International conference

    Y.Ishii

    Seminaire de dynamique  2001.3 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Universite de Paris-Sud, Orsay   Country:France  

  • A lap number formula in higher dimensions and rigorous entropy estimates for Lozi maps. Invited International conference

    Y.Ishii

    New Directions in Dynamical Systems  2002.8 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Kyoto University, Kyoto   Country:Japan  

  • A lap number formula in higher dimensions and rigorous entropy estimates for Lozi maps. Invited International conference

    Y.Ishii

    Ergodic Theory Workshop  2002.12 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Nihon University, Tokyo   Country:Japan  

  • Hyperbolic polynomial diffeomorphisms of $C^2$. Invited International conference

    Y.Ishii

    Hayama Symposium on Several Complex Variables  2004.12 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Shonann Village Center, Hayama   Country:Japan  

  • Hyperbolic polynomial diffeomorphisms of $C^2$. Invited International conference

    Y.Ishii

    Dynamique conforme, geometrie hyperbolique, et fractions continues  2005.6 

     More details

    Presentation type:Oral presentation (general)  

    Venue:Centre International de Rencontres Mathematiques, Luminy   Country:France  

▼display all

MISC

  • バーチャル・リアリティを用いた 4 次元可視化プロジェクト

    石井豊

    数学通信   2022.4

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 数学と出会ったころ: 思い出の紙一枚

    石井豊

    数学セミナー   2004.12

     More details

    Language:Japanese  

  • 高次元複素力学系と「和田の湖」

    石井豊

    数学セミナー   2004.11

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 離散可積分系と離散力学系 ---不変量の視点から---

    石井豊

    数理科学   2003.9

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 物理現象と複素力学系

    石井豊

    数理科学   1999.10

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

Professional Memberships

  • 日本数学会

Academic Activities

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:1

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • organizing committee International contribution

    International symposium on complexified dynamics, tunnelling and chaos  ( Ritsumeikan University Japan ) 2005.8 - Present

     More details

    Type:Competition, symposium, etc. 

    Number of participants:50

Research Projects

  • intertwined limits in nearly integrable quantum systems and complex classical dynamics

    Grant number:23K22417  2022.4 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    首藤 啓, 石井 豊, 池田 研介

      More details

    Grant type:Scientific research funding

    系が特殊な対称性をもたない限り,運動の自由度を2つ以上もつ系(以下,多自由度系という)の古典力学にはカオスが発生する.多自由度系の量子トンネル効果は古典カオスの影響を受けるのか?量子力学における基本的な問いでありながら,その問題が提起され40年近くが経った現在でも,我々はその答えを知らない.本研究では,複素半古典論など,我々自身が独自に発展させてきた手法,蓄積してきた経験をもとに多自由度トンネル効果に関するこの最も基本的な問題を追求する.特に,複素カオスがトンネル効果に顕在化することを立証し,教科書で学ぶ1自由度のトンネル効果と多自由度のトンネル効果の本質的な違いを明らかにする.

    CiNii Research

  • 「かたち」と「うごき」を表す高次元データ記述子の開発

    Grant number:22H05107  2022 - 2026

    Japan Society for the Promotion of Science・Ministry of Education, Culture, Sports, Science and Technology  Grants-in-Aid for Scientific Research  Grant-in-Aid for Transformative Research Areas (A)

    平岡 裕章, 石井 豊, 池 祐一, 落合 啓之

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

    現代社会に氾濫する高次元データは,その構造を直接「見る」ことができない.低次元空間への射影や断面を用いる従来法からは,構造の直感的理解を得ることは難しく,さらには幾何・トポロジー構造が潰されたものになる問題点もある.そこで本研究では,高次元データを直感的に知覚できるデータ記述子の開発を目標に据えた,以下の3テーマを実施する.
    テーマ1:バーチャルリアリティ(VR)を用いたインタラクティブな高次元可視化の数理
    テーマ2:パーシステントホモロジーの代数解析・代数幾何的研究とその応用
    テーマ3:マグニチュードホモロジーの自然言語処理・オミックスデータ解析への応用

    CiNii Research

  • Construction of new phase-parameter space correspondence for complex dynamics in dimension two

    Grant number:23K20218  2020.4 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    石井 豊, 小木曽 啓示, 上原 崇人, 宍倉 光広, 荒井 迅

      More details

    Grant type:Scientific research funding

    石井が主に記号力学系的側面と複素力学系的側面を担当し、荒井が主に計算機を 用いた数値実験で具体的なモノドロミー作用による記号空間の自己同型群の計算を担当する。以上 の計画遂行のため、石井と荒井は数回相互訪問して議論を行ない、各年に1回程度の海外出張 で最新の情報を収集する。また、複素局面上の力学系の力学系的じすうの分布について上原が先行的な数値実験を開始した。この点の理解を深めるために、数回相互訪問して議論を行なうための国内旅費が必要となる。

    CiNii Research

  • 複素2次元力学系における相空間とパラメータ空間の新たな対応関係の構築

    Grant number:20H01809  2020 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • Bifurcation and renormalization of real and complex dynamical systems

    Grant number:19H01798  2019.4 - 2024.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    宍倉 光広, 奥山 裕介, 稲生 啓行, 石井 豊

      More details

    Grant type:Scientific research funding

    シンプルで決定論的な力学系はしばしば複雑で予測不可能な挙動(カオス)を示す.カオス的力学系ののパラメータを変化させると,一つのタイプの分岐現象(力学系全体の挙動が変化)が別のタイプの分岐を引き起こし,パラメータ空間の中の分岐パラメータの集合は入り組んだ階層的構造(フラクタルなど)をもつ.この階層的構造は、くりこみと呼ばれる概念により説明されることが多い。
    本研究では,カオス的挙動をもつ実および複素の低次元力学系に的を絞って,分岐現象(特に大域的な力学系の構造の分岐)を理解することを目指す.そのためには,トポロジー的方法,実解析的方法,複素解析的方法、数論的方法などを援用する.

    CiNii Research

  • 非一様双曲的な実および複素Henon写像の力学系

    2019 - 2020

    Japan Society for the Promotion of Science  Bilateral program

      More details

    Authorship:Principal investigator  Grant type:Joint research

  • On the creation of chaos in higher dimensions

    Grant number:18H01138  2018.4 - 2023.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    荒井 迅, 石井 豊, 三波 篤郎

      More details

    Grant type:Scientific research funding

    本研究の目的は,高次元力学系にカオスが発生するメカニズムを解明し,カオス理論の応用範囲を飛躍的に拡大することである.カオスがどのような分岐を経て発生するのか,数学的に完全な理論が存在するのは1次元の最も基本的な場合のみであり,高次元でカオスが発生するメカニズム数学的な説明はいまだ得られていない.これがカオス理論の応用を進める上で大きな障害になっており,本研究はこの困難をトポロジーや計算機科学を応用して突破することを目指している.今年度は,昨年度の研究で得られた,1次元からの摂動論を用いることが出来ない本質的に新しい構造の連結なジュリア集合を持つパラメータを中心に,エノン写像のパラメータ空間の構造を解明するための研究を進めた.これは,ジュリア集合が非連結となるようなパラメータ集合を連結となるパラメータ集合がパラメータ空間のなかで位相的にどのように配位しているかを明らかにしようというもので,1次元を越えた高次元複素力学系を研究する上で基本的な問題であると考える.この目標のためには,パラメータ空間の構造を効率的に探索する数値計算手法を開発し,さらに不動点の不安定多様体の精度保証付き数値計算や,グリーン関数を評価してその特異点の存在を数学的に厳密に証明するためのアルゴリズムなど,計算機援用証明の技法を開発する必要がある.今年度の研究により,これら必要となる技法の本質的な部分は確立された.特にグリーン関数の特異点の存在証明については、局所的な計算を用いる手法だけでなく,グリーン関数の劣調和性を用いた大域的な手法も開発し,今後の研究の幅を拡げることができた.

    CiNii Research

  • Visualization of 4D space by VR and complex dynamics

    Grant number:18K18722  2018 - 2020

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

    Ishii Yutaka

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    Visualization of higher dimensional objects attracts great interest from mathematics, physics and data science, etc. The purpose of this project is to visualize mathematical objects in 4 dimensional space such as the Julia sets by using virtual reality system. As a consequence, we succeeded a system called Polyvision which is a higher dimensional analogue of CAD (computer aided design) by using the idea of multi-projections. This system has been accepted to SIGGRAPH ASIA, one of the top conferences in computer graphics. We also started psychological test based on this system.

    CiNii Research

  • 複素エノン写像の力学系:相空間からパラメータ空間へ

    Grant number:25287020  2013 - 2018

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 複素2変数力学系の実3次元可視化について

    Grant number:25610020  2013 - 2016

    Grants-in-Aid for Scientific Research  Grant-in-Aid for challenging Exploratory Research

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 複素Henon写像族のパラメータ空間の力学系的研究

    Grant number:21740125  2009 - 2012

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 体積保存系としてのK3曲面上の複素力学系

    Grant number:18740091  2006 - 2008

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 二次元複素力学系のコンビナトリアルな研究

    Grant number:14740120  2002 - 2004

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 複素 Henon 写像のコンビナトリアルな研究 International coauthorship

    1999.10

  • Lozi 写像の単調性とラップ数公式 International coauthorship

    1995.6

▼display all

Educational Activities

  • I taught calculus and linear algebra to freshmen and introduction to metric space topology to undergraduate students in math department.

Class subject

  • 微分積分学Ⅱ

    2023.10 - 2024.3   Second semester

  • 力学系大意

    2023.10 - 2024.3   Second semester

  • 微分積分学Ⅰ

    2023.4 - 2023.9   First semester

  • 数学概論Ⅱ・演習

    2023.4 - 2023.9   First semester

  • 微分積分学Ⅱ

    2021.10 - 2022.3   Second semester

  • 微分積分学Ⅰ

    2021.4 - 2021.9   First semester

  • コアセミナーⅠ

    2021.4 - 2021.9   First semester

  • 数学概論Ⅱ・演習

    2021.4 - 2021.9   First semester

  • 線形代数学・同演習B

    2020.10 - 2021.3   Second semester

  • 微分積分学

    2020.10 - 2021.3   Second semester

  • 数学概論Ⅱ・演習

    2020.4 - 2020.9   First semester

  • 線形代数学・同演習A

    2020.4 - 2020.9   First semester

  • 線形代数

    2020.4 - 2020.9   First semester

  • 微分積分学

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 数学概論Ⅱ・演習

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 微分積分学

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 線形代数学B

    2017.10 - 2018.3   Second semester

  • 線形代数学A

    2017.4 - 2017.9   First semester

  • 線形代数学B

    2016.10 - 2017.3   Second semester

  • 線形代数学A

    2016.4 - 2016.9   First semester

  • 線形代数学B

    2015.10 - 2016.3   Second semester

  • 線形代数学A

    2015.4 - 2015.9   First semester

  • 微分積分学

    2014.4 - 2015.3   Full year

  • 数学演習 I

    2014.4 - 2014.9   First semester

  • 複素解析学大意

    2014.4 - 2014.9   First semester

  • 数学概論4・演習

    2012.10 - 2013.3   Second semester

  • 力学系大意

    2012.10 - 2013.3   Second semester

  • 数学概論2・演習

    2012.4 - 2012.9   First semester

  • 基礎数学演習

    2011.4 - 2012.3   Full year

  • 数学入門演習

    2011.4 - 2011.9   First semester

  • 数学概論2

    2011.4 - 2011.9   First semester

  • Google と線形代数

    2011.4 - 2011.9   First semester

  • 数学概論1・演習

    2008.10 - 2009.3   Second semester

  • 数学概論1・演習

    2007.10 - 2008.3   Second semester

  • 数学概論1・演習

    2006.10 - 2007.3   Second semester

  • 数学基礎演習Ⅱ

    2005.10 - 2006.3   Second semester

  • 複素解析学大意

    2004.10 - 2005.3   Second semester

  • 数学特論11,12

    2004.10 - 2005.3   Second semester

  • 数学基礎演習Ⅱ

    2004.10 - 2005.3   Second semester

  • 解析学B2

    2003.4 - 2003.9   First semester

  • ルベーグ積分論演習・関数論演習

    2003.4 - 2003.9   First semester

  • 解析学B1

    2003.4 - 2003.9   First semester

▼display all

FD Participation

  • 2022.4   Role:Moderator   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.7   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.3   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2004.4   Role:Participation   Title:不明

    Organizer:University-wide

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2014  名古屋大学多元数理学研究科  Classification:Intensive course  Domestic/International Classification:Japan 

  • 2008  京都大学情報学研究科  Classification:Intensive course  Domestic/International Classification:Japan 

  • 2006  Departement de Mathenatiques, Universite de Rennes, France  Classification:Affiliate faculty  Domestic/International Classification:Overseas 

    Semester, Day Time or Duration:2006.6

  • 2005  北海道大学理学部  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2005 年度後期

  • 2005  東京工業大学大学院理工学研究科  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2005 年度前期

  • 2002  Departement de Mathematiques, Universite de Paris-Sud, France  Classification:Affiliate faculty  Domestic/International Classification:Overseas 

    Semester, Day Time or Duration:2002.3 -- 2002.4

  • 2002  徳島大学総合科学部  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2002.9

▼display all

Outline of Social Contribution and International Cooperation activities

  • 無し

Social Activities

  • 「次元・フラクタル・力学系」 一般市民を対象とした講演

    九州大学数理学研究院  九州大学  2005.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

Acceptance of Foreign Researchers, etc.

  • 数理学研究院

    Acceptance period: 2023.1 - 2026.7   (Period):1 month or more

    Nationality:United Kingdom

    Business entity:Japan Society for the Promotion of Science

  • Centrum voor Wiskunde en Informatica

    Acceptance period: 2005.3   (Period):Less than 2 weeks

    Nationality:Netherlands

  • CNRS, Universite de Paris VII

    Acceptance period: 2003.7   (Period):Less than 2 weeks

    Nationality:France

  • Cornell University & Universite de Provence

    Acceptance period: 2001.1   (Period):Less than 2 weeks

    Nationality:United States

  • Kyoto University

    Acceptance period: 1998.1   (Period):Less than 2 weeks

    Nationality:France

Travel Abroad

  • 2010.3 - 2011.3

    Staying countory name 1:France   Staying institution name 1:Centre de Mathematiques Laurent Schwartz, Ecole Polytechnique

  • 2006.6

    Staying countory name 1:France   Staying institution name 1:Departement de Mathematiques, Universite de Rennes

  • 2004.1 - 2004.2

    Staying countory name 1:France   Staying institution name 1:Institut Henri Poincare

  • 2003.9 - 2003.12

    Staying countory name 1:Japan   Staying institution name 1:RIMS, Kyoto University

  • 2002.3 - 2002.4

    Staying countory name 1:France   Staying institution name 1:Departement de Mathematiques, Universite de Paris-Sud

  • 2001.3 - 2001.4

    Staying countory name 1:France   Staying institution name 1:Departement de Mathematiques, Universite de Paris-Sud

  • 1999.10 - 2000.9

    Staying countory name 1:United States   Staying institution name 1:Department of Mathematics, Cornell University

  • 1997.11 - 1997.12

    Staying countory name 1:United States   Staying institution name 1:Institute for Mathematical Sciences, State University of New York at Stony Brook

  • 1994.7 - 1996.8

    Staying countory name 1:France   Staying institution name 1:Departement de Mathematiques, Universite de Paris-Sud

▼display all