Updated on 2024/10/08

Information

 

写真a

 
KAMIMOTO JOE
 
Organization
Faculty of Mathematics Division of Analysis Professor
School of Sciences Department of Mathematics(Concurrent)
Graduate School of Mathematics Department of Mathematics(Concurrent)
School of Education (Concurrent)
Title
Professor
Profile
I am studying complex analysis of several complex variables. It is important to understand the properties of holomorphic functions on many kinds of domains in complex space. In particular, the boundary behavior of these functions can be represented in terms of the geometry of the boundary of the respective domains. I am interested in the class of pseudoconvex domains of finite type. My viewpoint is from the singularity theory. My students are also studying these thema from my viewpoints.
External link

Degree

  • PHD Math. Sci.

Research History

  • 熊本大学助手大学院自然科学研究科:1998年10月1日〜2000年9月30日   

Research Interests・Research Keywords

  • Research theme: Complex analysis, Harmonic Analysis, Partial differential equations

    Keyword: holomorphic functions, asymptotic expansion, partial differential equation, complex geometry, Singularity theory

    Research period: 2000.10

Papers

  • Resolution of singularities for C^∞ functions and meromorphy of local zeta functions Reviewed International journal

    Joe Kamimoto

    Journal of Functional Analysis   286 ( 1 )   2024.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.jfa.2023.110185

  • The Asymptotic Behavior of the Bergman Kernel on Pseudoconvex Model Domains Invited Reviewed International journal

    Joe Kamimoto

    In: Hirachi, K., Ohsawa, T., Takayama, S., Kamimoto, J. (eds) The Bergman Kernel and Related Topics. HSSCV 2022. Springer Proceedings in Mathematics & Statistics   447   273 - 292   2024.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1007/978-981-99-9506-6_10

  • Asymptotic expansion of oscillatory integrals with singular phases Invited Reviewed International journal

    Joe Kamimoto, #Hiromichi Mizuno

    Kyushu Journal of Mathematics   2023.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    相関数に特異性がある場合の振動積分の漸近展開を計算した。

  • On Holomorphic Curves Tangent to Real Hypersurfaces of Infinite Type Reviewed International journal

    Joe Kamimoto

    The Journal of Geometric Analysis   2021.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The purpose of this paper is to investigate the geometric properties of real hypersurfaces of D’Angelo infinite type in Cn. In order to understand the situation of flatness of these hypersurfaces, it is natural to ask whether there exists a nonconstant holomorphic curve tangent to a given hypersurface to infinite order. A sufficient condition for this existence is given by using Newton polyhedra, which is an important concept in singularity theory. More precisely, equivalence conditions are given in the case of some model hypersurfaces.

    DOI: https://doi.org/10.1007/s12220-020-00567-z

    Other Link: https://doi.org/10.1007/s12220-020-00567-z

    Repository Public URL: http://hdl.handle.net/2324/4795994

  • Newton polyhedra and order of contact on real hypersurfaces Invited Reviewed International journal

    Joe Kamimoto

    J. Math. Soc. Japan   2021.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The purpose of this paper is to investigate order of contact on real hypersurfaces in $\C^n$ by using Newton polyhedra which are important notion in the study of singularity theory. To be more precise, an equivalence condition for the equality of regular type and singular type is given by using the Newton polyhedron of a defining function for the respective hypersurface. Furthermore, a sufficient condition for
    this condition, which is more useful, is also given. This sufficient condition is satisfied by many earlier known cases (convex domains, pseudoconvex Reinhardt domains and pseudoconvex domains whose regular types are 4, etc.). Under the above conditions, the values of the types can be directly seen in a simple geometrical information from the Newton polyhedron.

  • Meromorphy of local zeta functions in smooth model cases Reviewed

    Joe Kamimoto, Toshihiro Nose

    Journal of Functional Analysis   278 ( 6 )   2020.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    It is known that local zeta functions associated with real analytic functions can be analytically continued as meromorphic functions to the whole complex plane. But, in the case of general (C) smooth functions, the meromorphic extension problem is not obvious. Indeed, it has been recently shown that there exist specific smooth functions whose local zeta functions have singularities different from poles. In order to understand the situation of the meromorphic extension in the smooth case, we investigate a simple but essentially important case, in which the respective function is expressed as u(x,y)xayb+ flat function, where u(0,0)≠0 and a,b are nonnegative integers. After classifying flat functions into four types, we precisely investigate the meromorphic extension of local zeta functions in each case. Our results show new interesting phenomena in one of these cases. Actually, when a<b, local zeta functions can be meromorphically extended to the half-plane Re(s)>−1/a and their poles on the half-plane are contained in the set {−k/b:k∈Nwithk<b/a}.

    DOI: 10.1016/j.jfa.2019.108408

    Repository Public URL: http://hdl.handle.net/2324/4795995

  • Nonpolar singularities of local zeta functions in some smooth case Reviewed International journal

    Joe Kamimoto, Toshihiro Nose

    Transactions of the American Mathematical Society   372 ( 1 )   661 - 676   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    It is known that local zeta functions associated with real analytic functions can be analytically continued as meromorphic functions to the whole complex plane. In this paper, the case of specific (nonreal analytic) smooth functions is precisely investigated. Indeed, asymptotic limits of the respective local zeta functions at some singularities in one direction are explicitly computed. Surprisingly, it follows from these behaviors that these local zeta functions have singularities different from poles.

    DOI: 10.1090/tran/7771

  • Asymptotic limit of oscillatory integrals with certain smooth phases Invited Reviewed International journal

    神本 丈, 野瀬敏洋

    RIMS K\^oky\^uroku Bessatsu   2017.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    平坦な関数項を含む相関数について、振動積分の漸近挙動を正確に計算している.

  • On asymptotic expansions of oscillatory integrals with smooth phase in two dimensions Invited Reviewed International journal

    神本 丈, 野瀬敏洋

    RIMS K\^oky\^uroku Bessatsu   B57   141 - 157   2016.9

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  • Toric resolution of singularities in a certain class of C^{\infty} functions and asymptotic analysis of oscillatory integrals Reviewed International journal

    Joe Kamimoto, Toshihiro Nose

    J. Math. Soc. Univ. Tokyo   23   425 - 485   2016.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    実解析的という条件をはずした場合の滑らかな関数に関しては、その扱いが非常に困難になることはよく知られている。このような場合について、特異点解消という代数幾何の分野では、困難な結果を得た。これを応用して、単に滑らかな場合について、振動積分や局所ゼータ関数についての詳細な結果をえた。

  • Newton polyhedra and weighted oscillatory integrals with smooth phases Reviewed

    Joe Kamimoto, Toshihiro Nose

    Transactions of the American Mathematical Society   368 ( 8 )   5301 - 5361   2016.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In his seminal paper, A. N. Varchenko precisely investigates the leading term of the asymptotic expansion of an oscillatory integral with real analytic phase. He expresses the order of this term by means of the geometry of the Newton polyhedron of the phase. The purpose of this paper is to generalize and improve his result. We are especially interested in the cases that the phase is smooth and that the amplitude has a zero at a critical point of the phase. In order to exactly treat the latter case, a weight function is introduced in the amplitude. Our results show that the optimal rates of decay for weighted oscillatory integrals whose phases and weights are contained in a certain class of smooth functions, including the real analytic class, can be expressed by the Newton distance and multiplicity defined in terms of geometrical relationship of the Newton polyhedra of the phase and the weight. We also compute explicit formulae of the coefficient of the leading term of the asymptotic expansion in the weighted case. Our method is based on the resolution of singularities constructed by using the theory of toric varieties, which naturally extends the resolution of Varchenko. The properties of poles of local zeta functions, which are closely related to the behavior of oscillatory integrals, are also studied under the associated situation. The investigation of this paper improves on the earlier joint work with K. Cho.

    DOI: 10.1090/tran/6528

  • On meromorphic continuation of local zeta functions, Invited Reviewed International journal

    神本 丈, 野瀬敏洋

    Proceedings of KSCV10. F. Bracci et al. (eds.), Complex Analysis and Geometry, Springer , Proceedings in Mathematics and Statistics.   144   187 - 195   2015.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    局所ゼータ関数の解析接続に関して、最新の結果を報告している。

  • Asymptotic analysis of oscillatory integrals via the Newton polyhedra of the phase and the amplitude Reviewed

    Koji Cho, Joe Kamimoto, Toshihiro Nose

    Journal of the Mathematical Society of Japan   65 ( 2 )   521 - 562   2013.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The asymptotic behavior at infinity of oscillatory integrals is in detail investigated by using the Newton polyhedra of the phase and the amplitude. We are especially interested in the case that the amplitude has a zero at a critical point of the phase. The properties of poles of local zeta functions, which are closely related to the behavior of oscillatory integrals, are also studied under the associated situation.

    DOI: 10.2969/jmsj/06520521

  • Asymptotic analysis of weighted oscillatory integrals via Newton polyhedra Invited Reviewed International journal

    Joe Kamimoto, Toshihiro Nose

    Proceedings of the 19th ICFIDCAA Hiroshima 2011   3 - 12   2013.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    重み付き振動積分の漸近挙動をニュートン多面体の情報を用いて解析している。

  • On oscillatory integrals with C^{\infty} phases Invited Reviewed International journal

    Joe Kamimoto and Toshihiro Nose

    Suriken Kokyuroku, Bessatsu   B40   31 - 40   2013.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    相関数がなめらかな振動積分について、バルチェンコの結果を一般化した。

  • Asymptotics of the Bergman function for semipositive holomorphic line bundles Reviewed

    Koji Cho, Joe Kamimoto, Toshihiro Nose

    Kyushu Journal of Mathematics   65 ( 2 )   349 - 382   2011.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In this paper, an asymptotic expansion of the Bergman function at a degenerate point is given for high powers of semipositive holomorphic line bundles on compact K̈ahler manifolds, whose Hermitian metrics have some kind of quasihomogeneous properties. In the sense of pointwise asymptotics, this expansion is a generalization of the expansion of Tian- Zelditch-Catlin-Lu in the positive line bundle case.

    DOI: 10.2206/kyushujm.65.349

  • On the Bergman fuction for semipositive holomorphic line bundles

    趙 康治、神本 丈、野瀬敏洋

    数理解析研究所講究録   2008.9

     More details

    Language:English   Publishing type:Research paper (other academic)  

    On the Bergman fuction for semipositive holomorphic line bundles

  • The Bergman kernel on tube domains of finite type Invited Reviewed International journal

    Joe Kamimoto

    Journal of Mathematical Sciences, the University of Tokyo.   13   365 - 408   2006.6

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  • Behavior of the Bergman kernel at infinity Reviewed

    Bo Yong Chen, Joe Kamimoto, Takeo Ohsawa

    Mathematische Zeitschrift   248 ( 4 )   695 - 708   2004.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We give a precise decay rate of the Bergman kernel and metric at infinity on model domains, characterized in terms of certain convex polyhedron.

    DOI: 10.1007/s00209-004-0676-6

  • Newton polyhedra and the Bergman kernel Reviewed

    Joe Kamimoto

    Mathematische Zeitschrift   246 ( 3 )   405 - 440   2004.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The purpose of this paper is to study singularities of the Bergman kernel at the boundary for pseudoconvex domains of finite type from the viewpoint of the theory of singularities. Under some assumptions on a domainΩin ℂn+1, the Bergman kernel B(z) of Ωtakes the form near a boundary point p: B(Z) = Φ(w, ρ)/ρ2+2/dF (log(1/ρ))mF-1, where (w, ρ) is some polar coordinates on a nontangential cone Λ with apex at ρ and ρ means the distance from the boundary. Here Φ admits some asymptotic expansion with respect to the variables ρ1/m and log(1/ρ) as ρ → 0 on Λ The values of dF- > 0, mF ∈ ℤ + and m ∈ ℕ are determined by geometrical properties of the Newton polyhedron of defining functions of domains and the limit of Φ as ρ → 0 on Λ is a positive constant depending only on the Newton principal part of the defining function. Analogous results are obtained in the case of the Szegö kernel.

    DOI: 10.1007/s00209-003-0554-7

  • Non-analytic Bergman and Szegö kernels for weakly pseudoconvex tube domains in ℂ2 Reviewed

    Joe Kamimoto

    Mathematische Zeitschrift   236 ( 3 )   585 - 603   2001.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    For any weakly pseudoconvex tube domain in ℂ2 with real analytic boundary, there exist points on the boundary off the diagonal where the Bergman kernel and the Szegö kernel fail to be real analytic.

    DOI: 10.1007/PL00004843

  • On the multiplicities of the zeros of laguerre-pólya functions Reviewed

    Joe Kamimoto, Haseo Ki, Young One Kim

    Proceedings of the American Mathematical Society   128 ( 1 )   189 - 194   2000.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We show that all the zeros of the Fourier transforms of the functions exp(-x2m), m = 1,2,⋯, are real and simple. Then, using this result, we show that there are infinitely many polynomials p(x1,⋯, xn) such that for each (m1,⋯, mn) ∈ (ℕ \ {0})n the translates of the function p(x1,⋯, xn)exp (-∑j=1nxj2mj) generate L1(ℝn). Finally, we discuss the problem of finding the minimum number of monomials pα(x1,⋯, xn), α ∈ A, which have the property that the translates of the functions pα(x1,⋯, xn)exp(-∑j=1nxj2mj), α ∈ A, generate L1n), for a given (m1,⋯,mn) ∈ (ℕ\{0})n.

  • The Bergman kernel on weakly pseudoconvex tube domains in C2 Reviewed

    Joe Kamimoto

    Proceedings of the Japan Academy Series A: Mathematical Sciences   75 ( 2 )   12 - 15   1999.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3792/pjaa.75.12

  • On an integral of hardy and littlewood Reviewed

    Joe Kamimoto

    Kyushu Journal of Mathematics   52 ( 1 )   249 - 263   1998.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.2206/kyushujm.52.249

  • Resolution of singularities for C<SUP>∞ </SUP>functions and meromorphy of local zeta functions

    Kamimoto, J

    JOURNAL OF FUNCTIONAL ANALYSIS   286 ( 1 )   2024.1   ISSN:0022-1236 eISSN:1096-0783

     More details

    Publisher:Journal of Functional Analysis  

    In this paper, we attempt to resolve the singularities of the zero variety of a C∞ function of two variables as much as possible by using ordinary blowings up. As a result, we formulate an algorithm to locally express the zero variety in the “almost” normal crossings form, which is close to the normal crossings form but may include flat functions. As an application, we investigate analytic continuation of local zeta functions associated with C∞ functions of two variables. As is well known, the desingularization theorem of Hironaka implies that the local zeta functions associated with real analytic functions admit the meromorphic continuation to the whole complex plane. On the other hand, it is recently observed that the local zeta function associated with a specific (non-real analytic) C∞ function has a singularity different from the pole. From this observation, the following questions are naturally raised in the C∞ case: how wide the meromorphically extendible region can be and what kinds of information essentially determine this region? This paper shows that this region can be described in terms of some kind of multiplicity of the zero variety of each C∞ function. By using our blowings up algorithm, it suffices to investigate local zeta functions in the almost normal crossings case. This case can be effectively analyzed by using real analysis methods; in particular, a van der Corput-type lemma plays a crucial role in the determination of the above region.

    DOI: 10.1016/j.jfa.2023.110185

    Web of Science

    Scopus

  • The Asymptotic Behavior of the Bergman Kernel on Pseudoconvex Model Domains

    Kamimoto, J

    BERGMAN KERNEL AND RELATED TOPICS, SCV XXIII   447   273 - 292   2024   ISSN:2194-1009 ISBN:978-981-99-9508-0

     More details

    Publisher:Springer Proceedings in Mathematics and Statistics  

    In this paper, we investigate the asymptotic behavior of the Bergman kernel at the boundary for some pseudoconvex model domains. This behavior can be described by the geometrical information of the Newton polyhedron of the defining function of the respective domains. We deal with not only the finite type cases but also some infinite type cases.

    DOI: 10.1007/978-981-99-9506-6_10

    Web of Science

    Scopus

  • ASYMPTOTIC EXPANSION OF OSCILLATORY INTEGRALS WITH SINGULAR PHASES

    KAMIMOTO Joe, MIZUNO Hiromichi

    Kyushu Journal of Mathematics   77 ( 2 )   319 - 329   2023   ISSN:13406116 eISSN:18832032

     More details

    Language:English   Publisher:Faculty of Mathematics, Kyushu University  

    <p>The purpose of this article is to describe the singularities of one-dimensional oscillatory integrals, whose phases have a certain singularity, in the form of an asymptotic expansion. In the case of the Laplace integral, an analogous result is also given.</p>

    DOI: 10.2206/kyushujm.77.319

    Scopus

    CiNii Research

  • 複素解析の探求にかける情熱

    神本 丈

    数理科学   710   5 - 6   2022

     More details

  • A sufficient condition for equality of regular type and singular type on real hypersurfaces Invited International journal

    Joe Kamimoto

    京大数理解析研究所講究録   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • 多変数関数論における解析接続 Invited

    神本 丈

    数理科学   52 ( 10 )   52 - 57   2014.10

     More details

    Language:Japanese   Publishing type:Research paper (bulletin of university, research institution)  

    古典的なハルトークスの拡張定理をめぐって、多変数関数論の入門的な解説を行っている。

  • On the non-analytic examples of christ and geller Reviewed

    Joe Kamimoto

    Proceedings of the Japan Academy Series A: Mathematical Sciences   72 ( 3 )   51 - 52   1996.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3792/pjaa.72.51

▼display all

Books

  • The Bergman kernel and related topics : Hayama symposium on SCV XXIII, Kanagawa, Japan, July 2022/ Kengo Hirachi...[et al.]

    平地健吾, 大沢 健夫 , 高山 茂晴, 神本 丈

    Springer  2024    ISBN:9789819995059

     More details

    Language:English  

    CiNii Books

  • On meromorphic continuation of local zeta functions

    Joe Kamimoto, Toshihiro Nose

    Springer New York LLC  2015.1 

     More details

    Responsible for pages:187-195   Language:English  

    We investigate meromorphic continuation of local zeta functions and properties of their poles. In the real analytic case, local zeta functions can be meromorphically continued to the whole complex plane and, moreover, properties of the poles have been precisely investigated. However, in the only smooth case, the situation of meromorphic continuation is very different. Actually, there exists an example in which a local zeta function has a singularity different from poles. We give a sufficient condition for that the first finitely many poles samely appear as in the real analytic case and exactly investigate properties of the first pole.

    DOI: 10.1007/978-4-431-55744-9_13

Presentations

  • Newton polyhedra and Archimedean zeta functions for meromorphic functions Invited

    神本 丈

    研究集会「Recent topics in algebraic analysis」(代数解析日大研究集会)  2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:日本大学   Country:Japan  

  • A new boundary invariant and the growth of the Bergman kernel Invited

    神本 丈

    研究集会「Problems on foliations and dynamics in complex geometry」  2023.11 

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

  • 特異点解消定理と局所ゼータ関数の解析接続 Invited

    神本 丈

    岡シンポジウム  2022.12 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:奈良女子大学   Country:Japan  

  • Resolution of singularities for $C^{\infty}$ functions and meromorphy of local zeta functions Invited

    神本 丈

    複素解析幾何セミナー  2022.11 

     More details

    Event date: 2022.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京大学   Country:Japan  

  • Resolution of singularities for C^{\infty} functions and meromorphy of local zeta functions Invited International conference

    神本 丈

    研究集会「超局所解析と漸近解析の展望」  2022.10 

     More details

    Event date: 2022.10

    Language:English   Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

  • Asymptotic analysis of the Bergman kernel on pseudoconvex model domains Invited International conference

    Joe Kamimoto

    HAYAMA Symposium on Complex Analysis in Several Variables XXIII  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神奈川県葉山町   Country:Japan  

  • Newton polyherda in several complex variables Invited International conference

    Joe Kamimoto

    Virtual East-West Several Complex Variables seminar  2022.5 

     More details

    Event date: 2022.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Austria  

  • Resolution of singularities for $C^{\infty}$ functions and meromorphy of local zeta functions Invited International conference

    Joe Kamimoto

    CIMAT's Commutative Algebra / Algebraic Geometry Seminar  2022.5 

     More details

    Event date: 2022.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Mexico  

    可微分関数に関するある種の「特異点解消定理」を示し、その応用として局所ゼータ関数の解析接続に関する問題について考察した。実際に、解析性を持つ関数の場合に関する局所ゼータ関数は全平面に有理型関数として解析接続されることが知られており、さらにその極の分布や位数に関しても、かなり詳細に調べられているが、解析性を仮定しない場合に関しては、一般的な成果が得られていなかっただけでなく、局所ゼータ関数が極以外の特異性を持つという例まで見つかっている。私は、可微分関数の場合に、極以外の特異性がどこに現れるかという問題に関して、関数のある種の不変量を導入し、その不変量を用いて、ある種の解答を与えた。その際に、先に述べた特異点解消定理が必要となる。

  • $C^{\infty}$ 関数に関する特異点解消と局所ゼータ関数の有理型解析接続

    神本 丈

    日本数学会2021年度春季総合分科会  2022.3 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:埼玉大学   Country:Japan  

  • 局所ゼータ関数の特異性について Invited

    神本 丈

    研究集会「アクセサリー・パラメータ研究集会」  2022.3 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:熊本大学   Country:Japan  

  • Asymptotic analysis of oscillatory integrals with degenerate phases Invited International conference

    Joe Kamimoto

    偏微分方程式姫路研究集会  2021.3 

     More details

    Event date: 2021.3

    Language:English   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Japan  

  • On holomorphic curves tangent to real hypersurfaces of infinite type Invited

    神本 丈

    多変数関数論冬セミナー  2020.12 

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Japan  

  • $C^{\infty}$ 平面曲線の特異点解消と局所ゼータ関数の有理型解析接続, 第63回函数論シンポジウム Invited

    神本 丈

    第63回函数論シンポジウム  2020.11 

     More details

    Event date: 2020.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン   Country:Japan  

  • 局所ゼータ関数の有理型解析接続可能領域について

    神本 丈,@野瀬 敏洋

    日本数学会2020年度春季総合分科会  2020.3 

     More details

    Event date: 2020.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:日本大学, 東京   Country:Japan  

  • Asymptotic analysis of oscillatory integrals with degenerate phases Invited

    神本 丈

    偏微分方程式姫路研究集会  2020.3 

     More details

    Event date: 2020.3

    Language:English   Presentation type:Oral presentation (general)  

    Venue:イーグレ姫路、兵庫県   Country:Japan  

  • 局所ゼータ関数の有理型解析接続について Invited

    神本 丈

    研究集会「第15回代数・解析・幾何学セミナー」  2020.2 

     More details

    Event date: 2020.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:鹿児島大学   Country:Japan  

  • Meromorphy of local zeta functions in smooth model cases Invited International conference

    神本 丈

    研究集会「超局所解析と漸近解析」  2019.11 

     More details

    Event date: 2019.11

    Language:English   Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

  • 多変数関数論におけるニュートン多面体とその応用 Invited

    神本 丈

    日本数学会2019年度秋季総合分科会特別講演  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:金沢大学   Country:Japan  

    この講演では,$\C^n$内のなめらかな実超曲面に関して「ニュートン多面体」という概念を導入し,多変数関数論のいくつかの問題に応用する.ニュートン多面体は,特異点論などの分野において,有用な道具として重要な役割を果たしている.さらに,近年,実解析の分野においても,この概念を用いることにより非常に多くの成果が得られている.それに倣って多変数関数論においても,有用な概念となることを期待して,具体的に,D'Angeloの特異型の定量的な決定とベルグマン核の境界挙動に関する問題に関して,ニュートン多面体を用いて解析を行う.そのおかげで,現在までに得られているこれらの問題に関する多くの成果が,統一的に理解され,さらに新しい成果ももたらされる.この2つの研究対象は,特異点論の分野で盛んに研究されてきた,\L ojasiewicz指数の決定と振動積分の漸近挙動に関する問題とそれぞれ類似するものであり,ニュートン多面体を用いた解析が自然なアプローチであることがわかる.

  • 無限型擬凸領域のベルグマン核の境界挙動

    神本 丈

    第54回函数論サマーセミナー  2019.8 

     More details

    Event date: 2019.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:静岡県伊豆の国市   Country:Japan  

  • ニュートン多面体と振動積分の漸近解析I,II Invited

    神本 丈

    筑波RCMS解析学シンポジウム  2019.1 

     More details

    Event date: 2019.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:沖縄県市町村自治会館   Country:Japan  

  • Newton polyhedra and order of contact on real hypersurfaces Invited

    神本 丈

    複素解析幾何セミナー  2018.6 

     More details

    Event date: 2018.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京大学   Country:Japan  

    多変数関数論で重要な不変量であるD'Angeloの定義したタイプについて,ニュートン多面体を用いて、詳細な研究を行っている。

  • ニュートン多面体と重みつき振動積分 Invited

    神本 丈

    広島数理解析セミナー  2018.11 

     More details

    Event date: 2018.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:広島大学   Country:Japan  

  • Regular and singular orders of contact on real hypersurfaces Invited International conference

    神本 丈

    代数解析学の諸問題--超局所解析及び漸近解析--  2018.10 

     More details

    Event date: 2018.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

  • ニュートン多面体を用いた特異点解消とその解析学への応用 Invited

    神本 丈

    研究集会「接触構造、特異点、微分方程式及びその周辺」  2018.1 

     More details

    Event date: 2018.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:金沢市   Country:Japan  

    特異点論的な概念であるニュートン多面体の幾何学的な研究を、様々な解析の分野に応用した。特に、多変数関数論において、重要な、接触位数に関する研究に関して、非常に興味深い結果を得たことを報告した。

  • Failure of meromorphy for local zeta functions Invited

    神本 丈

    RIMS 共同研究 (公開型)「超局所解析と漸近解析」  2017.10 

     More details

    Event date: 2017.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京大数理解析研   Country:Japan  

    滑らかな関数に関する局所ゼータ関数の特異点として、極以外のものが存在するような例を見つけた。

  • On analytic continuation of local zeta functions Invited

    神本 丈

    研究集会「New development of microlocal analysis and singular perturbation theory」  2016.10 

     More details

    Event date: 2016.10

    Language:English   Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

    局所ゼータ関数の解析接続に関して、現在までの研究および最新の研究の成果について、発表した。

  • Asymptotic analysis of oscillatory integrals and local zeta functions Invited

    神本 丈

    研究集会「保存則をもつ偏微分方程式に対する解の正則性・特異性の研究」  2015.6 

     More details

    Event date: 2015.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

    振動積分と局所ゼータ関数の漸近解析について、最新の結果を発表した。

  • Newton polyhedra and oscillatory integrals Invited

    神本 丈

    代数、幾何、解析セミナー  2014.2 

     More details

    Event date: 2014.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:鹿児島大学理学部   Country:Japan  

    Newton polyhedra and oscillatory integrals

  • ニュートン多面体とベルグマン核の漸近解析 Invited

    神本 丈

    第55回函数論シンポジウム  2012.11 

     More details

    Event date: 2012.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:金沢大学   Country:Japan  

    Newton polyhedra and asymptotic analysis of the Bergman kernel

  • On oscillatory integrals with smooth phases Invited

    Joe NMN Kamimoto

    ``Geometric Complex Analysis Tokyo 2012''  2012.7 

     More details

    Event date: 2012.7

    Language:English   Presentation type:Oral presentation (general)  

    Venue:東京大学   Country:Japan  

    On oscillatory integrals with smooth phases

  • Newton polyhedra and oscillatory integrals Invited International conference

    神本 丈、野瀬敏洋

    有限次元無限次元複素解析国際研究集会  2011.12 

     More details

    Event date: 2011.12

    Presentation type:Oral presentation (invited, special)  

    Venue:広島   Country:Japan  

    Newton polyhedra and oscillatory integrals

  • Newton polyhedra and oscillatory integrals

    神本 丈、野瀬敏洋

    漸近解析に於ける超局所解析の展望  2011.11 

     More details

    Event date: 2011.11

    Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

    Newton polyhedra and oscillatory integrals

  • Asymptotic analysis of oscillatory integrals via the Newton polyhedra of the phase and the amplitude Invited

    神本 丈 野瀬 敏洋

    調和解析  2011.11 

     More details

    Event date: 2011.11

    Presentation type:Oral presentation (general)  

    Venue:奈良   Country:Japan  

    Asymptotic analysis of oscillatory integrals via the Newton polyhedra of
    the phase and the amplitude

  • ニュートン多面体と振動積分の漸近解析I

    神本 丈

    ファイバー束とポテンシャル論  2011.9 

     More details

    Event date: 2011.9

    Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

    Newton polyhedra and asymptotic analysis of oscillatory integrals

  • The Newton polyhedron and the singularity of the Bergman kernel Invited

    J.Kamimoto

    研究集会「微分方程式の漸近解析と超局所解析」  2000.10 

     More details

    Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

  • ニュートン図形とベルグマン核の特異性 Invited

    神本 丈

    研究集会「パンルベ方程式の解析」  2001.10 

     More details

    Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

  • Singularities of the Bergman kernel and Newton polyhedra Invited

    J.Kamimoto

    解析幾何セミナー  2001.9 

     More details

    Presentation type:Oral presentation (general)  

    Venue:名古屋大学   Country:Japan  

  • Asymptotic analysis of the Bergman kernel in terms of Newton polyhedra Invited

    J.Kamimoto

    多変数関数論葉山シンポジウム  2002.12 

     More details

    Presentation type:Oral presentation (general)  

    Venue:葉山   Country:Japan  

  • The Bergman kernel for tube domains Invited

    J.Kamimoto

    研究集会「超局所解析とその周辺」  2004.10 

     More details

    Presentation type:Oral presentation (general)  

    Venue:京大数理解析研究所   Country:Japan  

  • 半正定値正則直線束上のBergman核の漸近展開

    神本 丈、趙 康治、野瀬敏洋

    Bergman核と代数幾何学への応用  2008.6 

     More details

    Presentation type:Oral presentation (general)  

    Venue:京都大学数理解析研究所   Country:Japan  

  • Special functions and the Bergman kernels Invited International conference

    Joe Kamimoto

    From Painleve to Okamoto  2008.6 

     More details

    Presentation type:Oral presentation (general)  

    Venue:東京大学   Country:Japan  

  • The Bergman kernel on holomorphic line bundles Invited International conference

    Joe Kamimoto

    Several Complex Variables  2007.6 

     More details

    Presentation type:Oral presentation (general)  

    Venue:慶州   Country:Korea, Republic of  

  • Meromorphy of local zeta functions in smooth model cases

    神本 丈、野瀬 敏洋

    日本数学会2018年度秋季総合分科会  2018.9 

     More details

    Event date: 2018.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡山大学   Country:Japan  

  • Non-polar singularities of local zeta functions in some smooth case

    神本 丈、野瀬 敏洋

    日本数学会2018年度秋季総合分科会  2018.9 

     More details

    Event date: 2018.9

    Language:Japanese  

    Venue:岡山大学   Country:Japan  

  • Regular and singular orders of contact on real hypersurfaces Invited

    神本 丈

    第53回函数論サマーセミナー  2018.8 

     More details

    Event date: 2018.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡県北九州市   Country:Japan  

  • ベルグマン核の漸近解析 Invited

    神本 丈

    第52回函数論サマーセミナー  2017.9 

     More details

    Event date: 2017.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡県柳川市   Country:Japan  

  • On meromorphic continuation of local zeta functions

    Joe Kamimoto, Toshihiro Nose

    10th Korean Conference on Several Complex Variables, KSCV 2014  2014.8 

     More details

    Event date: 2014.8

    Language:English  

    Venue:Gyeongju   Country:Korea, Republic of  

    We investigate meromorphic continuation of local zeta functions and properties of their poles. In the real analytic case, local zeta functions can be meromorphically continued to the whole complex plane and, moreover, properties of the poles have been precisely investigated. However, in the only smooth case, the situation of meromorphic continuation is very different. Actually, there exists an example in which a local zeta function has a singularity different from poles. We give a sufficient condition for that the first finitely many poles samely appear as in the real analytic case and exactly investigate properties of the first pole.

  • Resolution of singularities via Newton polyhedra and its application to analysis Invited

    神本 丈

    複素解析セミナー  2014.5 

     More details

    Event date: 2014.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京大学大学院数理学研究科   Country:Japan  

    Resolution of singularities via Newton polyhedra and its application to analysis

  • Newton polyhedra and oscillatory integrals Invited

    神本 丈

    HMAセミナー・冬の研究会  2013.1 

     More details

    Event date: 2013.1

    Language:Japanese  

    Venue:広島大学   Country:Japan  

    Newton polyhedra and oscillatory integrals

    Other Link: Newton polyhedra and oscillatory integrals

▼display all

MISC

  • 特異点解消定理と局所ゼータ関数の有理型解析接続

    神本 丈

    岡シンポジウム講義録   2023.5

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 巻頭言

    神本 丈

    数理科学   2022.8

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 多変数関数論における解析接続

    神本 丈

    数理科学   2014.10

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • Preface

    Hirachi K., Kamimoto J., Ohsawa T., Takayama S.

    Springer Proceedings in Mathematics and Statistics   447   2024   ISSN:21941009 ISBN:9789819995059

     More details

    Publisher:Springer Proceedings in Mathematics and Statistics  

    Scopus

Professional Memberships

  • 日本数学会

Committee Memberships

  • 日本数学会   数学通信編集員委員   Domestic

    2020.4 - 2022.3   

  • 日本数学会   Councilor   Domestic

    2020.4 - 2021.3   

  • 日本数学会   九州支部会責任連絡評議員   Domestic

    2020.4 - 2021.3   

Academic Activities

  • 主催者

    第11回福岡複素解析シンポジウム  ( Japan ) 2024.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • 主催者 International contribution

    HAYAMA Symposium on Complex Analysis in Several Variables XXIV  ( Japan ) 2023.7

     More details

    Type:Competition, symposium, etc. 

    Number of participants:40

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Number of peer-reviewed articles in Japanese journals:0

    Proceedings of International Conference Number of peer-reviewed papers:3

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • 主催者 International contribution

    HAYAMA Symposium on Complex Analysis in Several Variables XXIII  ( Japan ) 2022.7

     More details

    Type:Competition, symposium, etc. 

    Number of participants:40

  • Memoir 日本数学会 International contribution

    2022.4 - 2026.3

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Proceedings of International Conference Number of peer-reviewed papers:2

  • 主催者

    第10回福岡複素解析シンポジウム  ( Japan ) 2021.3 - 2021.4

     More details

    Type:Competition, symposium, etc. 

  • 主催者

    第144回日本数学会九州支部例会  ( Japan ) 2021.2

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2021

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Proceedings of International Conference Number of peer-reviewed papers:2

  • 主催者

    第9回福岡複素解析シンポジウム (中止)  ( Japan ) 2020.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:25

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Proceedings of International Conference Number of peer-reviewed papers:2

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • 主催者

    第8回福岡複素解析シンポジウム  ( Japan ) 2019.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:35

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Proceedings of International Conference Number of peer-reviewed papers:1

    Proceedings of domestic conference Number of peer-reviewed papers:1

  • 主催者

    第7回福岡複素解析シンポジウム  ( Japan ) 2018.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:6

    Proceedings of International Conference Number of peer-reviewed papers:2

  • 主催者

    第6回福岡複素解析シンポジウム  ( Japan ) 2017.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:5

    Proceedings of International Conference Number of peer-reviewed papers:1

  • 主催者

    多変数関数論冬セミナー  ( Japan ) 2016.12

     More details

    Type:Competition, symposium, etc. 

    Number of participants:50

  • 主催

    第5回福岡複素解析シンポジウム  ( Japan ) 2016.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:60

  • 主催者

    第4回福岡複素解析シンポジウム  ( Japan ) 2016.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • 主催者 International contribution

    葉山多変数複素解析シンポジウム  ( Japan ) 2014.7

     More details

    Type:Competition, symposium, etc. 

    Number of participants:80

  • 主催者

    第3回福岡複素解析シンポジウム  ( Japan ) 2014.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:50

  • 主催者

    第2回福岡複素解析シンポジウム  ( Japan ) 2013.9 - 2013.10

     More details

    Type:Competition, symposium, etc. 

    Number of participants:20

  • 主催者

    第1回福岡複素解析シンポジウム  ( Japan ) 2013.2

     More details

    Type:Competition, symposium, etc. 

    Number of participants:30

  • 司会

    日本数学会 秋季総合分科会  ( Japan ) 2012.9

     More details

    Type:Competition, symposium, etc. 

    Number of participants:500

▼display all

Research Projects

  • Application of Newton polyhedra in various kinds of analysis

    Grant number:20K03656  2020 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    神本 丈

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    本研究は、複素解析学や調和解析学などの重要な解析学の分野における重要な問題に関して、代数学や幾何学における重要な定理「特異点解消定理」を様々な形で応用することを目的とする。その際に、抽象的な理論の重要性もさることながら、具体的で定量的な情報が必要となり、それらは、関数の「ニュートン多面体」と呼ばれる非常にシンプルな幾何学的な情報から得られることを追求する。

    CiNii Research

  • ニュートン多面体を用いた特異点解消とその解析学への応用

    Grant number:15K04932  2015 - 2019

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 有限型擬凸領域上の複素解析の研究

    2010 - 2014

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 有限型凝凸領域上のL2 正則関数に関する複素解析

    Grant number:14340048  2002 - 2005

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 多変数複素解析学における漸近解析

    Grant number:12740094  2000 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Encouragement of Scientists

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

Educational Activities

  • My usual teaching activity is the following kinds of
    lectures: 1. The fundamental lectures for
    first or second undergraduate scientific students,
    2. the lectures of special analysis for engineering
    students,
    3. the lectures of complex analysis for mathematical
    students.
    Moreover I have seminars with about 10 students.

Class subject

  • 数理科学特別講義Ⅰ

    2023.10 - 2024.3   Second semester

  • 微分積分学Ⅱ

    2023.10 - 2024.3   Second semester

  • コアセミナーⅡ

    2023.10 - 2024.3   Second semester

  • 数理科学特論1

    2023.10 - 2024.3   Second semester

  • 数理科学特論1

    2023.10 - 2024.3   Second semester

  • 数理科学特別講義Ⅰ

    2023.10 - 2024.3   Second semester

  • 微分積分学Ⅱ

    2023.10 - 2024.3   Second semester

  • コアセミナーⅡ

    2023.10 - 2024.3   Second semester

  • MMA講究A

    2023.4 - 2023.9   First semester

  • 微分積分学Ⅰ

    2023.4 - 2023.9   First semester

  • MMA講究A

    2023.4 - 2023.9   First semester

  • 微分積分学Ⅰ

    2023.4 - 2023.9   First semester

  • 微分積分学Ⅱ

    2022.10 - 2023.3   Second semester

  • 数学概論Ⅳ・演習

    2022.10 - 2023.3   Second semester

  • 情報解析学演習

    2022.10 - 2023.3   Second semester

  • 情報解析学

    2022.10 - 2023.3   Second semester

  • 入門微分積分Ⅱ

    2022.6 - 2022.8   Summer quarter

  • 微分積分学Ⅰ

    2022.4 - 2022.9   First semester

  • 入門微分積分Ⅰ

    2022.4 - 2022.6   Spring quarter

  • 数学概論Ⅳ・演習

    2021.10 - 2022.3   Second semester

  • 情報解析学演習

    2021.10 - 2022.3   Second semester

  • 情報解析学

    2021.10 - 2022.3   Second semester

  • 数学概論Ⅳ・演習

    2021.10 - 2022.3   Second semester

  • 情報解析学演習

    2021.10 - 2022.3   Second semester

  • 情報解析学

    2021.10 - 2022.3   Second semester

  • MMA講究B

    2020.10 - 2021.3   Second semester

  • 数学概論Ⅳ・演習

    2020.10 - 2021.3   Second semester

  • 情報解析学演習

    2020.10 - 2021.3   Second semester

  • 情報解析学

    2020.10 - 2021.3   Second semester

  • 数理科学特論1

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅰ

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 数理科学特論1

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅰ

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 数理科学特論1

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅰ

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 数理科学特論1

    2019.10 - 2020.3   Second semester

  • 数理科学特別講義Ⅰ

    2019.10 - 2020.3   Second semester

  • 線形代数学・同演習B

    2019.10 - 2020.3   Second semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • コアセミナー

    2019.4 - 2019.9   First semester

  • 線形代数学・同演習A

    2019.4 - 2019.9   First semester

  • 線形代数

    2019.4 - 2019.9   First semester

  • 数学概論Ⅳ・演習

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 線形代数B・同演習

    2018.10 - 2019.3   Second semester

  • 数学概論IV 演習

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 数学概論Ⅳ・演習

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 数学概論Ⅳ・演習

    2018.10 - 2019.3   Second semester

  • 線形代数学・同演習B

    2018.10 - 2019.3   Second semester

  • 数学概論Ⅳ・演習

    2018.10 - 2019.3   Second semester

  • 線形代数

    2018.4 - 2018.9   First semester

  • 線形代数A・同演習

    2018.4 - 2018.9   First semester

  • 線形代数学

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 線形代数

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 線形代数

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 線形代数

    2018.4 - 2018.9   First semester

  • 線形代数学・同演習A

    2018.4 - 2018.9   First semester

  • 数学概論Ⅳ・演習

    2017.10 - 2018.3   Second semester

  • 数学概論IV・同演習

    2017.10 - 2018.3   Second semester

  • 線形代数B・同演習

    2017.10 - 2018.3   Second semester

  • 線形代数学・同演習B

    2017.10 - 2018.3   Second semester

  • 情報解析学演習

    2017.10 - 2018.3   Second semester

  • 情報解析学

    2017.10 - 2018.3   Second semester

  • 線形代数学・同演習A

    2017.4 - 2017.9   First semester

  • 線形代数A・同演習

    2017.4 - 2017.9   First semester

  • 数学概論IV

    2016.10 - 2017.3   Second semester

  • 線形代数学・同演習B

    2016.10 - 2017.3   Second semester

  • 線形代数学・同演習A

    2016.4 - 2016.9   First semester

  • 線形代数学

    2015.10 - 2016.3   Second semester

  • 線形代数学・同演習B

    2015.10 - 2016.3   Second semester

  • 数学IIB

    2015.4 - 2015.9   First semester

  • 線形代数学・同演習A

    2015.4 - 2015.9   First semester

  • 解析学III

    2014.10 - 2015.3   Second semester

  • 微分積分続論

    2014.4 - 2014.9   First semester

  • 数学IIB

    2014.4 - 2014.9   First semester

  • 解析学III

    2013.10 - 2014.3   Second semester

  • 数学IC

    2013.10 - 2014.3   Second semester

  • 微分積分続論

    2013.4 - 2013.9   First semester

  • 数学IC

    2012.10 - 2013.3   Second semester

  • 微分積分続論

    2012.4 - 2012.9   First semester

  • 複素解析学大意

    2012.4 - 2012.9   First semester

  • 複素解析学大意

    2012.4 - 2012.9   First semester

  • 数学特論12

    2012.4 - 2012.9   First semester

  • 数学概論IV

    2011.10 - 2012.3   Second semester

  • 複素解析学大意

    2011.4 - 2011.9   First semester

  • 数学特論12

    2011.4 - 2011.9   First semester

  • 数学概論IV

    2010.10 - 2011.3   Second semester

  • 複素解析学大意

    2010.4 - 2010.9   First semester

  • 解析学A1

    2009.10 - 2010.3   Second semester

  • 数学基礎コアセミナー

    2009.4 - 2009.9   First semester

  • 複素解析学基礎・演習

    2008.10 - 2009.3   Second semester

  • 解析学B1

    2008.4 - 2008.9   First semester

  • 解析学A1

    2007.10 - 2008.3   Second semester

  • 数学C1

    2007.10 - 2008.3   Second semester

  • 数学続論

    2007.4 - 2007.9   First semester

  • 複素解析学基礎

    2005.10 - 2006.3   Second semester

  • 解析学B1

    2005.4 - 2005.9   First semester

  • 解析学A1

    2004.10 - 2005.3   Second semester

  • 複素解析学大意

    2003.4 - 2003.9   First semester

▼display all

FD Participation

  • 2023.6   Role:Participation   Title:教職課程専門委員会

    Organizer:University-wide

  • 2021.3   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2006.10   Title:ファカルティーディベロップメント

    Organizer:University-wide

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2012  名古屋大学多元数理科学研究科  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2008  東京大学大学院数理科学研究科  Classification:Intensive course  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:冬学期

Other educational activity and Special note

  • 2019  Class Teacher  学部

Outline of Social Contribution and International Cooperation activities

  • 熊本大学公開講座 (1998.8)

Social Activities

  • 教育実習に関する高校訪問

    西南学院高校、筑紫丘高校  2023.6

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Other

  • 濟々黌高校(熊本)への出前講義を行った。

    濟々黌高校  2020.11

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

  • 社会貢献委員として、高校への出前講義を斡旋及び実践した。

    2020

     More details

    社会貢献委員として、高校への出前講義を斡旋及び実践した。

  • 「複素平面入門」、高校生を対象に複素解析学の基礎を紹介した。

    九州大学理学部数学化  九州大学学内  2012.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

    複素解析学の基礎。

Travel Abroad

  • 2003.10 - 2004.9

    Staying countory name 1:Germany   Staying institution name 1:Wuppertal 大学