Updated on 2024/10/08

Information

 

写真a

 
KAMIMOTO JOE
 
Organization
Faculty of Mathematics Division of Analysis Professor
School of Sciences Department of Mathematics(Joint Appointment)
Graduate School of Mathematics Department of Mathematics(Joint Appointment)
School of Education (Joint Appointment)
Title
Professor
Profile
I am studying complex analysis of several complex variables. It is important to understand the properties of holomorphic functions on many kinds of domains in complex space. In particular, the boundary behavior of these functions can be represented in terms of the geometry of the boundary of the respective domains. I am interested in the class of pseudoconvex domains of finite type. My viewpoint is from the singularity theory. My students are also studying these thema from my viewpoints.
External link

Degree

  • PHD Math. Sci.

Research History

  • 熊本大学助手大学院自然科学研究科:1998年10月1日〜2000年9月30日

Research Interests・Research Keywords

  • Research theme:Complex analysis, Harmonic Analysis, Partial differential equations

    Keyword:holomorphic functions, asymptotic expansion, partial differential equation, complex geometry, Singularity theory

    Research period: 2000.10

Papers

  • Resolution of singularities for C^∞ functions and meromorphy of local zeta functions Reviewed International journal

    286 ( 1 )   2024.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.jfa.2023.110185

  • The Asymptotic Behavior of the Bergman Kernel on Pseudoconvex Model Domains Invited Reviewed International journal

    Joe Kamimoto

    In: Hirachi, K., Ohsawa, T., Takayama, S., Kamimoto, J. (eds) The Bergman Kernel and Related Topics. HSSCV 2022. Springer Proceedings in Mathematics & Statistics   447   273 - 292   2024.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1007/978-981-99-9506-6_10

  • Asymptotic expansion of oscillatory integrals with singular phases Invited Reviewed International journal

    Joe Kamimoto, #Hiromichi Mizuno

    Kyushu Journal of Mathematics   2023.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • On Holomorphic Curves Tangent to Real Hypersurfaces of Infinite Type Reviewed International journal

    Joe Kamimoto

    The Journal of Geometric Analysis   2021.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1007/s12220-020-00567-z

    Other Link: https://doi.org/10.1007/s12220-020-00567-z

    Repository Public URL: http://hdl.handle.net/2324/4795994

  • Newton polyhedra and order of contact on real hypersurfaces Invited Reviewed International journal

    Joe Kamimoto

    J. Math. Soc. Japan   2021.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Meromorphy of local zeta functions in smooth model cases Reviewed

    Joe Kamimoto, Toshihiro Nose

    Journal of Functional Analysis   278 ( 6 )   2020.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jfa.2019.108408

    Repository Public URL: http://hdl.handle.net/2324/4795995

  • Nonpolar singularities of local zeta functions in some smooth case Reviewed International journal

    Joe Kamimoto, Toshihiro Nose

    Transactions of the American Mathematical Society   372 ( 1 )   661 - 676   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1090/tran/7771

  • Asymptotic limit of oscillatory integrals with certain smooth phases Invited Reviewed International journal

    RIMS K\^oky\^uroku Bessatsu   2017.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • On asymptotic expansions of oscillatory integrals with smooth phase in two dimensions Invited Reviewed International journal

    RIMS K\^oky\^uroku Bessatsu   B57   141 - 157   2016.9

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  • Toric resolution of singularities in a certain class of C^{\infty} functions and asymptotic analysis of oscillatory integrals Reviewed International journal

    Joe Kamimoto, Toshihiro Nose

    J. Math. Soc. Univ. Tokyo   23   425 - 485   2016.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Newton polyhedra and weighted oscillatory integrals with smooth phases Reviewed

    Joe Kamimoto, Toshihiro Nose

    Transactions of the American Mathematical Society   368 ( 8 )   5301 - 5361   2016.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1090/tran/6528

  • On meromorphic continuation of local zeta functions, Invited Reviewed International journal

    144   187 - 195   2015.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Asymptotic analysis of oscillatory integrals via the Newton polyhedra of the phase and the amplitude Reviewed

    Koji Cho, Joe Kamimoto, Toshihiro Nose

    Journal of the Mathematical Society of Japan   65 ( 2 )   521 - 562   2013.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.2969/jmsj/06520521

  • Asymptotic analysis of weighted oscillatory integrals via Newton polyhedra Invited Reviewed International journal

    Joe Kamimoto, Toshihiro Nose

    Proceedings of the 19th ICFIDCAA Hiroshima 2011   3 - 12   2013.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • On oscillatory integrals with C^{\infty} phases Invited Reviewed International journal

    Joe Kamimoto and Toshihiro Nose

    Suriken Kokyuroku, Bessatsu   B40   31 - 40   2013.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Asymptotics of the Bergman function for semipositive holomorphic line bundles Reviewed

    Koji Cho, Joe Kamimoto, Toshihiro Nose

    Kyushu Journal of Mathematics   65 ( 2 )   349 - 382   2011.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.2206/kyushujm.65.349

  • On the Bergman fuction for semipositive holomorphic line bundles

    2008.9

     More details

    Language:English   Publishing type:Research paper (other academic)  

    On the Bergman fuction for semipositive holomorphic line bundles

  • The Bergman kernel on tube domains of finite type Invited Reviewed International journal

    Joe Kamimoto

    Journal of Mathematical Sciences, the University of Tokyo.   13   365 - 408   2006.6

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  • Behavior of the Bergman kernel at infinity Reviewed

    Bo Yong Chen, Joe Kamimoto, Takeo Ohsawa

    Mathematische Zeitschrift   248 ( 4 )   695 - 708   2004.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s00209-004-0676-6

  • Newton polyhedra and the Bergman kernel Reviewed

    Joe Kamimoto

    Mathematische Zeitschrift   246 ( 3 )   405 - 440   2004.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s00209-003-0554-7

  • Non-analytic Bergman and Szegö kernels for weakly pseudoconvex tube domains in ℂ2 Reviewed

    236 ( 3 )   585 - 603   2001.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    For any weakly pseudoconvex tube domain in ℂ2 with real analytic boundary, there exist points on the boundary off the diagonal where the Bergman kernel and the Szegö kernel fail to be real analytic.

    DOI: 10.1007/PL00004843

  • On the multiplicities of the zeros of laguerre-pólya functions Reviewed

    128 ( 1 )   189 - 194   2000.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We show that all the zeros of the Fourier transforms of the functions exp(-x2m), m = 1,2,⋯, are real and simple. Then, using this result, we show that there are infinitely many polynomials p(x1,⋯, xn) such that for each (m1,⋯, mn) ∈ (ℕ \ {0})n the translates of the function p(x1,⋯, xn)exp (-∑j=1nxj2mj) generate L1(ℝn). Finally, we discuss the problem of finding the minimum number of monomials pα(x1,⋯, xn), α ∈ A, which have the property that the translates of the functions pα(x1,⋯, xn)exp(-∑j=1nxj2mj), α ∈ A, generate L1n), for a given (m1,⋯,mn) ∈ (ℕ\{0})n.

  • The Bergman kernel on weakly pseudoconvex tube domains in C2 Reviewed

    Joe Kamimoto

    Proceedings of the Japan Academy Series A: Mathematical Sciences   75 ( 2 )   12 - 15   1999.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3792/pjaa.75.12

  • On an integral of hardy and littlewood Reviewed

    Joe Kamimoto

    Kyushu Journal of Mathematics   52 ( 1 )   249 - 263   1998.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.2206/kyushujm.52.249

  • Resolution of singularities for C<SUP>∞ </SUP>functions and meromorphy of local zeta functions

    Kamimoto, J

    JOURNAL OF FUNCTIONAL ANALYSIS   286 ( 1 )   2024.1   ISSN:0022-1236 eISSN:1096-0783

     More details

    Publisher:Journal of Functional Analysis  

    In this paper, we attempt to resolve the singularities of the zero variety of a C∞ function of two variables as much as possible by using ordinary blowings up. As a result, we formulate an algorithm to locally express the zero variety in the “almost” normal crossings form, which is close to the normal crossings form but may include flat functions. As an application, we investigate analytic continuation of local zeta functions associated with C∞ functions of two variables. As is well known, the desingularization theorem of Hironaka implies that the local zeta functions associated with real analytic functions admit the meromorphic continuation to the whole complex plane. On the other hand, it is recently observed that the local zeta function associated with a specific (non-real analytic) C∞ function has a singularity different from the pole. From this observation, the following questions are naturally raised in the C∞ case: how wide the meromorphically extendible region can be and what kinds of information essentially determine this region? This paper shows that this region can be described in terms of some kind of multiplicity of the zero variety of each C∞ function. By using our blowings up algorithm, it suffices to investigate local zeta functions in the almost normal crossings case. This case can be effectively analyzed by using real analysis methods; in particular, a van der Corput-type lemma plays a crucial role in the determination of the above region.

    DOI: 10.1016/j.jfa.2023.110185

    Web of Science

    Scopus

  • The Asymptotic Behavior of the Bergman Kernel on Pseudoconvex Model Domains

    Kamimoto, J

    BERGMAN KERNEL AND RELATED TOPICS, SCV XXIII   447   273 - 292   2024   ISSN:2194-1009 ISBN:978-981-99-9508-0

     More details

    Publisher:Springer Proceedings in Mathematics and Statistics  

    In this paper, we investigate the asymptotic behavior of the Bergman kernel at the boundary for some pseudoconvex model domains. This behavior can be described by the geometrical information of the Newton polyhedron of the defining function of the respective domains. We deal with not only the finite type cases but also some infinite type cases.

    DOI: 10.1007/978-981-99-9506-6_10

    Web of Science

    Scopus

  • ASYMPTOTIC EXPANSION OF OSCILLATORY INTEGRALS WITH SINGULAR PHASES

    KAMIMOTO Joe, MIZUNO Hiromichi

    Kyushu Journal of Mathematics   77 ( 2 )   319 - 329   2023   ISSN:13406116 eISSN:18832032

     More details

    Language:English   Publisher:Faculty of Mathematics, Kyushu University  

    <p>The purpose of this article is to describe the singularities of one-dimensional oscillatory integrals, whose phases have a certain singularity, in the form of an asymptotic expansion. In the case of the Laplace integral, an analogous result is also given.</p>

    DOI: 10.2206/kyushujm.77.319

    Scopus

    CiNii Research

  • 複素解析の探求にかける情熱

    神本 丈

    数理科学   710   5 - 6   2022

     More details

  • A sufficient condition for equality of regular type and singular type on real hypersurfaces Invited International journal

    Joe Kamimoto

    2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • 多変数関数論における解析接続 Invited

    神本 丈

    数理科学   52 ( 10 )   52 - 57   2014.10

     More details

    Language:Japanese   Publishing type:Research paper (bulletin of university, research institution)  

    古典的なハルトークスの拡張定理をめぐって、多変数関数論の入門的な解説を行っている。

  • On the non-analytic examples of christ and geller Reviewed

    Joe Kamimoto

    Proceedings of the Japan Academy Series A: Mathematical Sciences   72 ( 3 )   51 - 52   1996.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3792/pjaa.72.51

▼display all

Books

Presentations

  • Newton polyhedra and Archimedean zeta functions for meromorphic functions Invited

    2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • A new boundary invariant and the growth of the Bergman kernel Invited

    2023.11 

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 特異点解消定理と局所ゼータ関数の解析接続 Invited

    神本 丈

    岡シンポジウム  2022.12 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:奈良女子大学   Country:Japan  

  • Resolution of singularities for $C^{\infty}$ functions and meromorphy of local zeta functions Invited

    2022.11 

     More details

    Event date: 2022.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Resolution of singularities for C^{\infty} functions and meromorphy of local zeta functions Invited International conference

    2022.10 

     More details

    Event date: 2022.10

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Asymptotic analysis of the Bergman kernel on pseudoconvex model domains Invited International conference

    Joe Kamimoto

    HAYAMA Symposium on Complex Analysis in Several Variables XXIII  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Newton polyherda in several complex variables Invited International conference

    Joe Kamimoto

    Virtual East-West Several Complex Variables seminar  2022.5 

     More details

    Event date: 2022.5

    Language:English   Presentation type:Oral presentation (general)  

    Country:Austria  

  • Resolution of singularities for $C^{\infty}$ functions and meromorphy of local zeta functions Invited International conference

    Joe Kamimoto

    CIMAT's Commutative Algebra / Algebraic Geometry Seminar  2022.5 

     More details

    Event date: 2022.5

    Language:English   Presentation type:Oral presentation (general)  

    Country:Mexico  

  • $C^{\infty}$ 関数に関する特異点解消と局所ゼータ関数の有理型解析接続

    神本 丈

    日本数学会2021年度春季総合分科会  2022.3 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:埼玉大学   Country:Japan  

  • 局所ゼータ関数の特異性について Invited

    神本 丈

    研究集会「アクセサリー・パラメータ研究集会」  2022.3 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:熊本大学   Country:Japan  

  • Asymptotic analysis of oscillatory integrals with degenerate phases Invited International conference

    Joe Kamimoto

    2021.3 

     More details

    Event date: 2021.3

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • On holomorphic curves tangent to real hypersurfaces of infinite type Invited

    2020.12 

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • $C^{\infty}$ 平面曲線の特異点解消と局所ゼータ関数の有理型解析接続, 第63回函数論シンポジウム Invited

    神本 丈

    第63回函数論シンポジウム  2020.11 

     More details

    Event date: 2020.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Japan  

  • 局所ゼータ関数の有理型解析接続可能領域について

    神本 丈,@野瀬 敏洋

    日本数学会2020年度春季総合分科会  2020.3 

     More details

    Event date: 2020.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:日本大学, 東京   Country:Japan  

  • Asymptotic analysis of oscillatory integrals with degenerate phases Invited

    2020.3 

     More details

    Event date: 2020.3

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 局所ゼータ関数の有理型解析接続について Invited

    神本 丈

    研究集会「第15回代数・解析・幾何学セミナー」  2020.2 

     More details

    Event date: 2020.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:鹿児島大学   Country:Japan  

  • Meromorphy of local zeta functions in smooth model cases Invited International conference

    2019.11 

     More details

    Event date: 2019.11

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 多変数関数論におけるニュートン多面体とその応用 Invited

    神本 丈

    日本数学会2019年度秋季総合分科会特別講演  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:金沢大学   Country:Japan  

    この講演では,$\C^n$内のなめらかな実超曲面に関して「ニュートン多面体」という概念を導入し,多変数関数論のいくつかの問題に応用する.ニュートン多面体は,特異点論などの分野において,有用な道具として重要な役割を果たしている.さらに,近年,実解析の分野においても,この概念を用いることにより非常に多くの成果が得られている.それに倣って多変数関数論においても,有用な概念となることを期待して,具体的に,D'Angeloの特異型の定量的な決定とベルグマン核の境界挙動に関する問題に関して,ニュートン多面体を用いて解析を行う.そのおかげで,現在までに得られているこれらの問題に関する多くの成果が,統一的に理解され,さらに新しい成果ももたらされる.この2つの研究対象は,特異点論の分野で盛んに研究されてきた,\L ojasiewicz指数の決定と振動積分の漸近挙動に関する問題とそれぞれ類似するものであり,ニュートン多面体を用いた解析が自然なアプローチであることがわかる.

  • 無限型擬凸領域のベルグマン核の境界挙動

    神本 丈

    第54回函数論サマーセミナー  2019.8 

     More details

    Event date: 2019.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:静岡県伊豆の国市   Country:Japan  

  • ニュートン多面体と振動積分の漸近解析I,II Invited

    神本 丈

    筑波RCMS解析学シンポジウム  2019.1 

     More details

    Event date: 2019.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:沖縄県市町村自治会館   Country:Japan  

  • Newton polyhedra and order of contact on real hypersurfaces Invited

    2018.6 

     More details

    Event date: 2018.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • ニュートン多面体と重みつき振動積分 Invited

    神本 丈

    広島数理解析セミナー  2018.11 

     More details

    Event date: 2018.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:広島大学   Country:Japan  

  • Regular and singular orders of contact on real hypersurfaces Invited International conference

    2018.10 

     More details

    Event date: 2018.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • ニュートン多面体を用いた特異点解消とその解析学への応用 Invited

    神本 丈

    研究集会「接触構造、特異点、微分方程式及びその周辺」  2018.1 

     More details

    Event date: 2018.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:金沢市   Country:Japan  

    特異点論的な概念であるニュートン多面体の幾何学的な研究を、様々な解析の分野に応用した。特に、多変数関数論において、重要な、接触位数に関する研究に関して、非常に興味深い結果を得たことを報告した。

  • Failure of meromorphy for local zeta functions Invited

    2017.10 

     More details

    Event date: 2017.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • On analytic continuation of local zeta functions Invited

    2016.10 

     More details

    Event date: 2016.10

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Asymptotic analysis of oscillatory integrals and local zeta functions Invited

    2015.6 

     More details

    Event date: 2015.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Newton polyhedra and oscillatory integrals Invited

    神本 丈

    代数、幾何、解析セミナー  2014.2 

     More details

    Event date: 2014.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:鹿児島大学理学部   Country:Japan  

    振動積分の漸近挙動を、ニュートン多面体という特異点論的な概念を用いて、解析した。

  • ニュートン多面体とベルグマン核の漸近解析 Invited

    神本 丈

    第55回函数論シンポジウム  2012.11 

     More details

    Event date: 2012.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:金沢大学   Country:Japan  

    ニュートン多面体という特異点論的に重要な対象から、多変数複素解析学において重要なベルグマン核の特異性の解析を行っている。

  • On oscillatory integrals with smooth phases Invited

    Joe NMN Kamimoto

    ``Geometric Complex Analysis Tokyo 2012''  2012.7 

     More details

    Event date: 2012.7

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

    On oscillatory integrals with smooth phases

  • Newton polyhedra and oscillatory integrals Invited International conference

    2011.12 

     More details

    Event date: 2011.12

    Presentation type:Oral presentation (invited, special)  

    Country:Japan  

    Newton polyhedra and oscillatory integrals

  • Newton polyhedra and oscillatory integrals

    2011.11 

     More details

    Event date: 2011.11

    Presentation type:Oral presentation (general)  

    Country:Japan  

    Newton polyhedra and oscillatory integrals

  • Asymptotic analysis of oscillatory integrals via the Newton polyhedra of the phase and the amplitude Invited

    2011.11 

     More details

    Event date: 2011.11

    Presentation type:Oral presentation (general)  

    Country:Japan  

    Asymptotic analysis of oscillatory integrals via the Newton polyhedra of
    the phase and the amplitude

  • ニュートン多面体と振動積分の漸近解析I

    神本 丈

    ファイバー束とポテンシャル論  2011.9 

     More details

    Event date: 2011.9

    Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

  • The Bergman kernel on holomorphic line bundles Invited International conference

    Joe Kamimoto

    Several Complex Variables  2007.6 

     More details

    Presentation type:Oral presentation (general)  

    Country:Korea, Republic of  

  • The Newton polyhedron and the singularity of the Bergman kernel Invited

    J.Kamimoto

    2000.10 

     More details

    Presentation type:Oral presentation (general)  

    Country:Japan  

  • ニュートン図形とベルグマン核の特異性 Invited

    神本 丈

    研究集会「パンルベ方程式の解析」  2001.10 

     More details

    Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

  • Singularities of the Bergman kernel and Newton polyhedra Invited

    J.Kamimoto

    2001.9 

     More details

    Presentation type:Oral presentation (general)  

    Country:Japan  

  • Asymptotic analysis of the Bergman kernel in terms of Newton polyhedra Invited

    J.Kamimoto

    2002.12 

     More details

    Presentation type:Oral presentation (general)  

    Country:Japan  

  • The Bergman kernel for tube domains Invited

    J.Kamimoto

    2004.10 

     More details

    Presentation type:Oral presentation (general)  

    Country:Japan  

  • 半正定値正則直線束上のBergman核の漸近展開

    神本 丈、趙 康治、野瀬敏洋

    Bergman核と代数幾何学への応用  2008.6 

     More details

    Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

  • Special functions and the Bergman kernels Invited International conference

    Joe Kamimoto

    From Painleve to Okamoto  2008.6 

     More details

    Presentation type:Oral presentation (general)  

    Country:Japan  

  • Meromorphy of local zeta functions in smooth model cases

    2018.9 

     More details

    Event date: 2018.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Non-polar singularities of local zeta functions in some smooth case

    2018.9 

     More details

    Event date: 2018.9

    Language:Japanese  

    Country:Japan  

  • Regular and singular orders of contact on real hypersurfaces Invited

    2018.8 

     More details

    Event date: 2018.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • ベルグマン核の漸近解析 Invited

    神本 丈

    第52回函数論サマーセミナー  2017.9 

     More details

    Event date: 2017.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡県柳川市   Country:Japan  

  • On meromorphic continuation of local zeta functions

    Joe Kamimoto, Toshihiro Nose

    10th Korean Conference on Several Complex Variables, KSCV 2014  2014.8 

     More details

    Event date: 2014.8

    Language:English  

    Country:Korea, Republic of  

  • Resolution of singularities via Newton polyhedra and its application to analysis Invited

    2014.5 

     More details

    Event date: 2014.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

    Resolution of singularities via Newton polyhedra and its application to analysis

  • Newton polyhedra and oscillatory integrals Invited

    2013.1 

     More details

    Event date: 2013.1

    Language:Japanese  

    Country:Japan  

    Newton polyhedra and oscillatory integrals

    Other Link: Newton polyhedra and oscillatory integrals

▼display all

MISC

  • 特異点解消定理と局所ゼータ関数の有理型解析接続

    神本 丈

    岡シンポジウム講義録   2023.5

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 巻頭言

    神本 丈

    数理科学   2022.8

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 多変数関数論における解析接続

    神本 丈

    数理科学   2014.10

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • Preface

    Hirachi K., Kamimoto J., Ohsawa T., Takayama S.

    Springer Proceedings in Mathematics and Statistics   447   2024   ISSN:21941009 ISBN:9789819995059

     More details

    Publisher:Springer Proceedings in Mathematics and Statistics  

    Scopus

Professional Memberships

  • 日本数学会

Committee Memberships

  • 日本数学会   数学通信編集員委員   Domestic

    2020.4 - 2022.3   

  • Councilor   Domestic

    2020.4 - 2021.3   

  • 日本数学会   九州支部会責任連絡評議員   Domestic

    2020.4 - 2021.3   

Academic Activities

  • 主催者

    第11回福岡複素解析シンポジウム  ( 九州大学 ) 2024.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • 主催者 International contribution

    ( 神奈川県葉山町 ) 2023.7

     More details

    Type:Competition, symposium, etc. 

    Number of participants:40

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Number of peer-reviewed articles in Japanese journals:0

    Proceedings of International Conference Number of peer-reviewed papers:3

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • 主催者 International contribution

    ( 神奈川県葉山町 ) 2022.7

     More details

    Type:Competition, symposium, etc. 

    Number of participants:40

  • Memoir 日本数学会 International contribution

    2022.4 - 2026.3

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Proceedings of International Conference Number of peer-reviewed papers:2

  • 主催者

    第10回福岡複素解析シンポジウム  ( オンライン ) 2021.3 - 2021.4

     More details

    Type:Competition, symposium, etc. 

  • 主催者

    第144回日本数学会九州支部例会  ( オンライン ) 2021.2

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2021

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Proceedings of International Conference Number of peer-reviewed papers:2

  • 主催者

    第9回福岡複素解析シンポジウム (中止)  ( 九州大学 ) 2020.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:25

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Proceedings of International Conference Number of peer-reviewed papers:2

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • 主催者

    第8回福岡複素解析シンポジウム  ( 九州大学 ) 2019.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:35

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Proceedings of International Conference Number of peer-reviewed papers:1

    Proceedings of domestic conference Number of peer-reviewed papers:1

  • 主催者

    第7回福岡複素解析シンポジウム  ( 九州大学 ) 2018.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:6

    Proceedings of International Conference Number of peer-reviewed papers:2

  • 主催者

    第6回福岡複素解析シンポジウム  ( 九州大学 ) 2017.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:5

    Proceedings of International Conference Number of peer-reviewed papers:1

  • 主催者

    多変数関数論冬セミナー  ( 福岡工業大学 ) 2016.12

     More details

    Type:Competition, symposium, etc. 

    Number of participants:50

  • 主催

    第5回福岡複素解析シンポジウム  ( 九州大学 ) 2016.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:60

  • 主催者

    第4回福岡複素解析シンポジウム  ( 九州大学 ) 2016.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • 主催者 International contribution

    葉山多変数複素解析シンポジウム  ( 神奈川県葉山 ) 2014.7

     More details

    Type:Competition, symposium, etc. 

    Number of participants:80

  • 主催者

    第3回福岡複素解析シンポジウム  ( 九州大学 ) 2014.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:50

  • 主催者

    第2回福岡複素解析シンポジウム  ( 西新プラザ ) 2013.9 - 2013.10

     More details

    Type:Competition, symposium, etc. 

    Number of participants:20

  • 主催者

    第1回福岡複素解析シンポジウム  ( 九州大学 ) 2013.2

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • 司会

    日本数学会 秋季総合分科会  ( 九州大学 ) 2012.9

     More details

    Type:Competition, symposium, etc. 

    Number of participants:500

▼display all

Research Projects

  • Application of Newton polyhedra in various kinds of analysis

    Grant number:20K03656  2020 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    CiNii Research

  • ニュートン多面体を用いた特異点解消とその解析学への応用

    Grant number:15K04932  2015 - 2019

    日本学術振興会  科学研究費助成事業  基盤研究(C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 有限型擬凸領域上の複素解析の研究

    2010 - 2014

    日本学術振興会  科学研究費助成事業  基盤研究(C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 有限型凝凸領域上のL2 正則関数に関する複素解析

    Grant number:14340048  2002 - 2005

    日本学術振興会  科学研究費助成事業  基盤研究(B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 多変数複素解析学における漸近解析

    Grant number:12740094  2000 - 2001

    日本学術振興会  科学研究費助成事業  奨励研究

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

Educational Activities

  • My usual teaching activity is the following kinds of
    lectures: 1. The fundamental lectures for
    first or second undergraduate scientific students,
    2. the lectures of special analysis for engineering
    students,
    3. the lectures of complex analysis for mathematical
    students.
    Moreover I have seminars with about 10 students.

Class subject

  • 数理科学特別講義Ⅰ

    2023.10 - 2024.3   Second semester

  • 微分積分学Ⅱ

    2023.10 - 2024.3   Second semester

  • コアセミナーⅡ

    2023.10 - 2024.3   Second semester

  • 数理科学特論1

    2023.10 - 2024.3   Second semester

  • 数理科学特論1

    2023.10 - 2024.3   Second semester

  • 数理科学特別講義Ⅰ

    2023.10 - 2024.3   Second semester

  • 微分積分学Ⅱ

    2023.10 - 2024.3   Second semester

  • コアセミナーⅡ

    2023.10 - 2024.3   Second semester

  • MMA講究A

    2023.4 - 2023.9   First semester

  • 微分積分学Ⅰ

    2023.4 - 2023.9   First semester

  • MMA講究A

    2023.4 - 2023.9   First semester

  • 微分積分学Ⅰ

    2023.4 - 2023.9   First semester

  • 微分積分学Ⅱ

    2022.10 - 2023.3   Second semester

  • 数学概論Ⅳ・演習

    2022.10 - 2023.3   Second semester

  • 情報解析学演習

    2022.10 - 2023.3   Second semester

  • 情報解析学

    2022.10 - 2023.3   Second semester

  • 入門微分積分Ⅱ

    2022.6 - 2022.8   Summer quarter

  • 微分積分学Ⅰ

    2022.4 - 2022.9   First semester

  • 入門微分積分Ⅰ

    2022.4 - 2022.6   Spring quarter

  • 数学概論Ⅳ・演習

    2021.10 - 2022.3   Second semester

  • 情報解析学演習

    2021.10 - 2022.3   Second semester

  • 情報解析学

    2021.10 - 2022.3   Second semester

  • 数学概論Ⅳ・演習

    2021.10 - 2022.3   Second semester

  • 情報解析学演習

    2021.10 - 2022.3   Second semester

  • 情報解析学

    2021.10 - 2022.3   Second semester

  • MMA講究B

    2020.10 - 2021.3   Second semester

  • 数学概論Ⅳ・演習

    2020.10 - 2021.3   Second semester

  • 情報解析学演習

    2020.10 - 2021.3   Second semester

  • 情報解析学

    2020.10 - 2021.3   Second semester

  • 数理科学特論1

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅰ

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 数理科学特論1

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅰ

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 数理科学特論1

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅰ

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 数理科学特論1

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅰ

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • コアセミナー

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 数学概論Ⅳ・演習

    2018.10 - 2019.3   Second semester

  • 数学概論Ⅳ・演習

    2018.10 - 2019.3   Second semester

  • 線形代数B・同演習

    2018.10 - 2019.3   Second semester

  • 数学概論IV 演習

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 数学概論Ⅳ・演習

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 数学概論Ⅳ・演習

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 線形代数

    2018.4 - 2018.9   First semester

  • 線形代数A・同演習

    2018.4 - 2018.9   First semester

  • 線形代数学

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 線形代数

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 線形代数

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 線形代数

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 数学概論Ⅳ・演習

    2017.10 - 2018.3   Second semester

  • 数学概論IV・同演習

    2017.10 - 2018.3   Second semester

  • 線形代数B・同演習

    2017.10 - 2018.3   Second semester

  • 線形代数学・同演習B

    2017.10 - 2018.3   Second semester

  • 情報解析学演習

    2017.10 - 2018.3   Second semester

  • 情報解析学

    2017.10 - 2018.3   Second semester

  • 線形代数学・同演習A

    2017.4 - 2017.9   First semester

  • 線形代数A・同演習

    2017.4 - 2017.9   First semester

  • 数学概論IV

    2016.10 - 2017.3   Second semester

  • 線形代数学・同演習B

    2016.10 - 2017.3   Second semester

  • 線形代数学・同演習A

    2016.4 - 2016.9   First semester

  • 線形代数学

    2015.10 - 2016.3   Second semester

  • 線形代数学・同演習B

    2015.10 - 2016.3   Second semester

  • 数学IIB

    2015.4 - 2015.9   First semester

  • 線形代数学・同演習A

    2015.4 - 2015.9   First semester

  • 解析学III

    2014.10 - 2015.3   Second semester

  • 微分積分続論

    2014.4 - 2014.9   First semester

  • 数学IIB

    2014.4 - 2014.9   First semester

  • 解析学III

    2013.10 - 2014.3   Second semester

  • 数学IC

    2013.10 - 2014.3   Second semester

  • 微分積分続論

    2013.4 - 2013.9   First semester

  • 数学IC

    2012.10 - 2013.3   Second semester

  • 微分積分続論

    2012.4 - 2012.9   First semester

  • 複素解析学大意

    2012.4 - 2012.9   First semester

  • 複素解析学大意

    2012.4 - 2012.9   First semester

  • 数学特論12

    2012.4 - 2012.9   First semester

  • 数学概論IV

    2011.10 - 2012.3   Second semester

  • 複素解析学大意

    2011.4 - 2011.9   First semester

  • 数学特論12

    2011.4 - 2011.9   First semester

  • 数学概論IV

    2010.10 - 2011.3   Second semester

  • 複素解析学大意

    2010.4 - 2010.9   First semester

  • 解析学A1

    2009.10 - 2010.3   Second semester

  • 数学基礎コアセミナー

    2009.4 - 2009.9   First semester

  • 複素解析学基礎・演習

    2008.10 - 2009.3   Second semester

  • 解析学B1

    2008.4 - 2008.9   First semester

  • 解析学A1

    2007.10 - 2008.3   Second semester

  • 数学C1

    2007.10 - 2008.3   Second semester

  • 数学続論

    2007.4 - 2007.9   First semester

  • 複素解析学基礎

    2005.10 - 2006.3   Second semester

  • 解析学B1

    2005.4 - 2005.9   First semester

  • 解析学A1

    2004.10 - 2005.3   Second semester

  • 複素解析学大意

    2003.4 - 2003.9   First semester

▼display all

FD Participation

  • 2023.6   Role:Participation   Title:教職課程専門委員会

    Organizer:University-wide

  • 2021.3   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2006.10   Title:ファカルティーディベロップメント

    Organizer:University-wide

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2012  名古屋大学多元数理科学研究科  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2008  東京大学大学院数理科学研究科  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:冬学期

Other educational activity and Special note

  • 2019  Class Teacher 

Outline of Social Contribution and International Cooperation activities

  • 熊本大学公開講座 (1998.8)

Social Activities

  • 教育実習に関する高校訪問

    西南学院高校、筑紫丘高校  2023.6

     More details

    Audience: Infants, Schoolchildren, Junior students, High school students

    Type:Other

  • 濟々黌高校(熊本)への出前講義を行った。

    濟々黌高校  2020.11

     More details

    Audience: Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

  • 社会貢献委員として、高校への出前講義を斡旋及び実践した。

    2020

     More details

    社会貢献委員として、高校への出前講義を斡旋及び実践した。

  • 「複素平面入門」、高校生を対象に複素解析学の基礎を紹介した。

    九州大学理学部数学化  九州大学学内  2012.8

     More details

    Audience: General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

    複素解析学の基礎。

Travel Abroad

  • 2003.10 - 2004.9

    Staying countory name 1:Germany   Staying institution name 1:Wuppertal 大学