Updated on 2025/06/19

写真a

 
TOMIURA YOICHI
 
Organization
Faculty of Information Science and Electrical Engineering Department of Informatics Professor
Library (Concurrent)
Data-Driven Innovation Initiative (Concurrent)
Education and Research Center for Mathematical and Data Science (Concurrent)
Joint Graduate School of Mathematics for Innovation (Concurrent)
Graduate School of Integrated Frontier Sciences Department of Library Science(Concurrent)
Joint Graduate School of Digital Humanities (Concurrent)
School of Engineering Department of Electrical Engineering and Computer Science(Concurrent)
Center for Research Facility Digitalization (Concurrent)
Title
Professor
Contact information
メールアドレス
Tel
0928023584
Profile
He has been working in the field of Natural Language Processing. Especially, his research interests are : extraction of information from large set of documents, serach for academic papers and research data, and the large language model.

Research Areas

  • Informatics / Intelligent informatics

  • Humanities & Social Sciences / Library and information science, humanistic and social informatics

Degree

  • Dr. Eng. (Kyushu University, Japan)

Research History

  • Faculty of Information Science and Electrical Engineering  Professor 

    2011.4 - Present

      More details

Education

  • Kyushu University   工学研究科   電子工学専攻

    1986.4 - 1989.3

      More details

    Country:Japan

    Notes:博士後期課程

  • Kyushu University   工学研究科   電子工学専攻

    1984.4 - 1986.3

      More details

    Country:Japan

  • Kyushu University   工学部   電子工学科

    1980.4 - 1984.3

      More details

    Country:Japan

Research Interests・Research Keywords

  • Research theme: Research on analysis and improvement of LLM

    Keyword: LLM,Transformer,文脈処理,予測

    Research period: 2025.4 - Present

  • Research theme: Box Finder : Searching for Physical Documents in Archival Repositories

    Keyword: Historical documents, Box, Search

    Research period: 2023.4 - Present

  • Research theme: Research on semi-automated feedback on English learners' essays

    Keyword: Large Language Model, BERT, Unsupervised Learning

    Research period: 2023.2 - 2024.9

  • Research theme: Extract spatial distribution of a target gas from mixed gas using the LSPR gas sensor

    Keyword: Multi-channel gas sensor, Matrix factorization, Component gas, Spatial distribution

    Research period: 2022.4 - Present

  • Research theme: Research on research data retrieval

    Keyword: research data

    Research period: 2022.4 - Present

  • Research theme: Research on odor quantification

    Keyword: Odor, Odor-code, embedding, SMILES, Olfactory Bulb

    Research period: 2021.3 - 2024.9

  • Research theme: A Comprehensive Study for Constructing a Large Scale Information Infrastructure of Paper-based Historical Materials

    Keyword: Historical Materials, OCR, Full-text Search, Information Infrastracture

    Research period: 2018.8 - 2022.3

  • Research theme: olfactory information processing using active pattern of glomeruli in the olfactory bulb

    Keyword: sense of smell, primitives of olfactory information, clustering of glomeruli

    Research period: 2014.10 - 2022.3

  • Research theme: Extracting Latent Research Cluster using Institute Repository

    Keyword: Author Topic Model, Topic Analysis, Collaboration, Research Administrator

    Research period: 2013.4 - 2016.3

  • Research theme: Automatically Generating Questions and Answers about Content of English Document Arbitrarily Selected by Learner Using NLP

    Keyword: generation of questions and answers, extensive reading, learning support, NLP

    Research period: 2012.4 - 2016.3

  • Research theme: Automatic Sentence-Level Annotation of Human Values

    Keyword: human values, opinion sentence, SVM, latent variable, Gibbs Sampling

    Research period: 2012.2 - 2021.3

  • Research theme: Organization of Scientific Papers for Scientific Information Retrieval

    Keyword: clustering, k-means, latent variable, statistic language model, distributional similarity, Gibbs Sampling

    Research period: 2011.4 - 2016.3

  • Research theme: Organization of Documents on WWW

    Keyword: Document Clustering, Estimation of Topic, Estimation of Relation between Clusters, Latent Class, Stochastic Language Model, BIC

    Research period: 2010.10 - 2012.3

  • Research theme: Providing Appropriate Alternative Co-occurrence Candidates; Towards a Japanese Composition Support System for Foreign Students

    Keyword: similarity of occurring environments, natural cooccurrence, Japanese composition support system, natural language processing

    Research period: 2008.6 - 2011.3

  • Research theme: Construction and publication of native/non-native English paper corpus gathered from Web and its application

    Keyword: Web document, discernment of nativeness, learner's corpus, English language education, supporting system for writing in English, NLP

    Research period: 2007.10 - 2012.3

  • Research theme: Analysis of Answering Method with Probability Conversion for Internet Research

    Keyword: Internet Research, anonymity, Probability Conversion

    Research period: 2007.7 - 2009.12

  • Research theme: A Method for Automatically Generating Proper Responses to User's Utterances in Open-ended Conversation by Retrieving Documents on the Web

    Keyword: dialogue, open-domain, cohesion, coherence

    Research period: 2005.9 - 2009.8

  • Research theme: Robust Language Identification for Similar Languages and Short Texts

    Keyword: Language Identification, Similar Language, WWW, Information Retrieval

    Research period: 2004.8 - 2009.9

  • Research theme: Knowledge Acquisition about Meaning from Large Language Corpus

    Keyword: semantic category, case-frame, causal relation, self-organization, statistical language model, NLP

    Research period: 2003.8 - 2010.9

  • Research theme: Assisting with Translating Japanese Collocations Based on the Word Co-occurrence on the Web Texts

    Keyword: translation, Web document, cooccurrency, Word Sense Disambiguation

    Research period: 2003.8 - 2005.9

  • Research theme: Discernment of Nativeness of English Documents Based on Statistical Language Model

    Keyword: Web documents, Discernment of Nativeness, Statistical Language Model, Statistical Hypothesis Testing, NLP

    Research period: 2003.6 - 2009.9

  • Research theme: Placement of Nouns in a Multi-Dimensional Space Based on Words' Cooccurrency

    Keyword: word vector, cooccurrency, example-based method, natural language processing

    Research period: 2002.7 - 2003.10

  • Research theme: Estimating Satisfactoriness of Selectional Restriction from Corpus

    Keyword: word cooccurrence, syntactic disambiguation, multiple regression model, natural language processing

    Research period: 1999.6 - 2004.3

Awards

  • Best Poster Award

    2019.11   The 21st International Conference on Asian Digital Libraries   21st International Conference on Asia-Pacific Digital Libraries (ICADL 2019)でのPoster 発表 "Improving OCR for Historical Documents by Modeling Image Distortion" に対する賞

  • 優秀論文賞

    2010.9   電子情報通信学会通信ソサイエティ   電子情報通信学会論文誌に掲載された論文に対する受賞

  • Best Paper Award

    2009.9   Pacific Association for Computational Linguistics   Pacling2009 での発表 Identification among Similar Language Using Statistical Hypothesis Testing に対する受賞

  • FIT2006 論文賞

    2006.9   情報科学技術フォーラム推進委員会   FIT2006 第5回情報科学技術フォーラムにおいて発表した「言語識別技術を応用した英語における母語話者文書・非母語話者文書の判別」に対する受賞

  • Best Paper Award

    2005.8   Pacific Association for Computational Linguistics   Pacling2005での発表 Robust Language Identification for Similar Language and Short Texts using Low-Frequent Byte Strings に対する受賞

▼display all

Papers

  • A BERT-based pretraining model for extracting molecular structural information from a SMILES sequence

    Zheng, XF; Tomiura, Y

    JOURNAL OF CHEMINFORMATICS   16 ( 1 )   71   2024.6   ISSN:1758-2946

     More details

    Language:English   Publisher:Journal of Cheminformatics  

    Abstract: Among the various molecular properties and their combinations, it is a costly process to obtain the desired molecular properties through theory or experiment. Using machine learning to analyze molecular structure features and to predict molecular properties is a potentially efficient alternative for accelerating the prediction of molecular properties. In this study, we analyze molecular properties through the molecular structure from the perspective of machine learning. We use SMILES sequences as inputs to an artificial neural network in extracting molecular structural features and predicting molecular properties. A SMILES sequence comprises symbols representing molecular structures. To address the problem that a SMILES sequence is different from actual molecular structural data, we propose a pretraining model for a SMILES sequence based on the BERT model, which is widely used in natural language processing, such that the model learns to extract the molecular structural information contained in the SMILES sequence. In an experiment, we first pretrain the proposed model with 100,000 SMILES sequences and then use the pretrained model to predict molecular properties on 22 data sets and the odor characteristics of molecules (98 types of odor descriptor). The experimental results show that our proposed pretraining model effectively improves the performance of molecular property prediction Scientific contribution: The 2-encoder pretraining is proposed by focusing on the lower dependency of symbols to the contextual environment in a SMILES than one in a natural language sentence and the corresponding of one compound to multiple SMILES sequences. The model pretrained with 2-encoder shows higher robustness in tasks of molecular properties prediction compared to BERT which is adept at natural language.

    DOI: 10.1186/s13321-024-00848-7

    Web of Science

    Scopus

    PubMed

  • Visualize the Gas Spreading Over Time as Separate Trajectories with Matrix Decomposition Based on the Linearity of LSPR Gas Sensor Response

    Zheng X., Matsuoka M., Hayashi K., Tomiura Y.

    IEEJ Transactions on Sensors and Micromachines   144 ( 11 )   345 - 349   2024   ISSN:13418939

     More details

    Publisher:IEEJ Transactions on Sensors and Micromachines  

    Detecting and visualizing gas distributed in two dimensions is enabled by the localized surface plasmon resonance (LSPR) gas sensor. This study provides a method for analyzing measurement data that allows component gases to be visualized separately. The degree of decrease in the intensity of the transmitted light (corresponding to the absorbance) due to the effect of the surrounding gas on the sensor was taken as the response of the sensor, and an approximate linear proportionality between the gas concentration and the response of the sensor was assured through measuring the sample of gas sources in different dilutions. Because the responses of gas sensor to mixed gases can be regarded as the sum of the responses to each component gas with respect to its concentration, this proportionality lead the possibility to estimate the concentration distribution of component gases by applying the algorithm of matrix decomposition. We applied matrix decomposition to real measurement data and visualized the component gases spreading over time. Moreover, we discussed the impact of speculating on the number of components in our case by conducting a simulation experiment.

    DOI: 10.1541/ieejsmas.144.345

    Scopus

  • Investigation of ChatGPT Use in Research Data Retrieval Reviewed International journal

    #Motokazu Yamasaki, Yoichi Tomiura, Toshiyuki Shimizu

    Proceedings of International Conference on Asian Digital Libraries 2023   36 - 40   2023.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    In recent years, huge amounts of research data have been generated, and it has become important to search them efficiently and accurately in order to make use of research data. Existing search engines and keyword-based search methods require users to enter appropriate keywords or phrases, and it is difficult to obtain satisfactory results if users do not have detailed information about the desired data. In this study, we investigated whether ChatGPT could be used to reach the desired research data by users who are not familiar with them. Specifically, we investigated whether users could find the research data cited in a research paper by entering the abstract of the paper into ChatGPT and then asking for the data necessary to write the research paper. The results showed that research data could be found in 65% of the cases, confirming that the use of ChatGPT increases the discoverability of research data.

  • Extract spatial distribution of a specific gas from mixed gas data measured by the LSPR gas sensor Reviewed International journal

    #Xiaofan Zheng, #Masato Matsuoka, Kenshi Hayashi, Yoichi Tomiura

    2023 IEEE SENSORS   1 - 4   2023.10   ISSN:1930-0395 ISBN:979-8-3503-0387-2

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Proceedings of IEEE Sensors  

    Visualizing invisible gas molecules can be a great help to our lives. At present, gas sensors can already visualize the spatial distribution of gas mixture, however, the visualization of a specific gas requires further analysis of the measurement data. In this study, matrix decomposition is used to analyze the measurement data of localized surface plasmon resonance (LSPR) gas sensor. To satisfy the linear relationship between the concentration of gas and the output of the device required for applying matrix decomposition, we formulated a procedure for processing the measurement data instead of using them directly. To obtain the diffusion trace of a specific gas, we designed a method to obtain the characteristic output of the specific gas, then by using the characteristic output as the known information, the corresponding diffusion trace can be estimated better through the matrix decomposition algorithm. We used the designed method to analyze the measurement data, and the results show that our method can obtain the spatial distribution of some gas.

    DOI: 10.1109/SENSORS56945.2023.10324923

    Web of Science

    Scopus

    Repository Public URL: https://hdl.handle.net/2324/7237124

  • Investigation of the structure-odor relationship using a Transformer model Reviewed International journal

    #Xiaofan Zheng, Yoichi Tomiura, Kenshi Hayashi

    Journal of Cheminformatics   2022.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The relationships between molecular structures and their properties are subtle and complex, and the properties of odor are no exception. Molecules with similar structures, such as a molecule and its optical isomer, may have completely different odors, whereas molecules with completely distinct structures may have similar odors. Many works have attempted to explain the molecular structure-odor relationship from chemical and data-driven perspectives. The Transformer model is widely used in natural language processing and computer vision, and the attention mechanism included in the Transformer model can identify relationships between inputs and outputs. In this paper, we describe the construction of a Transformer model for predicting molecular properties and interpreting the prediction results. The SMILES data of 100,000 molecules are collected and used to predict the existence of molecular substructures, and our proposed model achieves an F1 value of 0.98. The attention matrix is visualized to investigate the substructure annotation performance of the attention mechanism, and we find that certain atoms in the target substructures are accurately annotated. Finally, we collect 4462 molecules and their odor descriptors and use the proposed model to infer 98 odor descriptors, obtaining an average F1 value of 0.33. For the 19 odor descriptors that achieved F1 values greater than 0.45, we also attempt to summarize the relationship between the molecular substructures and odor quality through the attention matrix.

    DOI: https://doi.org/10.1186/s13321-022-00671-y

▼display all

Books

Presentations

  • 九州大学の研究データ管理に係わる取組み

    冨浦洋一

    第82回 大学等におけるオンライン教育とデジタル変革に関するサイバーシンポジウム「教育機関DXシンポ」  2024.11  国立情報学研究所

     More details

    Event date: 2024.11

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:オンライン  

    Other Link: https://www.youtube.com/watch?v=_nza7AxPbZo

  • 九州大学における研究データサービスの課題 International conference

    冨浦洋一

    国際シンポジウム「大学における研究データサービスの導入と展開」  2024.10  九州大学データ駆動イノベーション推進本部研究データ管理支援部門

     More details

    Event date: 2024.10

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:福岡市   Country:Japan  

  • 研究データ管理をスタートするための最大の課題は?

    安浦寛人,青木学聡,長井圭治,冨浦洋一,西村浩二,山中節子,清水史子,甲斐尚人

    研究データエコシステム構築事業シンポジウム2024  2024.10  国立情報学研究所

     More details

    Event date: 2024.10

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:東京都   Country:Japan  

  • 研究データの適切な管理とその先にある公開を目指して~九大の研究データ管理支援の先進的取り組み~

    冨浦洋一

    未来社会デザイン統括本部&データ駆動イノベーション推進本部 合同シンポジウム2024  2024.9 

     More details

    Event date: 2024.9

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:福岡市   Country:Japan  

  • 論文調査の支援に向けた研究 ー最新の読むべき論文の判別方法ー

    #佐々木 陸, 清水 敏之, 冨浦 洋一

    第16回データ工学と情報マネジメントに関するフォーラム (DEIM 2024)  2024.3 

     More details

    Event date: 2024.2 - 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

▼display all

MISC

  • 匂いの質と空間の計測・予測・可視化

    林 健司, @劉 傅軍, 冨浦洋一

    日本香料協会会誌「香料」   2023.7

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 特集「研究開発における情報利用と著作権」にあたって

    冨浦洋一

    人工知能学会誌   2010.9

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 博士論文に見る研究テーマの動向

    冨浦洋一

    人工知能学会誌   2008.1

     More details

    Language:Japanese  

  • 博士論文に見る新しい研究の流れ

    冨浦洋一

    人工知能学会誌   2007.1

     More details

    Language:Japanese  

  • Web上の大量文書からの語彙知識の獲得

    冨浦洋一

    人工知能学会誌   2007.1

     More details

    Language:Japanese  

▼display all

Professional Memberships

  • 言語処理学会

  • 人工知能学会

  • 情報処理学会

  • 言語処理学会

      More details

  • 情報処理学会

      More details

▼display all

Committee Memberships

  • 情報処理学会   支部委員   Domestic

    2019.4 - 2021.3   

  • 情報処理学会   支部長   Domestic

    2017.4 - 2019.3   

  • 情報処理学会(九州支部)   支部委員   Domestic

    2016.4 - 2017.3   

  • 言語処理学会   Councilor   Domestic

    2010.4 - 2014.3   

  • 情報処理学会九州支部   Organizer   Domestic

    2002.5 - 2004.5   

▼display all

Academic Activities

  • 研究データエコシステム構築事業運営委員会/委員

    Role(s): Planning, management, etc., Review, evaluation

    国立情報学研究所(NII)  2024 - Present

     More details

    Type:Scientific advice/Review 

  • Conference chairs, a member of host meeting, session chair International contribution

    iConference2022  ( Online ) 2022.2 - 2022.3

     More details

    Type:Competition, symposium, etc. 

  • 研究データ基盤運営委員会/委員

    Role(s): Planning, management, etc., Review, evaluation

    国立情報学研究所(NII)  2020.10 - Present

     More details

    Type:Scientific advice/Review 

  • General Chair International contribution

    10th Asia Library and Information Research Group (ALIRG) Workshop  ( Fukuoka Japan ) 2018.12

     More details

    Type:Competition, symposium, etc. 

  • Workshopオーガナイザー International contribution

    20th International Conference on Asia-Pacific Digital Library (ICADL 2018)  ( Hamilton NewZealand ) 2018.11

     More details

    Type:Competition, symposium, etc. 

▼display all

Research Projects

  • NTCIR-18 SUSHI(Search Unseen Sources for Historical Information) Task Project International coauthorship

    2024.3

      More details

    Authorship:Coinvestigator(s) 

    NIIが主催する評価型のワークショップであるNTCIRに応募した検索タスクのプロジェクト.

  • Development of an advanced search system for documents in archives by integrating computational representations of information useful for searching documents

    Grant number:23KK0005  2023 - 2025

    Grants-in-Aid for Scientific Research  International Collaborative Research

    鈴木 釈規, 冨浦 洋一, 石田 栄美, 清水 敏之

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

    特定の組織が作成した特定の主題に関わる文書群を管理・保存するアーカイブズ機関では、高度な文書検索システムが整備されていない。本研究では、アーカイブズ機関で管理される文書を引用している学術文献や、一部電子化されている文書群から検索システムに有益な情報を観察調査により特定を行い、自動抽出手法の構築を行う。それらの情報から順序づけ・類似度計算を可能にする計算可能表現として変換し統合することで、アーカイブズ文書検索システム構築をする。またアーカイブズ機関における文献利用者の支援を達成できるかについて評価を行う。

    CiNii Research

  • 匂いの時空間揺らぎ情報に基づく人探索

    2022.6 - 2027.3

      More details

    Authorship:Coinvestigator(s) 

    科研費基盤(S)での研究プロジェクト(課題番号:22H04952)

  • Human tracing based on spatio-temporal fluctuation of odor

    Grant number:22H04952  2022 - 2026

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (S)

    林 健司, 中野 幸二, 冨浦 洋一, 興 雄司, 竪 直也, 佐々 文洋, 石田 寛

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

    匂いなどの揮発性化学物質情報を光情報に変換する光化学ナノプローブを2次元展開し、匂いの流れや痕跡などの空間分布を見ることができるデバイスを開発し、化学物質空間を高速・高感度、かつ高い空間分解能で可視化する。この化学イメージングデバイスは化学物質情報をハイパースペクトル情報に変換し、多種多様な匂い物質情報を網羅的に取得できる。さらに、開発したセンサデバイスの機能実証研究として、匂い情報キュレーションロボットを構築し、ガス源探索(重要例:危険物漏洩、災害現場での人探索)を実現する。

    CiNii Research

  • 嗅球糸球体層の活性パターン画像と分子パラメタに基づく物質の匂い情報の定量化

    Grant number:21K19796  2021.4 - 2025.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

    冨浦 洋一, 林 健司

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    感性情報である匂いを客観的に扱うには匂いを定量的に表す必要がある.本研究では匂いを定量化したものを匂いコードと呼ぶ.任意の匂い物質に対してこの匂いコードが求まれば,匂いの識別,匂いの類似性評価,匂いの合成,匂いセンサーの開発などに役立つ.
    本研究では,ラットに約300種類の匂い物質を嗅がせたときの嗅球の糸球体の活性状態を撮影した画像,分子の物理化学的な特性を数量化した匂い物質の分子記述子,SMILES等で表された分子構造,人による匂いの分類である匂い記述子などの情報を基に,任意の匂い物質に対する匂いコードを求める.

    CiNii Research

▼display all

Educational Activities

  • [Graduate School of Information Science and Electrical Engineering]
    Natural Language Processing I & II

    [Department of Library Science, Graduate School of Integrated Frontier Science]
     Mathematical Statistics, Library Science Project Team Learning I, Advanced Study on Library Science I, Advanced Study on Library Science II

Class subject

  • ライブラリーサイエンスPTLⅠ

    2024.10 - 2025.3   Second semester

  • 研究データ管理基礎

    2024.10 - 2025.3   Second semester

  • 数理統計

    2024.10 - 2025.3   Second semester

  • 離散数学Ⅱ(CM)

    2024.6 - 2024.8   Summer quarter

  • Natural Language Processing II

    2024.6 - 2024.8   Summer quarter

▼display all

FD Participation

  • 2024.11   Role:Participation   Title:【シス情FD】脳内シナプスの分子マッピングとその情報処理メカニズムの解明

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2023.12   Role:Speech   Title:研究データ管理・公開に係る部局説明会(農学研究院)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2023.12   Role:Speech   Title:研究データ管理・公開に係る部局説明会(比較社会文化研究院)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2023.12   Role:Speech   Title:研究データ管理・公開に係る部局説明会(総合理工学研究院)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2023.11   Role:Speech   Title:研究データ管理・公開に係る部局説明会(応用力学研究所)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2015  九州産業大学・情報科学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:前期 水曜日1時限

  • 2015  九州産業大学・工学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:後期 金曜日4,5時限

  • 2014  九州産業大学・情報科学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:前期 水曜日1時限

  • 2014  九州産業大学・工学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:後期 金曜日4時限

  • 2013  九州産業大学・情報科学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:前期 水曜日1時限

▼display all

Other educational activity and Special note

  • 2025  Class Teacher  クラス指導教員(2023年度入学生)

     詳細を見る

    クラス指導教員の代表として,複数の科目の実施を主導.
    また,担当学生との年2回の面談を実施.

  • 2024  Class Teacher  クラス指導教員(2023年度入学生)

     詳細を見る

    クラス指導教員の代表として,複数の科目の実施を主導.
    また,担当学生との年2回の面談を実施.

  • 2023  Class Teacher  クラス指導教員(2023年度入学生)

     詳細を見る

    クラス指導教員の代表として,複数の科目の実施を主導.
    また,担当学生との年2回の面談を実施.

  • 2008  Class Teacher  クラス担当(2008年度入学生)

Acceptance of Foreign Researchers, etc.

  • University of Maryland, College Park

    Acceptance period: 2024.3 - 2024.5  

    Nationality:United States

  • University of Maryland, College Park

    Acceptance period: 2023.10 - 2023.12  

    Nationality:United States