Updated on 2024/07/28

Information

 

写真a

 
MIYAKE NOBUHITO
 
Organization
Faculty of Mathematics Division of Analysis Assistant Professor
School of Sciences Department of Mathematics(Joint Appointment)
Graduate School of Mathematics Department of Mathematics(Joint Appointment)
Title
Assistant Professor
Contact information
メールアドレス
Profile
My main research field is "higher order parabolic equations”, which are partial differential equations appearing in, such as Cahn-Hilliard equation and mathematical models describing the epitaxial growth of thin films. Contrary to second order parabolic equations (such as the heat equation), higher order parabolic equations do not enjoy the “Positivity Preserving Property (PPP)” in general. Here, the PPP means that positive initial data always yield solutions which are positive. I have been studying with the aim of understanding the detailed mechanism behind the loss of the PPP, and this research is currently ongoing. In addition, I am also interested in the thin film equation, which arises in modeling of the motion of viscous droplets spreading on a solid surface, and geometric evolution equations classified as higher order parabolic equations (such as Willmore flow and Canham-Helfrich flow).

Degree

  • Doctor of Science

Research History

  • 2019年4月 - 2021年3月 日本学術振興会 特別研究員(DC2)(所属研究機関:東北大学大学院理学研究科) 2021年4月 - 2022年3月 京都大学数理解析研究所 研究員(非常勤) 2021年10月 - 2022年3月 大阪大学基礎工学部 非常勤講師 2022年4月 - 2024年3月 日本学術振興会 特別研究員(PD)(所属研究機関:東京大学大学院数理科学研究科) 2022年4月 - 2024年3月 明治大学理工学部 兼任講師

Research Interests・Research Keywords

  • Research theme:asymptotic behavior of solutions to higher order parabolic equations

    Keyword:partial differential equations, higher order parabolic equations, geometric evolution equations

    Research period: 2024.4

Awards

  • 青葉理学振興会賞

    2021.3   青葉理学振興会  

  • Excellent Poster Award

    2018.2   The 19-th Northeastern Symposium on Mathematical Analysis  

  • 数学最優秀学生賞

    2015.4   公益財団法人 川井数理科学財団  

Papers

  • Effect of decay rates of initial data on the sign of solutions to Cauchy problems of polyharmonic heat equations Reviewed

    Nobuhito Miyake

    Mathematische Annalen   387 ( 1-2 )   265 - 289   2022.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s00208-022-02466-w

  • Asymptotic Behavior of Solutions for a Fourth Order Parabolic Equation with Gradient Nonlinearity via the Galerkin Method

    Nobuhito Miyake, Shinya Okabe

    Geometric Properties for Parabolic and Elliptic PDE's   247 - 271   2021.3

     More details

    Language:English  

    DOI: 10.1007/978-3-030-73363-6_12

  • Positivity of solutions to the Cauchy problem for linear and semilinear biharmonic heat equations Reviewed

    Hans-Christoph Grunau, Nobuhito Miyake, Shinya Okabe

    Advances in Nonlinear Analysis   10 ( 1 )   353 - 370   2020.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1515/anona-2020-0138

  • Blowup for a Fourth-Order Parabolic Equation with Gradient Nonlinearity Reviewed

    Kazuhiro Ishige, Nobuhito Miyake, Shinya Okabe

    SIAM Journal on Mathematical Analysis   52 ( 1 )   927 - 953   2020.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1137/19m1253654

  • The Homogenization Method for Topology Optimization of Structures: Old and New Reviewed

    Interdisciplinary Information Sciences   25 ( 2 )   75 - 146   2019.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.4036/iis.2019.b.01

Presentations

  • Threshold-type algorithm for gradient flows of Willmore-type functionals

    2023.12 

     More details

    Language:Japanese  

    Country:Other  

  • 薄膜の結晶成長を記述する四階放物型方程式の解の時間大域挙動

    三宅庸仁

    応用数学セミナー  2018.1 

     More details

    Language:Japanese  

    Country:Other  

  • 薄膜のエピタキシャル成長を記述する四階放物型方程式の勾配爆発解の存在について

    三宅庸仁

    第 40 回発展方程式若手セミナー  2018.8 

     More details

    Language:Japanese  

    Country:Other  

  • Gradient blow-up of solutions for a fourth order parabolic equation modeling epitaxial growth

    Nobuhito Miyake

    Summer School of Applied Analysis  2018.8 

     More details

    Language:English  

    Country:Other  

  • 薄膜の結晶成長に由来する四階放物型方程式の勾配爆発解の存在

    三宅庸仁

    第170回愛媛大学解析セミナー  2018.12 

     More details

    Language:Japanese  

    Country:Other  

  • Blow up for a fourth order parabolic equation with gradient nonlinearity

    2019.5 

     More details

    Language:Japanese  

    Country:Other  

  • 勾配型非線形項をもつ四階放物型方程式の有限時間爆発解について

    石毛和弘, 三宅庸仁, 岡部真也

    日本数学会・2019 年度秋季総合分科会  2019.9 

     More details

    Language:Japanese  

    Country:Other  

  • Blow up of solutions for a fourth order parabolic equation with gradient nonlinearlity

    Nobuhito Miyake

    Workshop on Elliptic and Parabolic PDEs 2019  2019.11 

     More details

    Language:English  

    Country:Other  

  • 勾配型非線形項を持つ四階放物型方程式の有限時間爆発解について

    三宅庸仁

    神戸大学解析セミナー  2019.12 

     More details

    Language:Japanese  

    Country:Other  

  • Blow up of solutions for a fourth order parabolic equation with gradient nonlinearlity

    2019.12 

     More details

    Language:Japanese  

    Country:Other  

  • Positivity of solutions to the Cauchy problem for linear and semilinear biharmonic heat equations

    Nobuhito Miyake

    The 21st Northeastern Symposium on Mathematical Analysis  2020.2 

     More details

    Language:English  

    Country:Other  

  • 勾配型非線型項をもつ四階放物型方程式の爆発問題

    三宅庸仁

    楕円型・放物型方程式の集いの会  2020.8 

     More details

    Language:Japanese  

    Country:Other  

  • Positivity of solutions to Cauchy problems for linear and semilinear biharmonic heat equations

    2021.1 

     More details

    Language:Japanese  

    Country:Other  

  • ある高階放物型方程式に対する初期値問題の解の正値性について

    三宅庸仁

    第 14 回若手のための偏微分方程式と数学解析  2021.2 

     More details

    Language:Japanese  

    Country:Other  

  • Positivity of solutions to the Cauchy problem for linear and semilinear biharmonic heat equations

    2021.3 

     More details

    Language:Japanese  

    Country:Other  

  • Positivity of solutions to the Cauchy problem for some higher order parabolic equations

    2021.4 

     More details

    Language:Japanese  

    Country:Other  

  • Positivity of solutions to the Cauchy problem for linear and semilinear polyharmonic heat equations

    2021.5 

     More details

    Language:Japanese  

    Country:Other  

  • Effect of decay rates of initial data on the sign of solutions to Cauchy problems of polyharmonic heat equations

    2021.11 

     More details

    Language:Japanese  

    Country:Other  

  • Effect of decay rates of initial data on the sign of solutions to Cauchy problems of some higher order parabolic equations

    2022.4 

     More details

    Language:Japanese  

    Country:Other  

  • Effect of decay rates of initial data on the sign of solutions to Cauchy problems of some higher order parabolic equations

    2022.6 

     More details

    Language:Japanese  

    Country:Other  

  • Effect of decay rates of initial data on the sign of solutions to Cauchy problems of polyharmonic heat equations

    Nobuhito Miyake

    Summer School on Variational Problems and Functional Inequalities  2022.9 

     More details

    Language:English  

    Country:Other  

  • 多重調和熱方程式の初期値問題の解の符号に対する初期値の減衰速度の影響について

    三宅庸仁

    「解析学とその周辺」@野田  2022.11 

     More details

    Language:Japanese  

    Country:Other  

  • ある高階放物型方程式に対する初期値問題の解の符号における初期値の減衰速度の影響について

    三宅庸仁

    楕円型・放物型微分方程式研究集会  2022.11 

     More details

    Language:Japanese  

    Country:Other  

  • Effect of decay rates of initial data on the sign of solutions to Cauchy problems of some higher order parabolic equations

    2022.11 

     More details

    Language:Japanese  

    Country:Other  

  • Effect of decay rates of initial data on the sign of solutions to Cauchy problems of some higher order parabolic equations

    Nobuhito Miyake

    NTU-Tokyo Joint Conference 2022  2022.12 

     More details

    Language:English  

    Country:Other  

  • Eventual global positivity of solutions to Cauchy problems of polyharmonic heat equations

    Nobuhito Miyake

    The 24th Northeastern Symposium on Mathematical Analysis  2023.2 

     More details

    Language:English  

    Country:Other  

  • Eventual global positivity of solutions to Cauchy problems of some higher order parabolic equations

    2023.3 

     More details

    Language:Japanese  

    Country:Other  

  • Effect of decay rates of initial data on the sign of solutions to Cauchy problems of some higher order parabolic equations

    Nobuhito Miyake

    The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications  2023.5 

     More details

    Language:English  

    Country:Other  

  • Threshold-type approximation algorithm for gradient flows of Willmore-type energy functionals

    Nobuhito Miyake

    2023.11 

     More details

    Language:English  

    Country:Other  

  • Canham-Helfrich 型汎関数の勾配流に対する閾値型近似アルゴリズムについて

    三宅庸仁

    第2回若手応用数学研究会  2023.12 

     More details

    Language:Japanese  

    Country:Other  

  • Threshold-type algorithm for gradient flows of Canham-Helfrich type functional

    2024.4 

     More details

    Language:Others  

    Country:Other  

▼display all

Professional Memberships

  • 日本数学会

Academic Activities

  • 企画立案・運営等

    発展方程式における系統的形状解析及び漸近解析:春の学校  ( 東京大学駒場キャンパス数理科学研究科棟002室 ) 2023.3

     More details

    Type:Competition, symposium, etc. 

Research Projects

  • 高階退化放物型方程式に対する漸近解析手法の研究

    Grant number:24K16944  2024 - 2027

    日本学術振興会  科学研究費助成事業  若手研究

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 高階放物型問題に対する漸近解析の新展開

    Grant number:22J00221  2022 - 2024

    日本学術振興会  科学研究費助成事業  特別研究員奨励費

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 高階放物型問題に対する漸近解析の新展開

    2022 - 2023

    日本学術振興会  特別研究員

      More details

    Grant type:Joint research

  • 高階勾配流方程式に対する漸近解析の探究とその応用

    Grant number:21K20321  2021 - 2022

    日本学術振興会  科学研究費助成事業  研究活動スタート支援

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 四階放物型方程式系における漸近解析―保存則を伴う爆発現象の解明とその応用―

    Grant number:19J10424  2019 - 2020

    日本学術振興会  科学研究費助成事業  特別研究員奨励費

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 四階放物型方程式系における漸近解析―保存則を伴う爆発現象の解明とその応用―

    2019 - 2020

    日本学術振興会  特別研究員

      More details

    Grant type:Joint research

▼display all

FD Participation

  • 2024.4   Role:Participation   Title:令和6年度第1回全学FD(新任教員研修)

    Organizer:University-wide