Updated on 2024/09/30

Information

 

写真a

 
BISE RYOMA
 
Organization
Faculty of Information Science and Electrical Engineering Department of Advanced Information Technology Professor
Data-Driven Innovation Initiative (Joint Appointment)
Education and Research Center for Mathematical and Data Science (Joint Appointment)
School of Engineering Department of Electrical Engineering and Computer Science(Joint Appointment)
Graduate School of Information Science and Electrical Engineering Department of Information Science and Technology(Joint Appointment)
Joint Graduate School of Mathematics for Innovation (Joint Appointment)
Title
Professor
Contact information
メールアドレス
Tel
0928023574
Profile
2000年4月-2002年3月  九州大学大学院システム情報科学府情報理学専攻(修士課程)修了 2002年4月―2015年9月  大日本印刷株式会社入社 (C&I IT研究所) 2008年7月―2010年12月  Carnegie Mellon大学Robotics研究所 出向 (客員研究員,supervisor:金出武雄教授 ) 2011年1月ー2015年9月  帰任:大日本印刷株式会社 研究開発センター リーダー 2012年4月ー2015年4月  東京大学大学院学際情報学府先端表現情報学コース(社会人博士,supervisor:佐藤洋一教授) 2015年5月        同学位取得 博士(学際情報学) 2015年10月ー2017年3月  国立情報学研究所 特任准教授(佐藤いまり研) 2017年4月ー2023年11月 九州大学大学院システム情報科学研究院情報知能工学部門 准教授(データサイエンス実践特別講座) 2023年12月ー現在    九州大学大学院システム情報科学研究院情報知能工学部門 教授(実世界ロボティクス講座) 兼任 2015年10月ー2019年3月  京都大学医学研究科外科学講座 乳腺外科学 客員研究員 2017年4月ー現在     国立情報学研究所 客員准教授 2017年10月ー現在     九州大学 数理・データサイエンス教育研究センター 多分野連携部門長(複担) 2017年10月ー現在    慶応義塾大学医学部解剖学講座 講師(非常勤)
External link

Degree

  • Interdisciplinary Information Studies

Research History

  • 2002年4月~2015年9月:大日本印刷株式会社(2011年よりテーマリーダー) 2008年7月~2010年12月:カーネギーメロン大学 ロボティクス研究所(出向)

    2002年4月~2015年9月:大日本印刷株式会社(2011年よりテーマリーダー) 2008年7月~2010年12月:カーネギーメロン大学 ロボティクス研究所(出向)

  • 2015年10月~2017年3月:国立情報学研究所 コンテンツ科学研究系 特任准教授

Research Interests・Research Keywords

  • Research theme:Computer Vision, Bioimage informatics, Biomedical Image Analysis, Pattern Recognition, Image recoginition, Image processing

    Keyword:Computer Vision, Bioimage informatics, Biomedical Image Analysis, Pattern Recognition, Image recoginition, Image processing

    Research period: 2017.4 - 2019.3

Papers

  • Effective Pseudo-Labeling based on Heatmap for Unsupervised Domain Adaptation in Cell Detection Reviewed International journal

    #H. Cho, #K. Nishimura, K. Watanabe, and @R. Bise

    Medical Image Analysis   79   102436 - 102449   2022.4   ISSN:1361-8415 eISSN:1361-8423

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.media.2022.102436

    Web of Science

    Scopus

    PubMed

  • Weakly Supervised Cell Instance Segmentation Under Various Conditions Reviewed International journal

    #Nishimura Kazuya, Wang, K.C., Watanabe, @Bise Ryoma

    Medical Image Analysis   2021.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.media.2021.102182

  • Soft and Self Constrained Clustering for Group-Based Labeling Reviewed International journal

    #Shota Harada, @Ryoma Bise, @Hideaki Hayashi, Kiyohito Tanaka, and @Seiichi Uchida

    Medical Image Analysis   2021.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.media.2021.102097

  • Weakly-Supervised Cell Tracking via Backward-and-Forward Propagation Reviewed International journal

    #K. Nishimura, #J. Hayashida, C. Wang, D.F.E. Ker, and @R. Bise

    16th European Conference on Computer Vision (ECCV2020), 2020   pp.104 - pp.121   2020.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: https://doi.org/10.1007/978-3-030-58610-2_7

    Other Link: https://link.springer.com/chapter/10.1007%2F978-3-030-58610-2_7#citeas

  • Negative Pseudo Labeling using Class Proportion for Semantic Segmentation in Pathology Reviewed International journal

    #H. Tokunaga, @B.K. Iwana, Y. Teramoto, A. Yoshizawa, and @R. Bise

    16th European Conference on Computer Vision (ECCV2020), 2020   2020.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • MPM: Joint Representation of Motion and Position Map for Cell Tracking Reviewed International journal

    #J. Hayashida, #K. Nishimura and @R. Bise

    IEEE CVPR2020   3822 - 3831   2020.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: https://doi.org/10.1109/CVPR42600.2020.00388

  • Adaptive Weighting Multi-Field-of-View CNN for Semantic Segmentation in Pathology Reviewed International journal

    H. Tokunaga, Y. Teramoto, A. Yoshizawa, R. Bise

    IEEE CVPR2019   2019.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/CVPR.2019.01288

  • Cell Detection From Redundant Candidate Regions Under Nonoverlapping Constraints Reviewed

    Ryoma Bise, Yoichi Sato

    IEEE Transactions on Medical Imaging   34 ( 7 )   1417 - 1427   2015.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/TMI.2015.2391095

  • Deep Bayesian active learning-to-rank with relative annotation for estimation of ulcerative colitis severity

    Kadota T., Hayashi H., Bise R., Tanaka K., Uchida S.

    Medical Image Analysis   97   103262   2024.10   ISSN:13618415

     More details

    Language:English   Publisher:Medical Image Analysis  

    Automatic image-based severity estimation is an important task in computer-aided diagnosis. Severity estimation by deep learning requires a large amount of training data to achieve a high performance. In general, severity estimation uses training data annotated with discrete (i.e., quantized) severity labels. Annotating discrete labels is often difficult in images with ambiguous severity, and the annotation cost is high. In contrast, relative annotation, in which the severity between a pair of images is compared, can avoid quantizing severity and thus makes it easier. We can estimate relative disease severity using a learning-to-rank framework with relative annotations, but relative annotation has the problem of the enormous number of pairs that can be annotated. Therefore, the selection of appropriate pairs is essential for relative annotation. In this paper, we propose a deep Bayesian active learning-to-rank that automatically selects appropriate pairs for relative annotation. Our method preferentially annotates unlabeled pairs with high learning efficiency from the model uncertainty of the samples. We prove the theoretical basis for adapting Bayesian neural networks to pairwise learning-to-rank and demonstrate the efficiency of our method through experiments on endoscopic images of ulcerative colitis on both private and public datasets. We also show that our method achieves a high performance under conditions of significant class imbalance because it automatically selects samples from the minority classes.

    DOI: 10.1016/j.media.2024.103262

    Scopus

    PubMed

  • A data augmentation approach that ensures the reliability of foregrounds in medical image segmentation

    Liu, XQ; Ono, K; Bise, R

    IMAGE AND VISION COMPUTING   147   2024.7   ISSN:0262-8856 eISSN:1872-8138

     More details

    Publisher:Image and Vision Computing  

    Medical image segmentation is an important task in medical imaging and diagnosis. Data augmentation can substantially improve the accuracy of medical image segmentation when the dataset has a small amount of medical images. However, the data augmentation methods for medical image are usually based on big models that require extensive search space. Furthermore, excessively complex models often have a heavy burden for the general healthcare organization or researcher. To address this problem, we propose a method of data augmentation that is simple to implement even for the general researcher and simple to transplant across various models. Here we introduce our new methods called KeepMask and KeepMix, which can be simply ported to a variety of models and provide high performance. These methods allow data augmentation without any effect on the target organ or lesion and can also be adapted to multi-class segmentation. KeepMask and KeepMix can not only perturb the background of an existing medical image but also add target organs that are not present to it and generate new images based on the image. In this paper, we performed our methods on both binary class datasets and multi-class datasets and obtained better performance. We conducted numerous experiments showing the predicted segmentation images using our proposed methods obtained more accurate boundaries.

    DOI: 10.1016/j.imavis.2024.105056

    Web of Science

    Scopus

  • Development of an automatic surgical planning system for high tibial osteotomy using artificial intelligence Reviewed International journal

    Kazuki Miyama, Takenori Akiyama, Ryoma Bise, Shunsuke Nakamura, Yasuharu Nakashima, Seiichi Uchida

    The Knee   48   128 - 137   2024.6   ISSN:0968-0160 eISSN:1873-5800

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.knee.2024.03.008

    Web of Science

    Scopus

    PubMed

  • A Deep Learning- Based Assay for Programmed Death Ligand 1 Immunohistochemistry Scoring in Non- Small Cell Lung Carcinoma: Does it Help Pathologists Score?

    Ito, H; Yoshizawa, A; Terada, K; Nakakura, A; Rokutan-Kurata, M; Sugimoto, T; Nishimura, K; Nakajima, N; Sumiyoshi, S; Hamaji, M; Menju, T; Date, H; Morita, S; Bise, R; Haga, H

    MODERN PATHOLOGY   37 ( 6 )   100485   2024.6   ISSN:0893-3952 eISSN:1530-0285

     More details

    Language:English   Publisher:Modern Pathology  

    Several studies have developed various artificial intelligence (AI) models for immunohistochemical analysis of programmed death ligand 1 (PD-L1) in patients with non–small cell lung carcinoma; however, none have focused on specific ways by which AI-assisted systems could help pathologists determine the tumor proportion score (TPS). In this study, we developed an AI model to calculate the TPS of the PD-L1 22C3 assay and evaluated whether and how this AI-assisted system could help pathologists determine the TPS and analyze how AI-assisted systems could affect pathologists’ assessment accuracy. We assessed the 4 methods of the AI-assisted system: (1 and 2) pathologists first assessed and then referred to automated AI scoring results (1, positive tumor cell percentage; 2, positive tumor cell percentage and visualized overlay image) for final confirmation, and (3 and 4) pathologists referred to the automated AI scoring results (3, positive tumor cell percentage; 4, positive tumor cell percentage and visualized overlay image) while determining TPS. Mixed-model analysis was used to calculate the odds ratios (ORs) with 95% CI for AI-assisted TPS methods 1 to 4 compared with pathologists’ scoring. For all 584 samples of the tissue microarray, the OR for AI-assisted TPS methods 1 to 4 was 0.94 to 1.07 and not statistically significant. Of them, we found 332 discordant cases, on which the pathologists’ judgments were inconsistent; the ORs for AI-assisted TPS methods 1, 2, 3, and 4 were 1.28 (1.06-1.54; P = .012), 1.29 (1.06-1.55; P = .010), 1.28 (1.06-1.54; P = .012), and 1.29 (1.06-1.55; P = .010), respectively, which were statistically significant. For discordant cases, the OR for each AI-assisted TPS method compared with the others was 0.99 to 1.01 and not statistically significant. This study emphasized the usefulness of the AI-assisted system for cases in which pathologists had difficulty determining the PD-L1 TPS.

    DOI: 10.1016/j.modpat.2024.100485

    Web of Science

    Scopus

    PubMed

  • Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states

    Tomimatsu, K; Fujii, T; Bise, R; Hosoda, K; Taniguchi, Y; Ochiai, H; Ohishi, H; Ando, K; Minami, R; Tanaka, K; Tachibana, T; Mori, S; Harada, A; Maehara, K; Nagasaki, M; Uchida, S; Kimura, H; Narita, M; Ohkawa, Y

    NATURE COMMUNICATIONS   15 ( 1 )   3657   2024.5   eISSN:2041-1723

     More details

    Language:English   Publisher:Nature Communications  

    Cell states are regulated by the response of signaling pathways to receptor ligand-binding and intercellular interactions. High-resolution imaging has been attempted to explore the dynamics of these processes and, recently, multiplexed imaging has profiled cell states by achieving a comprehensive acquisition of spatial protein information from cells. However, the specificity of antibodies is still compromised when visualizing activated signals. Here, we develop Precise Emission Canceling Antibodies (PECAbs) that have cleavable fluorescent labeling. PECAbs enable high-specificity sequential imaging using hundreds of antibodies, allowing for reconstruction of the spatiotemporal dynamics of signaling pathways. Additionally, combining this approach with seq-smFISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system can serve as a comprehensive platform for analyzing complex cell processes.

    DOI: 10.1038/s41467-024-47989-9

    Web of Science

    Scopus

    PubMed

  • Domain generalization for pathological images using the storage period information Reviewed International journal

    Yuki Shigeyasu, Shota Harada, Akihiko Yoshizawa, Kazuhiro Terada, Naoki Nakazima, Mariyo Kurata, Hiroyuki Abe, Tetsuo Ushiku, Ryoma Bise

    IEEE International Symposium on Biomedical Imaging (ISBI)   2024.5

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Artificial intelligence quantifying endoscopic severity of ulcerative colitis in gradation scale(タイトル和訳中)

    Takabayashi Kaoru, Kobayashi Taku, Matsuoka Katsuyoshi, Levesque Barrett G., Kawamura Takuji, Tanaka Kiyohito, Kadota Takeaki, Bise Ryoma, Uchida Seiichi, Kanai Takanori, Ogata Haruhiko

    Digestive Endoscopy   36 ( 5 )   582 - 590   2024.5   ISSN:0915-5635

     More details

    Language:English   Publisher:John Wiley & Sons Australia, Ltd  

  • Precise immunofluorescence canceling enables highly multiplexed imaging Reviewed International journal

    Kosuke Tomimatsu, Takeru Fujii, Ryoma Bise, Kazufumi Hosoda, Yosuke Taniguchi, Hiroshi Ochiai, Hiroaki Ohishi, Kanta Ando, Ryoma Minami, Kaori Tanaka, Taro Tachibana, Seiichi Mori, Akihito Harada, Kazumitsu Maehara, Masao Nagasaki, Seiichi Uchida, Hiroshi Kimura, Masashi Narita, Yasuyuki Ohkawa

    Nature Communications   2024.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Counting Network for Learning from Majority Label Reviewed International journal

    Kaito Shiku, Shinnosuke Matsuo, Daiki Suehiro, and Ryoma Bise

    IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)   7025 - 7029   2024.4   ISSN:15206149 ISBN:9798350344851

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ICASSP48485.2024.10448425

    Scopus

  • Viable tumor cell density after neoadjuvant chemotherapy assessed using deep learning model reflects the prognosis of osteosarcoma Reviewed International journal

    Kengo Kawaguchi, Kazuki Miyama, Makoto Endo, @Ryoma Bise, Kenichi Kohashi, Takeshi Hirose, Akira Nabeshima, Toshifumi Fujiwara, Yoshihiro Matsumoto, Yoshinao Oda, and Yasuharu Nakashima

    Precision Oncology   8 ( 16 )   16   2024.1   ISSN:2397-768X eISSN:2397-768X

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41698-024-00515-y

    Web of Science

    Scopus

    PubMed

  • Proportion Estimation by Masked Learning from Label Proportion

    Okuo, T; Nishimura, K; Ito, H; Terada, K; Yoshizawa, A; Bise, R

    DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, DALI 2023   14379   117 - 126   2024   ISSN:0302-9743 ISBN:978-3-031-58170-0 eISSN:1611-3349

     More details

    Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    The PD-L1 rate, the number of PD-L1 positive tumor cells over the total number of all tumor cells, is an important metric for immunotherapy. This metric is recorded as diagnostic information with pathological images. In this paper, we propose a proportion estimation method with a small amount of cell-level annotation and proportion annotation, which can be easily collected. Since the PD-L1 rate is calculated from only ‘tumor cells’ and not using ‘non-tumor cells’, we first detect tumor cells with a detection model. Then, we estimate the PD-L1 proportion by introducing a masking technique to ‘learning from label proportion’. In addition, we propose a weighted focal proportion loss to address data imbalance problems. Experiments using clinical data demonstrate the effectiveness of our method. Our method achieved the best performance in comparisons.

    DOI: 10.1007/978-3-031-58171-7_12

    Web of Science

    Scopus

  • Domain Generalization for Pathological Images Using the Storage Period Information

    Shigeyasu Y., Harada S., Yoshizawa A., Terada K., Nakazima N., Kurata M., Abe H., Ushiku T., Bise R.

    Proceedings - International Symposium on Biomedical Imaging   2024   ISSN:19457928 ISBN:9798350313338

     More details

    Publisher:Proceedings - International Symposium on Biomedical Imaging  

    This paper brings attention to a new issue in the development of datasets for AI-based pathological image analysis: the domain shift problem stemming from the storage period until digital scanning. Pathological slides that were sliced and stained in the past may also be scanned to prepare a dataset for AI in addition to the newly stained tissue. However, it leads to changes in their appearance and causes domain shift. We propose a domain generalization method that leverages the storage period as sub-domains. Furthermore, we introduce the ordinal adversarial loss that can perform well for ordinal domain classes. The experiments show the effectiveness of using the storage period as a sub-domain and the ordinal adversarial loss.

    DOI: 10.1109/ISBI56570.2024.10635214

    Scopus

  • Deep Learning for Predicting Effect of Neoadjuvant Therapies in Non?small Cell Lung Carcinomas With Histologic Images Reviewed International journal

    Kazuhiro Terada, Akihiko Yoshizawa, #Xiaoqing Liu, Hiroaki Ito, Masatsugu Hamaji, Toshi Menju, Hiroshi Date, @Ryoma Bise, and Hironori Haga

    Modern Pathology   36 ( 11 )   100302   2023.11   ISSN:0893-3952 eISSN:1530-0285

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.modpat.2023.100302

    Web of Science

    Scopus

    PubMed

  • MixBag: Bag-Level Data Augmentation for Learning from Label Proportions Reviewed International journal

    #Takanori Asanomi, #Shinnosuke Matsuo, @Daiki Suehiro and @Ryoma Bise

    2023 IEEE/CVF International Conference on Computer Vision (ICCV)   16524 - 16533   2023.10   ISSN:1550-5499 ISBN:979-8-3503-0718-4

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ICCV51070.2023.01519

    Web of Science

    Scopus

  • Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping Reviewed International journal

    Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping

    International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI2023)   14227   483 - 492   2023.10   ISSN:0302-9743 ISBN:978-3-031-43992-6 eISSN:1611-3349

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-031-43993-3_47

    Web of Science

    Scopus

  • Proportion Estimation by Masked Learning from Label Proportion Reviewed International journal

    #Takumi Okuo, #Kazuya Nishimura, Hiroaki Ito, Kazuhiro Terada, Akihiko Yoshizawa, and @Ryoma Bise

    DALI, Workshop on International Conference on Medical Image Computing and Computer-Assisted Intervention   2023.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Artificial intelligence quantifying endoscopic severity of ulcerative colitis in gradation scale Reviewed International journal

    Kaoru Takabayashi, Taku Kobayashi, Katsuyoshi Matsuoka, Barrett G Levesque, Takuji Kawamura, Kiyohito Tanaka, Takeaki Kadota, @Ryoma Bise, @Seiichi Uchida, Takanori Kanai, and Haruhiko Ogata

    Digestive Endoscopy   36 ( 5 )   582 - 590   2023.9   ISSN:0915-5635 eISSN:1443-1661

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/den.14677

    Web of Science

    Scopus

    PubMed

  • Cell Tracking in C. elegans with Cell Position Heatmap-Based Alignment and Pairwise Detection Reviewed International journal

    #Kaito Shiku, #Hiromitsu Shirai, @Takeshi Ishihara, and @Ryoma Bise

    International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)   2023.7   ISSN:1557-170X ISBN:979-8-3503-2447-1 eISSN:1558-4615

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/EMBC40787.2023.10340619

    Web of Science

    Scopus

    PubMed

  • Analysis of optical absorption of photoaged human skin using a high-frequency illumination microscopy analysis system Reviewed International journal

    Yuki Ogura, Mihoko Shimano, Ryoma Bise, Toyonobu Yamashita, Chika Katagiri, Imari Sato

    Experimental Dermatology   32 ( 9 )   1402 - 1411   2023.6   ISSN:0906-6705 eISSN:1600-0625

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/exd.14840

    Web of Science

    Scopus

    PubMed

  • Learning From Label Proportion with Online Pseudo-Label Decision by Regret Minimization Reviewed International journal

    #Shinnosuke Matsuo, @Ryoma Bise, @Seiichi Uchida, Daiki Suehiro

    IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)   2023.6   ISSN:15206149

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ICASSP49357.2023.10097069

    Scopus

  • Spatial Distribution-based Pseudo Labeling for Pathological Image Segmentation Reviewed International journal

    #Yuki Shigeyasu, Shota Harada, Kengo Araki, Akihiko Yoshizawa, Kazuhiro Terada, @Ryoma Bise

    IEEE International Symposium on Biomedical Imaging (ISBI)   2023.4

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Cluster-Guided Semi-Supervised Domain Adaptation for Imbalanced Medical Image Classification Reviewed International journal

    Shota Harada, @Ryoma Bise, Kengo Araki, Akihiko Yoshizawa, Kazuhiro Terada, Mariyo Kurata, Naoki Nakajima, Hiroyuki Abe, Tetsuo Ushiku, @Seiichi Uchida

    IEEE International Symposium on Biomedical Imaging (ISBI)   2023.4

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Mixing Data Augmentation with Preserving Foreground Regions in Medical Image Segmentation Reviewed International journal

    #Xiaoqing Liu, @Kenji Ono, @Ryoma Bise

    IEEE International Symposium on Biomedical Imaging (ISBI)   2023.4

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Cluster Entropy: Active Domain Adaptation in Pathological Image Segmentation Reviewed International journal

    #Xiaoqing Liu, Kengo Araki, Shota Harada, Akihiko Yoshizawa, Kazuhiro Terada, Mariyo Kurata, Naoki Nakajima, Hiroyuki Abe, Tetsuo Ushiku, @Ryoma Bise

    IEEE International Symposium on Biomedical Imaging (ISBI)   2023.4

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Development and Examination of a Convolutional Neural Network System to Evaluate the Therapeutic Effect of Neoadjuvant Therapy on Non-small Cell Lung Carcinoma Cases

    Terada, K; Yoshizawa, A; Haga, H; Bise, R; Liu, XQ

    LABORATORY INVESTIGATION   103 ( 3 )   S1665 - S1666   2023.3   ISSN:0023-6837 eISSN:1530-0307

     More details

  • Artificial Intelligence Quantifying Endoscopic Severity of Ulcerative Colitis in Gradation Scale

    Takabayashi, K; Kobayashi, T; Matsuoka, K; Levesque, BG; Kawamura, T; Tanaka, K; Kadota, T; Bise, R; Uchida, S; Kanai, T; Ogata, H

    JOURNAL OF CROHNS & COLITIS   17   I151 - I152   2023.2   ISSN:1873-9946 eISSN:1876-4479

     More details

  • Multi-Frame Attention With Feature-Level Warping for Drone Crowd Tracking Reviewed International journal

    #Takanori Asanomi, #Kazuya Nishimura, @Ryoma Bise

    IEEE/CVF Winter Conference on Applications of Computer Vision   1664 - 1673   2023.1   ISSN:2472-6737 ISBN:978-1-6654-9346-8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/WACV56688.2023.00171

    Web of Science

    Scopus

  • Weakly Supervised Cell-Instance Segmentation With Two Types of Weak Labels by Single Instance Pasting Reviewed International journal

    #Kazuya Nishimura, @Ryoma Bise

    IEEE/CVF Winter Conference on Applications of Computer Vision   3185 - 3194   2023.1   ISSN:2472-6737 ISBN:978-1-6654-9346-8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/WACV56688.2023.00320

    Web of Science

    Scopus

  • SPATIAL DISTRIBUTION-BASED PSEUDO LABELING FOR PATHOLOGICAL IMAGE SEGMENTATION

    Shigeyasu, Y; Araki, K; Harada, S; Yoshizawa, A; Terada, K; Bise, R

    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI   2023-April   2023   ISSN:1945-7928 ISBN:978-1-6654-7358-3

     More details

    Publisher:Proceedings - International Symposium on Biomedical Imaging  

    This paper proposes a semi-supervised pathological image segmentation method that can improve the segmentation using a large amount of unlabeled data. Typical pseudo labeling methods select pseudo labels from unlabeled data to be used for re-training based on the confidence of each patch. However, the initial estimation is not accurate, so the pseudo labels contain many inaccurate labels. This may affect the segmentation performance. The highlight of this study is that we avoid selecting incorrect pseudo labels by introducing a spatial distribution model in a whole slide image. This is based on the assumption that a tumor region forms a cluster in tissue. This improves pseudo label selection and segmentation performance. Experimental results demonstrate the effectiveness of our method, where our method achieved the best segmentation performance in comparison.

    DOI: 10.1109/ISBI53787.2023.10230407

    Web of Science

    Scopus

  • Spatial Distribution-based Pseudo Labeling for Pathological Image Segmentation Reviewed

    吉澤 明彦, 備瀬 竜馬

    IEEE International Symposium on Biomedical Imaging (ISBI) 2023   NA   2023

     More details

  • MIXING DATA AUGMENTATION WITH PRESERVING FOREGROUND REGIONS IN MEDICAL IMAGE SEGMENTATION

    Liu, XQ; Ono, K; Bise, R

    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI   2023-April   2023   ISSN:1945-7928 ISBN:978-1-6654-7358-3

     More details

    Publisher:Proceedings - International Symposium on Biomedical Imaging  

    The development of medical image segmentation using deep learning can significantly support doctors' diagnoses. Deep learning needs large amounts of data for training, which also requires data augmentation to extend diversity for preventing overfitting. However, the existing methods for data augmentation of medical image segmentation are mainly based on models which need to update parameters and cost extra computing resources. We proposed data augmentation methods designed to train a high-accuracy deep learning network for medical image segmentation. The proposed data augmentation approaches are called KeepMask and KeepMix, which can create medical images by better identifying the boundary of the organ with no more parameters. Our methods achieved better performance and obtained more precise boundaries for medical image segmentation on datasets. The dice coefficient of our methods achieved 94.15% (3.04% higher than baseline) on CHAOS and 74.70% (5.25% higher than baseline) on MSD spleen with Unet.

    DOI: 10.1109/ISBI53787.2023.10230495

    Web of Science

    Scopus

  • Mixing Data Augmentation with Preserving Foreground Regions in Medical Image Segmentation Reviewed

    備瀬 竜馬

    IEEE International Symposium on Biomedical Imaging (ISBI) 2023   NA   2023

     More details

  • Learning from Label Proportion with Online Pseudo-Label Decision by Regret Minimization Reviewed

    備瀬 竜馬, 末廣 大貴

    IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023)   NA   2023

     More details

  • CLUSTER-GUIDED SEMI-SUPERVISED DOMAIN ADAPTATION FOR IMBALANCED MEDICAL IMAGE CLASSIFICATION

    Harada, S; Bise, R; Araki, K; Yoshizawa, A; Terada, K; Kurata, M; Nakajima, N; Abe, H; Ushiku, T; Uchida, S

    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI   2023-April   2023   ISSN:1945-7928 ISBN:978-1-6654-7358-3

     More details

    Publisher:Proceedings - International Symposium on Biomedical Imaging  

    Semi-supervised domain adaptation is a technique to build a classifier for a target domain by modifying a classifier in another (source) domain using many unlabeled samples and a small number of labeled samples from the target domain. In this paper, we develop a semi-supervised domain adaptation method, which has robustness to class-imbalanced situations, which are common in medical image classification tasks. For robustness, we propose a weakly-supervised clustering pipeline to obtain high-purity clusters and utilize the clusters in representation learning for domain adaptation. The proposed method showed state-of-the-art performance in the experiment using severely class-imbalanced pathological image patches.

    DOI: 10.1109/ISBI53787.2023.10230451

    Web of Science

    Scopus

  • Cluster-Guided Semi-Supervised Domain Adaptation for Imbalanced Medical Image Classification Reviewed

    備瀬 竜馬

    IEEE International Symposium on Biomedical Imaging (ISBI) 2023   NA   2023

     More details

  • CLUSTER ENTROPY: ACTIVE DOMAIN ADAPTATION IN PATHOLOGICAL IMAGE SEGMENTATION

    Liu, XQ; Araki, K; Harada, S; Yoshizawa, A; Terada, K; Kurata, M; Nakajima, N; Abe, H; Ushiku, T; Bise, R

    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI   2023-April   2023   ISSN:1945-7928 ISBN:978-1-6654-7358-3

     More details

    Publisher:Proceedings - International Symposium on Biomedical Imaging  

    The domain shift in pathological segmentation is an important problem, where a network trained by a source domain (collected at a specific hospital) does not work well in the target domain (from different hospitals) due to the different image features. Due to the problems of class imbalance and different class prior of pathology, typical unsupervised domain adaptation methods do not work well by aligning the distribution of source domain and target domain. In this paper, we propose a cluster entropy for selecting an effective whole slide image (WSI) that is used for semi-supervised domain adaptation. This approach can measure how the image features of the WSI cover the entire distribution of the target domain by calculating the entropy of each cluster and can significantly improve the performance of domain adaptation. Our approach achieved competitive results against the prior arts on datasets collected from two hospitals.

    DOI: 10.1109/ISBI53787.2023.10230359

    Web of Science

    Scopus

  • Cluster Entropy: Active Domain Adaptation in Pathological Image Segmentation Reviewed

    備瀬 竜馬

    IEEE International Symposium on Biomedical Imaging (ISBI) 2023   NA   2023

     More details

  • Cell Tracking in C. Elegans with Cell Position Heatmap-Based Alignment and Pairwise Detection Reviewed

    備瀬 竜馬

    International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2023   NA   2023

     More details

  • Deep learning-based automatic-bone-destruction-evaluation system using contextual information from other joints

    Miyama, K; Bise, R; Ikemura, S; Kai, KZ; Kanahori, M; Arisumi, S; Uchida, T; Nakashima, Y; Uchida, S

    ARTHRITIS RESEARCH & THERAPY   24 ( 1 )   227   2022.10   ISSN:1478-6354 eISSN:1478-6362

     More details

    Language:English   Publisher:Arthritis Research and Therapy  

    Background: X-ray images are commonly used to assess the bone destruction of rheumatoid arthritis. The purpose of this study is to propose an automatic-bone-destruction-evaluation system fully utilizing deep neural networks (DNN). This system detects all target joints of the modified Sharp/van der Heijde score (SHS) from a hand X-ray image. It then classifies every target joint as intact (SHS = 0) or non-intact (SHS ≥ 1). Methods: We used 226 hand X-ray images of 40 rheumatoid arthritis patients. As for detection, we used a DNN model called DeepLabCut. As for classification, we built four classification models that classify the detected joint as intact or non-intact. The first model classifies each joint independently, whereas the second model does it while comparing the same contralateral joint. The third model compares the same joint group (e.g., the proximal interphalangeal joints) of one hand and the fourth model compares the same joint group of both hands. We evaluated DeepLabCut’s detection performance and classification models’ performances. The classification models’ performances were compared to three orthopedic surgeons. Results: Detection rates for all the target joints were 98.0% and 97.3% for erosion and joint space narrowing (JSN). Among the four classification models, the model that compares the same contralateral joint showed the best F-measure (0.70, 0.81) and area under the curve of the precision-recall curve (PR-AUC) (0.73, 0.85) regarding erosion and JSN. As for erosion, the F-measure and PR-AUC of this model were better than the best of the orthopedic surgeons. Conclusions: The proposed system was useful. All the target joints were detected with high accuracy. The classification model that compared the same contralateral joint showed better performance than the orthopedic surgeons regarding erosion.

    DOI: 10.1186/s13075-022-02914-7

    Web of Science

    Scopus

    PubMed

  • Deep learning-based automatic-bone-destruction-evaluation system using contextual information from other joints Reviewed International journal

    #Kazuki Miyama, @Ryoma Bise, @Satoshi Ikemura, @Kazuhiro Kai, @Masaya Kanahori, @Shinkichi Arisumi, @Taisuke Uchida, @Yasuharu Nakashima, @Seiichi Uchida

    Arthritis Research & Therapy   24 ( 1 )   2022.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1186/s13075-022-02914-7

  • Unsupervised Deep Robust Non-Rigid Alignment by Low-Rank Loss and Multi-Input Attention Reviewed International journal

    #Takanori Asanomi, #Kazuya Nishimura, #Heon Song, #Junya Hayashida, Hiroyuki Sekiguchi, Takayuki Yagi, Imari Sato, and @Ryoma Bise

    International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI2022)   2022.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Deep Bayesian Active-learning-to-rank for Endoscopic Image Data Reviewed International journal

    #T. Kadota, @H Hayashi, @R Bise, K Tanaka, @S Uchida

    26th Conference on Medical Image Understanding and Analysis 2022   2022.7

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Multi-Class Cell Detection Using Modified Self-Attention Reviewed International journal

    #T. Sugimoto, H. Ito, Y. Teramoto, A. Yoshizawa, and @R. Bise

    IEEE CVPR Workshop CVMI   2022.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Automatic Estimation of Ulcerative Colitis Severity by Learning to Rank With Calibration Reviewed International journal

    #T. Kadota, #K Abe, @R Bise, T Kawamura, N Sakiyama, K Tanaka, @S Uchida

    IEEE Access   10 ( 10 )   25688 - 25695   2022.3   ISSN:2169-3536

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/ACCESS.2022.3155769

    Web of Science

    Scopus

  • Consistent Cell Tracking in Multi-Frames with Spatio-Temporal Context by Object-Level Warping Loss Reviewed International journal

    #J Hayashida, #K Nishimura, @R Bise

    IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)   1727 - 1736   2022.1   ISSN:2472-6737 ISBN:978-1-6654-0915-5

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/WACV51458.2022.00182

    Web of Science

    Scopus

  • AUTOMATIC GENERATION OF REALISTIC CITY IMAGES FROM RARE DATASET USING GAN ENHANCED WITH TRANSFER LEARNING Reviewed

    SHIBATA Yosuke, MACHIDA Tomoya, NISHIMURA Kazuya, BISE Ryoma, ASAI Mistuteru

    Intelligence, Informatics and Infrastructure   3 ( J2 )   551 - 557   2022   eISSN:24359262

     More details

    Language:Japanese   Publisher:Japan Society of Civil Engineers  

    <p>There has been a growing demand to strengthen existing disaster prevention education tobe prepared for the huge tsunami expected to occur in the near future. Virtual reality, which allows people to virtually experience natural disasters, has a strong potential in fostering disaster awareness among citizens. However, it requires enormous human and time resources to map the texture of structures to urban area-imitating virtual space. On the other hand, pix2pixHD proposed by Wang et al. can generate high-resolution synthetic images by learning from reference images, label data, and object boundary data. In this study, we applied pix2pixHD and transfer learning, which diverts networks trained on other similar domains, to verify texture mapping of urban areas in Japan from a limited set of image data.</p>

    DOI: 10.11532/jsceiii.3.j2_551

    CiNii Research

  • Photoacoustic Imaging Technology and Applications in Medicine

    Bise Ryoma

    Medical Imaging and Information Sciences   39 ( 2 )   14 - 18   2022   ISSN:09101543 eISSN:18804977

     More details

    Language:Japanese   Publisher:MEDICAL IMAGING AND INFORMATION SCIENCES  

    <p>Phoacouastic (PA) imaging has been gaining attention as a new imaging modality that can non-invasively visualize blood vessels inside biological tissues. In this paper, the reconstruction process of PA, and its technical issues. In the process of imaging large body parts through multi-scan fusion, alignment turns out to be an important issue, since body motion degrades image quality. In this paper, we carefully examine the characteristics of PA images and propose a novel registration method that achieves better alignment while effectively decomposing the shot volumes into low-rank foreground (blood vessels), dense background (noise), and sparse complement (corruption) components on the basis of the PA characteristics. The results of experiments using a challenging real dataset demonstrate the efficacy of the proposed method, which significantly improved image quality, and had the best alignment accuracy among the state-of-the-art methods tested. We also introduce several clinical application of photoacoustic imaging, such as planning of flap surgery.</p>

    DOI: 10.11318/mii.39.14

    CiNii Research

  • Unsupervised Deep Non-rigid Alignment by Low-Rank Loss and Multi-input Attention

    Asanomi, T; Nishimura, K; Song, H; Hayashida, J; Sekiguchi, H; Yagi, T; Sato, I; Bise, R

    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI   13436   185 - 195   2022   ISSN:0302-9743 ISBN:978-3-031-16445-3 eISSN:1611-3349

     More details

    Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    We propose a deep low-rank alignment network that can simultaneously perform non-rigid alignment and noise decomposition for multiple images despite severe noise and sparse corruptions. To address this challenging task, we introduce a low-rank loss in deep learning under the assumption that a set of well-aligned, well-denoised images should be linearly correlated, and thus, that a matrix consisting of the images should be low-rank. This allows us to remove the noise and corruption from input images in a self-supervised learning manner (i.e., without requiring supervised data). In addition, we introduce multi-input attention modules into Siamese U-nets in order to aggregate the corruption information from the set of images. To the best of our knowledge, this is the first attempt to introduce a low-rank loss for deep learning-based non-rigid alignment. Experiments using both synthetic data and real medical image data demonstrate the effectiveness of the proposed method. The code will be publicly available in https://github.com/asanomitakanori/Unsupervised-Deep-Non-Rigid-Alignment-by-Low-Rank-Loss-and-Multi-Input-Attention.

    DOI: 10.1007/978-3-031-16446-0_18

    Web of Science

    Scopus

  • Multi-Class Cell Detection Using Modified Self-Attention

    Sugimoto, T; Ito, H; Teramoto, Y; Yoshizawa, A; Bise, R

    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022   2022-June   1854 - 1862   2022   ISSN:2160-7508 ISBN:978-1-6654-8739-9

     More details

    Publisher:IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops  

    Multi-class cell detection (cancer or non-cancer) from a whole slide image (WSI) is an important task for pathological diagnosis. Cancer and non-cancer cells often have a similar appearance, so it is difficult even for experts to classify a cell from a patch image of individual cells. They usually identify the cell type not only on the basis of the appearance of a single cell but also on the context of the surrounding cells. For using such information, we propose a multi-class cell-detection method that introduces a modified self-attention to aggregate the surrounding image features of both classes. Experimental results demonstrate the effectiveness of the proposed method; our method achieved the best performance compared with a method, which simply uses the standard self-attention method.

    DOI: 10.1109/CVPRW56347.2022.00202

    Web of Science

    Scopus

  • Deep Bayesian Active-Learning-to-Rank for Endoscopic Image Data

    Kadota, T; Hayashi, H; Bise, R; Tanaka, K; Uchida, S

    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022   13413   609 - 622   2022   ISSN:0302-9743 ISBN:978-3-031-12052-7 eISSN:1611-3349

     More details

    Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    Automatic image-based disease severity estimation generally uses discrete (i.e., quantized) severity labels. Annotating discrete labels is often difficult due to the images with ambiguous severity. An easier alternative is to use relative annotation, which compares the severity level between image pairs. By using a learning-to-rank framework with relative annotation, we can train a neural network that estimates rank scores that are relative to severity levels. However, the relative annotation for all possible pairs is prohibitive, and therefore, appropriate sample pair selection is mandatory. This paper proposes a deep Bayesian active-learning-to-rank, which trains a Bayesian convolutional neural network while automatically selecting appropriate pairs for relative annotation. We confirmed the efficiency of the proposed method through experiments on endoscopic images of ulcerative colitis. In addition, we confirmed that our method is useful even with the severe class imbalance because of its ability to select samples from minor classes automatically.

    DOI: 10.1007/978-3-031-12053-4_45

    Web of Science

    Scopus

  • Patch-Based Cervical Cancer Segmentation using Distance from Boundary of Tissue Reviewed International journal

    International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)   3328 - 3331   2021.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/EMBC46164.2021.9630809

  • Unsupervised Body Hair Detection by Positive-Unlabeled Learning in Photoacoustic Image Reviewed International journal

    #R Kikkawa, H Kajita, N Imanishi, S Aiso, @R Bise

    International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)   3349 - 3352   2021.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/EMBC46164.2021.9630720

  • Cell Detection in Domain Shift Problem Using Pseudo-Cell-Position Heatmap Reviewed International journal

    #Hyeonwoo Cho, #Kazuya Nishimura, Kazuhide Watanabe, and @Ryoma Bise

    International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI2021)   2021.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Order-Guided Disentangled Representation Learning for Ulcerative Colitis Classification with Limited Labels Reviewed International journal

    #Shota Harada, @Ryoma Bise, @Hideaki Hayashi, Kiyohito Tanaka and @Seiichi Uchida

    International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI2021)   471 - 480   2021.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: https://doi.org/10.1007/978-3-030-87196-3_44

  • Semi-supervised Cell Detection in Time-Lapse Images Using Temporal Consistency Invited Reviewed International journal

    International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI2021)   373 - 383   2021.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-030-87237-3_36

  • Cell Detection from Imperfect Annotation by Pseudo Label Selection Using P-classification Invited Reviewed International journal

    International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI2021)   425 - 434   2021.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-030-87237-3_41

  • Imaging Scattering Characteristics of Tissue in Transmitted Microscopy Reviewed International journal

    M. Shimano, Y. Asano, S. Ishihara, @R. Bise, and I. Sato

    International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI2020)   2020.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Light-sheet microscopy-based 3D single-cell tracking assay revealed a correlation between cell cycle and the beginning of endodermal cell internalization in zebrafish early development Reviewed International journal

    A. Kondow, K. Ohnuma, Y. Kamei, A. Taniguchi, @R. Bise, Y. Sato, H. Yamaguchi, S. Nonaka, K. Hashimoto

    Development Growth and Differentiation, 2020   2020.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Spatial-Temporal Mitosis Detection in Phase-Contrast Microscopy Via Likelihood Map Estimation by 3DCNN Reviewed International journal

    #K. Nishimura, and @R. Bise

    42st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)   2020.7

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Combined multiphoton imaging and biaxial tissue extension for quantitative analysis of geometric fiber organization in human reticular dermis Reviewed

    Maho Ueda, Susumu Saito, Teruasa Murata, Tomoko Hirano, Ryoma Bise, Kenji Kabashima, Shigehiko Suzuki

    Scientific reports   9 ( 1 )   2019.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41598-019-47213-5

  • Cell tracking with deep learning for cell detection and motion estimation in low-frame-rate Reviewed International journal

    Junya Hayashida, Ryoma Bise

    22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019   397 - 405   2019.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-030-32239-7_44

  • Efficient Soft-Constrained Clustering for Group-Based Labeling Reviewed International journal

    Ryoma Bise, Kentaro Abe, Hideaki Hayashi, Kiyohito Tanaka, Seiichi Uchida

    22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019   421 - 430   2019.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-030-32254-0_47

  • Weakly supervised cell instance segmentation by propagating from detection response Reviewed International journal

    Kazuya Nishimura, Dai Fei Elmer Ker, Ryoma Bise

    22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019   649 - 657   2019.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-030-32239-7_72

  • Endoscopic Image Clustering with Temporal Ordering Information Based on Dynamic Programming Reviewed International journal

    #S. Harada, @H. Hayashi, @R. Bise, K. Tanaka, Q. Meng, and @S. Uchida

    41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019.   2019.7

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/EMBC.2019.8857011

  • Scribbles for Metric Learning in Histological Image Segmentation Reviewed International journal

    D. Harada, R. Bise, H. Tokunaga, W. Ohyama, S. Oka, T. Fujimori, and S. Uchida

    41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019.   2019.7

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/EMBC.2019.8856465

  • Semi-supervised learning with structured knowledge for body hair detection in photoacoustic image Reviewed International journal

    Ryo Kikkawa, Hiroyuki Sekiguchi, Itaru Tsuge, Susumu Saito, Ryoma Bise

    16th IEEE International Symposium on Biomedical Imaging, ISBI 2019   1411 - 1415   2019.4

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ISBI.2019.8759249

  • Digital artery deformation on movement of the proximal interphalangeal joint Reviewed

    Susumu Saito, Ryoma Bise, Aya Yoshikawa, Hiroyuki Sekiguchi, Itaru Tsuge, Masakazu Toi

    Journal of Hand Surgery: European Volume   44 ( 2 )   187 - 195   2019.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1177/1753193418807833

  • Estimation of Wetness and Color From A Single Multispectral Image Invited Reviewed International journal

    H Okawa, M Shimano, Y Asano, R Bise, K Nishino, I Sato

    IEEE transactions on pattern analysis and machine intelligence   44 ( 12 )   8740 - 8753   2019.2   ISSN:01628828

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/TPAMI.2019.2903496

    Scopus

    Other Link: https://ieeexplore.ieee.org/document/8661549

  • Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations Reviewed

    Dai Fei Elmer Ker, Sungeun Eom, Sho Sanami, @Ryoma Bise, Corinne Pascale, Zhaozheng Yin, Seung Il Huh, Elvira Osuna-Highley, Silvina N. Junkers, Casey J. Helfrich, Peter Yongwen Liang, Jiyan Pan, Soojin Jeong, Steven S. Kang, Jinyu Liu, Ritchie Nicholson, Michael F. Sandbothe, Phu T. Van, Anan Liu, Mei Chen, Takeo Kanade, Lee E. Weiss, Phil G. Campbell

    Scientific Data   5   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/sdata.2018.237

  • Light-sheet microscopy reveals site-specific 3-dimensional patterns of the cutaneous vasculature and pronounced rarefication in aged skin Reviewed

    Kentaro Kajiya, Ryoma Bise, Catharina Commerford, Imari Sato, Toyonobu Yamashita, Michael Detmar

    Journal of Dermatological Science   92 ( 1 )   3 - 5   2018.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jdermsci.2018.07.006

  • Separation of transmitted light and scattering components in transmitted microscopy Reviewed International journal

    Mihoko Shimano, Ryoma Bise, Yinqiang Zheng, Imari Sato

    20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017   12 - 20   2017.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-319-66185-8_2

  • Virtual Blood Vessels in Complex Background Using Stereo X-Ray Images Reviewed International journal

    Qiuyu Chen, Ryoma Bise, Lin Gu, Yinqiang Zheng, Imari Sato, Jenq Neng Hwang, Sadakazu Aiso, Nobuaki Imanishi

    16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017   99 - 106   2017.7

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ICCVW.2017.20

  • Semi-supervised learning for biomedical image segmentation via forest oriented super pixels(voxels) Reviewed International journal

    Lin Gu, Yinqiang Zheng, Ryoma Bise, Imari Sato, Nobuaki Imanishi, Sadakazu Aiso

    20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017   702 - 710   2017.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-319-66182-7_80

  • Vascular registration in photoacoustic imaging by low-rank alignment via foreground,background and complement decomposition Reviewed International journal

    Ryoma Bise, Yingqiang Zheng, Imari Sato, Masakazu Toi

    Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016   326 - 334   2016.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-319-46726-9_38

  • 3D Structure Modeling of Dense Capillaries by Multi-objects Tracking Reviewed International journal

    Ryoma Bise, Imari Sato, Kentaro Kajiya, Toyonobu Yamashita

    29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016   1333 - 1341   2016.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/CVPRW.2016.168

  • Tracing behavior of endothelial cells promotes vascular network formation Reviewed

    Noriko Yasuda, Hidekazu Sekine, Ryoma Bise, Teruo Okano, Tatsuya Shimizu

    Microvascular Research   105   125 - 131   2016.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.mvr.2015.12.005

  • Cell tracking under high confluency conditions by candidate cell region detection-based association approach Reviewed International journal

    Ryoma Bise, Yoshitaka Maeda, Mee Hae Kim, Masahiro Kino-Oka

    10th IASTED International Conference on Biomedical Engineering, BioMed 2013   554 - 561   2013.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.2316/P.2013.791-057

  • Mechanical characterization of adult stem cells from bone marrow and perivascular niches Reviewed

    Alexandre J.S. Ribeiro, Steven Tottey, Richard W.E. Taylor, Ryoma Bise, Takeo Kanade, Stephen F. Badylak, Kris Noel Dahl

    Journal of Biomechanics   45 ( 7 )   1280 - 1287   2012.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jbiomech.2012.01.032

  • Automatic cell tracking applied to analysis of cell migration in wound healing assay. Reviewed

    Ryoma Bise, Takeo Kanade, Zhaozheng Yin, Seung il Huh

    Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings   6174 - 6179   2011.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • An engineered approach to stem cell culture Automating the decision process for real-time adaptive subculture of stem cells Reviewed

    Dai Fei Elmer Ker, Lee E. Weiss, Silvina N. Junkers, Mei Chen, Zhaozheng Yin, Michael F. Sandbothe, Seung Il Huh, Sungeun Eom, Ryoma Bise, Elvira Osuna-Highley, Takeo Kanade, Phil G. Campbell

    PLoS One   6 ( 11 )   2011.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pone.0027672

  • Reliable cell tracking by global data association Reviewed International journal

    Ryoma Bise, Zhaozheng Yin, Takeo Kanade

    2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11   1004 - 1010   2011.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ISBI.2011.5872571

  • Mitosis detection for stem cell tracking in phase-contrast microscopy images Reviewed International journal

    Seungil Huh, Sungeun Eom, Ryoma Bise, Zhaozheng Yin, Takeo Kanade

    2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11   2121 - 2127   2011.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ISBI.2011.5872832

  • Automated mitosis detection of stem cell populations in phase-contrast microscopy images Reviewed

    Seungil Huh, Dai Fei Elmer Ker, Ryoma Bise, Mei Chen, Takeo Kanade

    IEEE Transactions on Medical Imaging   30 ( 3 )   586 - 596   2011.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/TMI.2010.2089384

  • Cell image analysis Algorithms, system and applications Reviewed International journal

    Takeo Kanade, Zhaozheng Yin, Ryoma Bise, Seungil Huh, Sungeun Eom, Michael F. Sandbothe, Mei Chen

    2011 IEEE Workshop on Applications of Computer Vision, WACV 2011   374 - 381   2011.3

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/WACV.2011.5711528

  • Automated mitosis detection of stem cell populations in phase-contrast microscopy images Reviewed

    Seungil Huh, Dai Fei Elmer Ker, Ryoma Bise, Mei Chen, Takeo Kanade

    IEEE Transactions on Medical Imaging   30 ( 3 )   586 - 596   2011.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/TMI.2010.2089384

  • Detection of hematopoietic stem cells in microscopy images using a bank of ring filters Reviewed International journal

    Sungeun Eom, Ryoma Bise, Takeo Kanade

    7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010   137 - 140   2010.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ISBI.2010.5490394

  • Cell segmentation in microscopy imagery using a bag of local Bayesian classifiers Reviewed International journal

    Zhaozheng Yin, Ryoma Bise, Mei Chen, Takeo Kanade

    7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010   125 - 128   2010.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/ISBI.2010.5490399

  • Reliably Tracking Partially Overlapping Neural Stem Cells in DIC Microscopy Image Sequences Reviewed International journal

    R. Bise, K. Li, S. Eom, and T. Kanade

    MICCAI Workshop on OPTMHisE   2009.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • An improvement of the design method of cellular neural networks based on generalized eigenvalue minimization Reviewed

    Ryoma Bise, Norikazu Takahashi, Tetsuo Nishi

    IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications   50 ( 12 )   1569 - 1574   2003.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/TCSI.2003.819827

  • An improvement of the design method of cellular neural networks based on generalized eigenvalue minimization Reviewed

    Ryoma Bise, Norikazu Takahashi, Tetsuo Nishi

    IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications   50 ( 12 )   1569 - 1574   2003.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/TCSI.2003.819827

  • On the design method of cellular neural networks for associative memories based on generalized eigenvalue problem Reviewed International journal

    R. Bise, N. Takahashi, and T. Nishi

    IEEE Cellular Neural Networks and Their Applications   2002.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

▼display all

Books

  • 実験医学増刊号「生命科学研究を加速する 機械学習(仮)」 担当章「画像解析の基礎」「細胞トラッキングの機械学習技術」「行動追跡とDeepLabCut」

    @備瀬竜馬( Role: Joint author)

    羊土社  2020.12 

     More details

    Language:Japanese   Book type:Scholarly book

  • 「再生医療の細胞培養技術と産業展開」

    @備瀬竜馬( Role: Joint author)

    シーエムシー出版  2014.6 

     More details

    Responsible for pages:第19章3節 画像処理による診断 トラッキングの基礎とその周辺(第3章-2) in 「再生医療の細胞培養技術と産業展開」   Language:Japanese   Book type:Scholarly book

    DOI: ISBN: 978-4-7813-0948-4

  • 「再生医療事業の課題解決のための手引書」

    @備瀬竜馬( Role: Joint author)

    技術情報協会  2013.9 

     More details

    Responsible for pages:第6章 画像解析による培養品質管理 in 「再生医療事業の課題解決のための手引書」   Language:Japanese   Book type:Scholarly book

  • 「幹細胞医療の実用化技術と産業展望」

    @備瀬竜馬( Role: Joint author)

    シーエムシー出版  2012.12 

     More details

    Responsible for pages:第42章 画像解析による培養品質管理 in 「幹細胞医療の実用化技術と産業展望」   Language:Japanese   Book type:Scholarly book

Presentations

  • Cell Tracking with Deep Learning for Cell Detection and Motion Estimation in Low-Frame-Rate International conference

    #J. Hayashida, @R. Bise

    International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI2019)  2019.10 

     More details

    Event date: 2019.10

    Language:English  

    Country:China  

  • Weakly Supervised Cell Segmentation in Dense by Propagating from Detection Map International conference

    #K. Nishimura, E.D. Ker, @R. Bise

    International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI2019)  2019.10 

     More details

    Event date: 2019.10

    Language:English  

    Country:China  

  • Adaptive Weighting Multi-Field-of-View CNN for Semantic Segmentation in Pathology International conference

    #H. Tokunaga, Y. Teramoto, A. Yoshizawa, @R. Bise

    IEEE Conference on Computer Vision and Pattern Recognition  2019.6 

     More details

    Event date: 2019.6

    Language:English  

    Country:United States  

  • Semi-supervised learning for biomedical image segmentation via forest oriented super pixels(voxels) International conference

    Lin Gu, Yinqiang Zheng, Ryoma Bise, Imari Sato, Nobuaki Imanishi, Sadakazu Aiso

    20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017  2017.9 

     More details

    Event date: 2017.9

    Language:English   Presentation type:Oral presentation (general)  

    Country:Canada  

  • Separation of transmitted light and scattering components in transmitted microscopy International conference

    Mihoko Shimano, Ryoma Bise, Yinqiang Zheng, Imari Sato

    20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017  2017.9 

     More details

    Event date: 2017.9

    Language:English   Presentation type:Oral presentation (general)  

    Country:Canada  

  • 最新の研究動向2023 病理画像処理

    備瀬竜馬(九大)

    電子情報通信学会技術研究報告, MI研究会  2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:沖縄青年会館,那覇市   Country:Japan  

  • 最重症度ラベルを用いたマルチインスタンス学習

    志久開人・西村和也(九大)・末廣大貴(横浜市大)・備瀬竜馬(九大)

    電子情報通信学会技術研究報告, PRMU研究会  2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:広島大学,東広島市   Country:Japan  

  • 三次元光超音波画像における反射ノイズの推定

    山根健寛(九大)・原田翔太(広島市大)・津下 到・齊藤 晋(京大)・備瀬竜馬(九大)

    電子情報通信学会技術研究報告, MI研究会  2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:沖縄青年会館,那覇市   Country:Japan  

  • WSI特徴を用いたドメイン一般化

    重安勇輝(九大)・原田翔太(広市大)・倉田麻理代・寺田和弘・中島直樹(京大)・吉澤明彦(奈良医科大)・阿部浩幸・牛久哲男(東大)・備瀬竜馬(九大)

    電子情報通信学会技術研究報告, MI研究会  2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:沖縄青年会館,那覇市   Country:Japan  

  • オンライン予測理論に基づく擬似ラベル手法によるクラス比率からの学習

    #松尾信之介, @備瀬竜馬, @内田誠一, @末廣大貴

    パターン認識・メディア理解研究会(PRMU),2022年12月  2023.12 

     More details

    Event date: 2023.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:富山国際会議場,富山市   Country:Japan  

  • 特徴量ワーピングを導入した時間情報集約によるマルチオブジェクトトラッキング

    #浅海標徳, #西村和也, @備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2022年12月  2023.12 

     More details

    Event date: 2023.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:富山国際会議場,富山市   Country:Japan  

  • 部分的な教師データを用いた細胞検出

    #藤井和磨, @末廣大貴, @備瀬竜馬

    電子情報通信学会技術研究報告, PRMU  2022.12 

     More details

    Event date: 2023.12 - 2022.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:富山国際会議場,富山市   Country:Japan  

  • 年代情報を用いた病理画像のためのドメイン一般化

    重安勇輝(九大)・原田翔太(広島市大)・倉田麻理代・寺田和弘・中島直樹・吉澤明彦(京大)・阿部浩幸・牛久哲男(東大)・備瀬竜馬(九大)

    電子情報通信学会技術研究報告, PRMU研究会  2023.11 

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:鳥取県立生涯学習センター, 鳥取市   Country:Japan  

  • 医用画像の背景ドメインの違いに対応した疑似ラベル選択

    山根健寛(九大)・津下 到・齊藤 晋(京大)・備瀬竜馬(九大)

    電子情報通信学会技術研究報告, PRMU研究会  2023.11 

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:鳥取県立生涯学習センター, 鳥取市   Country:Japan  

  • 病理診断のAI応用の課題と解決手法 Invited

    備瀬竜馬

    第69回病理学会秋季病理AI実装研究会 (JSPAII) ジョイントミーティング  2023.11 

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:久留米シティプラザ,久留米市   Country:Japan  

  • Label Efficient Learning for Cell Image Analysis Invited

    Ryoma Bise

    Tissue Engineering and Regenerative Medicine International Society TERMIS-AP  2023.10 

     More details

    Event date: 2023.10

    Language:English   Presentation type:Oral presentation (general)  

  • 信頼区間を考慮した LLP 手法による巨大バッグからの学習

    久保俊介, 松尾信之介, 備瀬竜馬

    2023 年度電気・情報関係学会九州支部連連合大会 (第 76 回連合大会)  2023.9 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 深層学習を用いた光超音波画像の画質改善

    江口達大, 備瀬竜馬

    2023 年度電気・情報関係学会九州支部連連合大会 (第 76 回連合大会)  2023.9 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 異なるスケールの画像間の位置合わせ手法の検討

    田原聖士, 備瀬竜馬

    2023 年度電気・情報関係学会九州支部連連合大会 (第 76 回連合大会)  2023.9 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 対照学習を用いた細胞形状に頑健な細胞検出

    井上颯人, 西村和也, 備瀬竜馬

    2023 年度電気・情報関係学会九州支部連連合大会 (第 76 回連合大会)  2023.9 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Learning from Label Proportionによる陽性腫瘍の比率推定

    画像の認識・理解シンポジウム MIRU2023  2023.7 

     More details

    Event date: 2023.7

    Language:Japanese  

    Venue:浜松   Country:Japan  

  • クラス比率学習におけるバッグ単位のデータ拡張

    画像の認識・理解シンポジウム MIRU2023  2023.7 

     More details

    Event date: 2023.7

    Language:Japanese  

    Venue:浜松   Country:Japan  

  • WSIに対する部分的なラベル比率からの学習

    画像の認識・理解シンポジウム MIRU2023  2023.7 

     More details

    Event date: 2023.7

    Language:Japanese  

    Venue:浜松   Country:Japan  

  • MICCAI 2022参加報告 Invited

    伊東隼人,小田昌宏,申忱,王成,三浦幹太,佐藤淳哉,大竹義人,@備瀬竜馬,古川亮,本谷秀堅,増谷佳孝,森健策

    電子情報通信学会技術研究報告, 医用画像研究会(MI)  2023.3 

     More details

    Event date: 2023.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:沖縄青年会館,那覇市   Country:Japan  

  • 非剛体レジストレーションを用いた線虫の時系列3D神経細胞の追跡

    #志久開人, #白井洸充, @石原健, @備瀬竜馬

    電子情報通信学会技術研究報告, 医用画像研究会(MI)  2023.3 

     More details

    Event date: 2023.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:沖縄青年会館,那覇市   Country:Japan  

  • 部分的なラベル比率からの学習

    #松尾信之介, @末廣大貴, @内田誠一, @備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2023年3月  2023.3 

     More details

    Event date: 2023.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:はこだて未来大学,函館市   Country:Japan  

  • 部分的なアノテーションを用いた細胞分裂検出

    #西村 和也, 刀谷 在美, 中馬 新一郎, @備瀬 竜馬

    パターン認識・メディア理解研究会(PRMU),2023年3月  2023.3 

     More details

    Event date: 2023.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:はこだて未来大学,函館市   Country:Japan  

  • 撮影順序情報を活用した潰瘍性大腸炎分類モデルの提案

    @原田翔太, @備瀬竜馬, 田中聖人, @内田誠

    情報処理学会コンピュータビジョンとイメージメディア研究会  2023.1 

     More details

    Event date: 2023.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Deep Non-Rigid Registration for Noisy-and-Corrupted Images

    #Takanori Asanomi, #Kazuya Nishimura, #Heon Song, #Junya Hayashida, Hiroyuki Sekiguchi, Takayuki Yagi, Imari Sato, @Ryoma Bise

    2022.7 

     More details

    Event date: 2022.7

    Language:Japanese  

    Country:Japan  

  • Semi-Supervised Domain Adaptation for Class-Imbalanced Dataset

    @Shota Harada, @Ryoma Bise, Kengo Araki, Akihiko Yoshizawa, Kazuhiro Terada, Mariyo Kurata-Rokutan, Naoki Nakajima, Hiroyuki Abe, Tetsuo Ushiku, @Seiichi Uchida

    2022.7 

     More details

    Event date: 2022.7

    Language:Japanese  

    Country:Japan  

  • 病理画像セグメンテーションにおける腫瘍領域の空間分布に基づく疑似ラベル選択法の提案

    画像の認識・理解シンポジウム MIRU2022  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese  

    Venue:姫路   Country:Japan  

  • 複数種の弱教師を用いたsingle instance pastingによる細胞画像セグメンテーション

    画像の認識・理解シンポジウム MIRU2022  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese  

    Venue:姫路   Country:Japan  

  • Self-Attentionによる大局的時間情報を考慮した複数物体トラッキング

    画像の認識・理解シンポジウム MIRU2022  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese  

    Venue:姫路   Country:Japan  

  • 病理画像における腫瘍領域の空間分布に基づく半教師学習

    #重安勇輝,@原田翔太,#荒木健吾,吉澤明彦,寺田和弘,寺本祐記,@備瀬竜馬

    パターン認識・メディア理解研究会(PRMU)  2022.5 

     More details

    Event date: 2022.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:豊田工業大学   Country:Japan  

  • 光超音波3Dイメージング技術の開発と医療応用 Invited

    @備瀬竜馬

    医用画像情報学会 令和3年度春季(192回)大会  2022.2 

     More details

    Event date: 2022.2

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:online   Country:Japan  

  • 細胞画像解析のための効率的なラベル付与による機械学習 Invited

    @備瀬竜馬

    メディカルイメージング連合フォーラム  2022.1 

     More details

    Event date: 2022.1

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:online   Country:Japan  

  • 簡易アノテーションを用いた癌細胞の分類

    #杉本龍彦、寺田和弘、吉澤明彦、@備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2021年12月  2021.12 

     More details

    Event date: 2021.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • 子宮頸癌病理画像のセグメンテーション

    #荒木健吾、倉田麻理代、寺田和弘、吉澤明彦、@備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2021年12月  2021.12 

     More details

    Event date: 2021.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • 深層学習を用いた三次元血管構造の抽出

    #山根健寛, @備瀬竜馬

    電気・情報関係学会九州支部連合大会  2021.9 

     More details

    Event date: 2021.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • 病理画像における腫瘍領域の自動抽出

    #重安勇輝, @備瀬竜馬

    電気・情報関係学会九州支部連合大会  2021.9 

     More details

    Event date: 2021.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • Unsupervised non-rigid alignment for multiple noisy images

    #Takanori ASANOMI, #Kazuya NISHIMURA, #Heon SONG, #Junya HAYASHIDA, Hiroyuki SEKIGUCHI, Takayuki YAGI, Imari SATO, and @Ryoma BISE

    2021.8 

     More details

    Event date: 2021.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Domain Extension in Cell Detection by Pseudo-Cell-Position Heatmap

    #Hyeonwoo Cho, #Kazuya Nishimura, Kazuhide Watanabe, @Ryoma Bise

    2021.7 

     More details

    Event date: 2021.7

    Language:Japanese  

    Country:Japan  

  • Cell Detection for Imperfect Annotation Problem by using Top-Ranking for Pseudo-Labeling

    #Kazuma Fujii, @Daiki Suehiro, #Kazuya Nishimura, @Ryoma Bise

    2021.7 

     More details

    Event date: 2021.7

    Language:Japanese  

    Country:Japan  

  • Cell Detection in Time-Lapse Images via Tracking

    #Kazuya Nishimura, #Hyeonwoo Cho, @Ryoma Bise

    2021.7 

     More details

    Event date: 2021.7

    Language:Japanese  

    Country:Japan  

  • Disentangled Representation Learning with Temporal Continuity for Ulcerative Colitis Classification

    #Shota Harada, @Ryoma Bise, @Hideaki Hayashi, Kiyohito Tanaka, @Seiichi Uchida

    2021.7 

     More details

    Event date: 2021.7

    Language:Japanese  

    Country:Japan  

  • Cell Tracking and Segmentation for Cell Image Analysis Invited International conference

    @Ryoma Bise

    JSPS Establishing International Research Network of Mathematical Oncology  2020.10 

     More details

    Event date: 2020.10

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 大域的な時空間コンテキストの整合性を考慮した細胞トラッキング

    #林田純弥,#西村和也,@備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2020年10月  2020.10 

     More details

    Event date: 2020.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 弱教師学習によるアノテーションフリーな自動細胞画像解析へ向けた取り組み Invited

    備瀬竜馬

    30 回 日本サイトメトリー学会学術集会  2020.5 

     More details

    Event date: 2020.10

    Language:Japanese  

    Country:Japan  

  • 簡易な相対アノテーションに基づく潰瘍性大腸炎の重症度分類

    #門田健明,#安部健太郎,@備瀬竜馬,河村卓二,碕山直邦,田中聖人,@内田誠一

    パターン認識・メディア理解研究会(PRMU),2020年10月  2020.10 

     More details

    Event date: 2020.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • 内視鏡画像のMayo分類のための分離された特徴表現の獲得

    #原田翔太,@早志英朗,@備瀬竜馬,河村卓二,碕山直邦,田中聖人,@内田誠一

    パターン認識・メディア理解研究会(PRMU),2020年10月  2020.10 

     More details

    Event date: 2020.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 深層学習を用いた3 次元多細胞検出

    #藤井和磨,#西村和也,#林田純弥,@備瀬竜馬

    電気・情報関係学会九州支部連合大会  2020.9 

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • Cell detection for various cell shapes

    #H. Cho, #K. Nishimura, @R. Bise

    2020.9 

     More details

    Event date: 2020.9

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • マルチタスク学習によるビデオ補間の精度向上

    #浅海標徳, @備瀬竜馬

    電気・情報関係学会九州支部連合大会  2020.9 

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • PU-Learningを用いた病理画像における簡易アノテーション法の提案

    #杉本龍彦, @備瀬竜馬

    画像の認識・理解シンポジウム MIRU2020  2020.8 

     More details

    Event date: 2020.8

    Language:Japanese  

    Venue:online   Country:Japan  

  • 弱教師付き学習に基づいた細胞トラッキング

    #西村和也, #林田純弥, C. Wang, D.F.E Ker, @備瀬竜馬

    画像の認識・理解シンポジウム MIRU2020  2020.8 

     More details

    Event date: 2020.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • Self-Constrained Clustering with Prior Knowledge of Endoscopic Image Sequence

    #S. Harada, @R. Bise, @H. Hayashi, K. Tanaka, and @S.Uchida

    2020.8 

     More details

    Event date: 2020.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • MPM: Joint Representation of Motion and Position Map for Cell Tracking Invited

    #J. Hayashida, #K. Nishimura, and @R. Bise

    2020.8 

     More details

    Event date: 2020.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • ディープラーニングの病理診断への応用 Invited

    @備瀬竜馬

    第109回日本病理学会総会  2020.7 

     More details

    Event date: 2020.7

    Language:Japanese  

    Country:Japan  

  • ディープラーニングの病理診断への応用 Invited

    @備瀬竜馬

    第109回日本病理学会総会  2020.7 

     More details

    Event date: 2020.7

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:online   Country:Japan  

  • 弱教師学習に基づいた細胞追跡

    #西村和也,#林田純弥,Ker Elmer,Wang Chenyang,@備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2020年5月  2020.5 

     More details

    Event date: 2020.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • 弱教師学習によるアノテーションフリーな自動細胞画像解析へ向けた取り組み Invited

    @備瀬竜馬

    第30回日本サイトメトリー学会学術集会 シンポジウム3 [ 次世代細胞認識・追尾システムの幕開け ]  2020.5 

     More details

    Event date: 2020.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:online   Country:Japan  

  • Label-Free Cell Detection in Phase Contrast Images Using Artificial Neural Networks International conference

    Dan Wang, Xu Zhang, Kazuya Nishimura, Rocky Tuan, Ryoma Bise, Dai Fei Elmer Ker

    2020.3 

     More details

    Event date: 2020.3

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • ランキング学習による大腸内視鏡画像の重症度予測

    #安部健太郎, #Yan Zheng, @早志英朗, @備瀬竜馬, 河村卓二, 碕山直邦, 田中聖人, @内田誠一

    電子情報通信学会2020年総合大会  2020.3 

     More details

    Event date: 2020.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 細胞社会ダイバース解析のための簡易なアノテーションを用いた定量化手法の提案

    西村和也, Dai Fei Elmer Ker, 備瀬竜馬

    細胞ダイバース第3回若手ワークショップ  2020.2 

     More details

    Event date: 2020.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:静岡   Country:Japan  

  • 細胞社会解析のための自動細胞トラッキング手法の提案

    林田純弥, 備瀬竜馬

    細胞ダイバース第5回公開シンポジウム  2020.1 

     More details

    Event date: 2020.1

    Language:Japanese  

    Venue:東京   Country:Japan  

  • 細胞社会ダイバース解析のための簡易なアノテーションを用いたトラッキング手法の提案

    西村和也, Dai Fei Elmer Ker, 備瀬竜馬

    細胞ダイバース第5回公開シンポジウム  2020.1 

     More details

    Event date: 2020.1

    Language:Japanese  

    Venue:東京   Country:Japan  

  • 病理画像癌種別領域分割のための癌種比率を活用した学習手法

    德永宏樹(九大)・寺本祐記・吉澤明彦(京大医学部附属病院)・備瀬竜馬(九大/NII)

    パターン認識・メディア理解研究会(PRMU),2019年12月  2019.12 

     More details

    Event date: 2019.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大分大学、大分   Country:Japan  

  • Cell Tracking with CNN for Cell Detection and Association International conference

    Junya Hayashida, Ryoma Bise

    The 15th Joint Workshop on Machine Perception and Robotics (MPR2019)  2019.11 

     More details

    Event date: 2019.11

    Language:English  

    Country:Japan  

  • Clustering of Colonoscopic Image with Multi-Task Learning International conference

    Kentaro Abe, Hideaki Hayashi, Ryoma Bise, Takuji Kawamura, Naokuni Sakiyama, Kiyohito Tanaka, Seiichi Uchida

    The 15th Joint Workshop on Machine Perception and Robotics (MPR2019)  2019.11 

     More details

    Event date: 2019.11

    Language:English  

    Country:Japan  

  • Weakly Supervised Body Hair Detection in Photoacoustic Image International conference

    Ryo Kikkawa, Ryoma Bise

    The 15th Joint Workshop on Machine Perception and Robotics (MPR2019)  2019.11 

     More details

    Event date: 2019.11

    Language:English  

    Country:Japan  

  • Weakly supervised Cell Segmentation International conference

    Nishimura Kazuya, Dai Fei Elmer Ker, Ryoma Bise

    The 15th Joint Workshop on Machine Perception and Robotics (MPR2019)  2019.11 

     More details

    Event date: 2019.11

    Language:English  

    Country:Japan  

  • Efficient Soft-Constrained Clustering for Group-Based Labeling

    Ryoma Bise, Kentaro Abe, Hideaki Hayashi, Kiyohito Tanaka, Seiichi Uchida

    22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019  2019.10 

     More details

    Event date: 2019.10

    Language:English  

    Country:China  

  • 細胞位置及び細胞対応付け同時学習CNNによる細胞追跡

    林田純弥・西村和也・備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2019年10月  2019.10 

     More details

    Event date: 2019.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京大学、東京   Country:Japan  

  • 内視鏡画像のソフト制約クラスタリングによるラベル付け簡略化

    備瀬竜馬・安部健太郎・早志英朗(九大)・田中聖人(京都第二赤十字病院)・内田誠一(九大)

    パターン認識・メディア理解研究会(PRMU),2019年9月  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡山大学、岡山   Country:Japan  

  • 安定結婚アルゴリズムによる細胞内中心体のトラッキング

    川原祐樹, 備瀬竜馬, 木村暁, 内田誠一

    電気・情報関係学会九州支部連合大会  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:九州工業大学、福岡   Country:Japan  

  • 病理画像における陽性細胞の検出

    杉本龍彦, 徳永宏樹, Xiaotong Ji, 備瀬竜馬

    電気・情報関係学会九州支部連合大会  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:九州工業大学、福岡   Country:Japan  

  • 深層学習による子宮頸癌のクラス分類

    荒木健吾, 徳永宏樹, 備瀬竜馬, 内田誠一

    電気・情報関係学会九州支部連合大会  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:九州工業大学、福岡   Country:Japan  

  • 時系列3D CNN回帰モデル による細胞分裂認識

    西村和也・林田純弥・備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2019年9月  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡山大学、岡山   Country:Japan  

  • マルチタスク学習による大腸内視鏡画像の部位及び所見分類

    安部健太郎・早志英朗・備瀬竜馬(九大)・河村卓二・碕山直邦・田中聖人(京都第二赤十字病院)・内田誠一(九大)

    パターン認識・メディア理解研究会(PRMU),2019年9月  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡山大学、岡山   Country:Japan  

  • 正例自動サンプリングPositive Unlabeled-Learningを用いた光超音波画像における体毛領域認識

    吉川亮・備瀬竜馬

    パターン認識・メディア理解研究会(PRMU),2019年9月  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡山大学、岡山   Country:Japan  

  • Endoscopic Image Clustering with Temporal Ordering Information Based on Dynamic Programming International conference

    #S. Harada, @H. Hayashi, @R. Bise, K. Tanaka, Q. Meng, and @S. Uchida

    41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019.  2019.7 

     More details

    Event date: 2019.7

    Language:English   Presentation type:Oral presentation (general)  

    Country:Germany  

  • Scribbles for Metric Learning in Histological Image Segmentation International conference

    #D. Harada, @R. Bise, #H. Tokunaga, W. Ohyama, S. Oka, T. Fujimori, and @S. Uchida

    41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019.  2019.7 

     More details

    Event date: 2019.7

    Language:English  

    Country:Germany  

  • 弱教師学習を用いた顕微鏡画像における細胞領域認識

    西村 和也(九大), Elmer Dai Fei Ker(香港中文大), 備瀬 竜馬(九大)

    画像の認識・理解シンポジウム MIRU2019  2019.7 

     More details

    Event date: 2019.7 - 2019.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大阪府立国際会議場、大阪   Country:Japan  

  • Endoscopic Image Clustering Based on Temporal Ordering Information

    Shota Harada, Hideaki Hayashi(Kyushu Univ.), Ryoma Bise(Kyushu Univ./NII), Qier Meng(NII), Kiyohito Tanaka(Kyoto Second Red Cross Hospital), Seiichi Uchida(Kyushu Univ./NII)

    2019.7 

     More details

    Event date: 2019.7 - 2019.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 細胞挙動推定による低フレームレート動画像下における細胞トラッキング

    林田 純弥, 備瀬 竜馬

    画像の認識・理解シンポジウム MIRU2019  2019.7 

     More details

    Event date: 2019.7 - 2019.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大阪府立国際会議場、大阪   Country:Japan  

  • Deep Neural Network 解析による細胞領域認識用学習データ作成の省略化

    西村和也, Dai Fei Elmer Ker, 備瀬竜馬

    細胞ダイバース第4回公開シンポジウム  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese  

    Venue:神戸   Country:Japan  

  • Deep Neural Networkを用いた細胞移動方向推定による細胞トラッキング

    林田純弥, 備瀬竜馬

    細胞ダイバース第4回公開シンポジウム  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese  

    Venue:神戸   Country:Japan  

  • 弱教師学習を用いた複数細胞種における細胞領域認識

    #西村和也,Ker Dai Fei Elmer,@備瀬竜馬

    パターン認識・メディア理解研究会(PRMU)  2019.5 

     More details

    Event date: 2019.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:国立オリンピック記念青少年総合センター   Country:Japan  

  • 細胞の移動軌跡推定を用いた低フレームレート動画像下における細胞トラッキング

    #林田純弥,@備瀬竜馬

    パターン認識・メディア理解研究会(PRMU)  2019.5 

     More details

    Event date: 2019.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:国立オリンピック記念青少年総合センター   Country:Japan  

  • Semi-supervised learning with structured knowledge for body hair detection in photoacoustic image

    Ryo Kikkawa, Hiroyuki Sekiguchi, Itaru Tsuge, Susumu Saito, Ryoma Bise

    16th IEEE International Symposium on Biomedical Imaging, ISBI 2019  2019.4 

     More details

    Event date: 2019.4

    Language:English  

    Country:Italy  

  • 細胞挙動推定による低フレームレート動画像下における細胞トラッキング

    林田純弥, 備瀬竜馬

    2019.4 

     More details

    Event date: 2019.4

    Language:Japanese  

    Country:Japan  

  • Anatomical location classification of gastroscopic images using DenseNet trained from Cyclical Learning Rate

    2018.8 

     More details

    Event date: 2019.4

    Language:Japanese  

    Country:Japan  

  • 顕微鏡画像における細胞セグメンテーション

    西村和也, 備瀬竜馬

    電気・情報関係学会九州支部連合大会講演論文集  2018.9 

     More details

    Event date: 2019.4

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 深層学習を用いた細胞トラッキング

    林田純弥, 備瀬竜馬

    電気・情報関係学会九州支部連合大会講演論文集  2018.9 

     More details

    Event date: 2019.4

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • グラフカットとCNNを用いたマウス胚領域分割

    原田大輔, 備瀬竜馬, 岡 早苗, Timothy Francis Day, 藤森俊彦, 内田誠一

    電子情報通信学会技術研究報告  2018.11 

     More details

    Event date: 2019.4

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Cleaning of a human skin and its application for the three-dimensional visualization of the vasculature International conference

    K.Kajiya, R.Bise, C.Seidel, I. Sato, T. Yamashita, and M. Detmar

    Journal of Investigative Dermatology  2018.11 

     More details

    Event date: 2019.4

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Machine learning-based structural analysis and oxygen saturation measurement of tumor-associated vessels in breast cancer using a photoacoustic tomography system International conference

    Matsumoto Y, Gu L, Bise R, Asao Y, Sekiguchi H, Yoshikawa A, Ishii T, Takada M, Kataoka M, Sakurai T, Yagi T, Sato I, Togashi K, Shiina T, and Toi M.

    2018.12 

     More details

    Event date: 2019.4

    Language:Japanese  

    Country:Japan  

  • Machine learning-based structural analysis and oxygen saturation measurement of tumor-associated vessels in breast cancer using a photoacoustic tomography system

    Matsumoto Y, Gu L, Bise R, Asao Y, Sekiguchi H, Yoshikawa A, Ishii T, Takada M, Kataoka M, Sakurai T, Yagi T, Sato I, Togashi K, Shiina T, and Toi M.

    Breast Cancer Symposium  2018.12 

     More details

    Event date: 2019.4

    Language:English  

    Country:United States  

  • 動的計画法を用いた内視鏡画像系列クラスタリング

    原田翔太, 早志英朗, 備瀬?馬, 田中聖人, Qier Meng, 内田誠一

    生体画像と医用人工知能研究会  2019.3 

     More details

    Event date: 2019.4

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 病理画像領域分割のためのAdaptively Weighting Multi-scale FCNの提案

    徳永宏樹, 寺本祐記, 吉澤明彦, 備瀬竜馬

    画像の認識・理解シンポジウム MIRU2018  2018.8 

     More details

    Event date: 2019.4

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 3D tracking of Nodal signal activation in a single cell of zebrafish embryo

    A. Kondow, K. Ohnuma, S. Nonaka, Y. Kamei, R. Bise, Y. Sato, T.J. Kobayashi and K. Hashimoto

    2017.12 

     More details

    Event date: 2019.4

    Language:Japanese  

    Country:Japan  

  • 半教師あり学習を用いた光超音波画像における体毛領域認識

    吉川亮、関口博之、津下到、齊藤晋、備瀬竜馬

    情報処理学会コンピュータビジョンとイメージメディア研究会(CVIM)  2018.5 

     More details

    Event date: 2019.4

    Language:Japanese  

    Country:Japan  

  • 病理画像領域分割のためのAdaptively Weighting Multi-scale FCNの提案

    徳永宏樹, 寺本祐記, 吉澤明彦, 備瀬竜馬

    情報処理学会コンピュータビジョンとイメージメディア研究会(CVIM)  2018.5 

     More details

    Event date: 2019.4

    Language:Japanese  

    Country:Japan  

  • 半教師あり学習を用いた光超音波画像における体毛領域認識

    吉川亮, 関口博之, 津下到, 齊藤晋, 備瀬竜馬

    画像の認識・理解シンポジウム MIRU2018  2018.8 

     More details

    Event date: 2019.4

    Language:Japanese  

    Country:Japan  

  • ネットワークの中間層の物体追跡への利用

    ソン ホン, リ ジンホ, 備瀬 竜馬, 内田 誠一

    画像の認識・理解シンポジウム MIRU2018  2018.8 

     More details

    Event date: 2019.4

    Language:Japanese  

    Country:Japan  

  • Novel approaches for assessment of PD-L1 immunohistochemistry in lung adenocarcinoma through deep learning algorithms International conference

    Yuki Teramoto, Akihiko Yoshizawa, Ryoma Bise, Hiroki Tokunaga, Naoki Nakajima, and Hironori Haga

    USCAP2019  2019.3 

     More details

    Event date: 2019.3

    Language:English  

    Country:United States  

    Other Link: https://www.xcdsystem.com/uscap/program/2019/

  • 弱教師学習を用いた顕微鏡画像における細胞領域認識手法の提案

    西村和也,備瀬竜馬

    細胞ダイバース第2回若手ワークショップ  2019.2 

     More details

    Event date: 2019.2

    Language:Japanese  

    Venue:仙台   Country:Japan  

  • 細胞位置及び挙動推定による細胞トラッキング

    林田純弥,,備瀬竜馬

    細胞ダイバース第2回若手ワークショップ  2019.2 

     More details

    Event date: 2019.2

    Language:Japanese  

    Venue:仙台   Country:Japan  

  • Virtual Blood Vessels in Complex Background Using Stereo X-Ray Images

    Qiuyu Chen, Ryoma Bise, Lin Gu, Yinqiang Zheng, Imari Sato, Jenq Neng Hwang, Sadakazu Aiso, Nobuaki Imanishi

    16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017  2018.1 

     More details

    Event date: 2017.10

    Language:English  

    Country:Italy  

  • Cell Tracking for Cell Image Analysis International conference

    @Ryoma Bise

    The Joint Workshop on Machine Perception and Robotics  2017.10 

     More details

    Event date: 2017.10

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 肺癌病理検体画像における癌細胞自動判別手法の検討

    #徳永宏樹, @備瀬竜馬

    平成29年度(第70回)電気・情報関係学会九州支部連合大会  2017.9 

     More details

    Event date: 2017.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:琉球大学   Country:Japan  

  • 機械学習を用いた光超音波画像における体毛認識及び除去

    #吉川亮, @備瀬竜馬

    平成29年度(第70回)電気・情報関係学会九州支部連合大会  2017.9 

     More details

    Event date: 2017.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:琉球大学   Country:Japan  

  • Low-rank最適化による血管・ノイズ・欠損領域分離及び位置合わせを用いた光超音波血管画像の画質改善

    @備瀬竜馬, Yinqiang Zheng, 佐藤いまり

    第20回画像の認識・理解シンポジウム  2017.8 

     More details

    Event date: 2017.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:広島国際会議場   Country:Japan  

  • Wetness and color from a single multispectral image International conference

    Mihoko Shimano, Hiroki Okawa, Yuta Asano, Ryoma Bise, Ko Nishino, Imari Sato

    30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017  2017.11 

     More details

    Event date: 2017.7

    Language:English   Presentation type:Oral presentation (general)  

    Country:United States  

  • ヒト⽪膚透明化技術の開発と毛細血管の 3 次元的可視化

    加治屋健太朗、@備瀬竜馬 、Catharina Seidel、佐藤いまり 、山下豊信 、Michael Detmar

    第42 回 日本香粧品学会  2017.6 

     More details

    Event date: 2017.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Low-rank最適化によるノイズ分離および位置合わせを用いた光超音波血管画像の画質改善 Invited

    日本超音波医学会第90回学術集会  2017.5 

     More details

    Event date: 2017.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Cell tracking for cell image analysis

    Ryoma Bise, Yoichi Sato

    3rd Biomedical Imaging and Sensing Conference  2017 

     More details

    Event date: 2017.4

    Language:English  

    Country:Japan  

  • Cell tracking for cell image analysis Invited International conference

    @R Bise, Y Sato

    Biomedical Imaging and Sensing Conference  2017.4 

     More details

    Event date: 2017.4 - 2018.4

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Cleaning of a human skin and its application for the three-dimensional visualization of the vasculature International conference

    Journal of Investigative Dermatology, 136, 9, S254, 2016.  2016.9 

     More details

    Event date: 2016.9

    Language:Japanese  

    Country:Japan  

  • 3D Structure Modeling of Dense Capillaries by Multi-objects Tracking

    Ryoma Bise, Imari Sato, Kentaro Kajiya, Toyonobu Yamashita

    29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016  2016.12 

     More details

    Event date: 2016.6 - 2016.7

    Language:English  

    Country:United States  

  • Cell tracking under high confluency conditions by candidate cell region detection-based association approach

    Ryoma Bise, Yoshitaka Maeda, Mee Hae Kim, Masahiro Kino-Oka

    10th IASTED International Conference on Biomedical Engineering, BioMed 2013  2013 

     More details

    Event date: 2013.2

    Language:English  

    Country:Austria  

  • Automatic cell tracking applied to analysis of cell migration in wound healing assay

    Ryoma Bise, Takeo Kanade, Zhaozheng Yin, Seung Il Huh

    33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011  2011.12 

     More details

    Event date: 2011.8 - 2011.9

    Language:English  

    Country:United States  

  • Mitosis detection for stem cell tracking in phase-contrast microscopy images

    Seungil Huh, Sungeun Eom, Ryoma Bise, Zhaozheng Yin, Takeo Kanade

    2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11  2011.4 

     More details

    Event date: 2011.3 - 2011.4

    Language:English  

    Country:United States  

  • Reliable cell tracking by global data association

    Ryoma Bise, Zhaozheng Yin, Takeo Kanade

    2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11  2011.4 

     More details

    Event date: 2011.3 - 2011.4

    Language:English  

    Country:United States  

  • Cell image analysis Algorithms, system and applications

    Takeo Kanade, Zhaozheng Yin, Ryoma Bise, Seungil Huh, Sungeun Eom, Michael F. Sandbothe, Mei Chen

    2011 IEEE Workshop on Applications of Computer Vision, WACV 2011  2011 

     More details

    Event date: 2011.1

    Language:English  

    Country:United States  

  • Cell segmentation in microscopy imagery using a bag of local Bayesian classifiers

    Zhaozheng Yin, Ryoma Bise, Mei Chen, Takeo Kanade

    7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010  2010.4 

     More details

    Event date: 2010.4

    Language:English  

    Country:Netherlands  

  • Detection of hematopoietic stem cells in microscopy images using a bank of ring filters

    Sungeun Eom, Ryoma Bise, Takeo Kanade

    7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010  2010.4 

     More details

    Event date: 2010.4

    Language:English  

    Country:Netherlands  

  • On the design method of cellular neural networks for associative memories based on generalized eigenvalue problem

    Ryoma Bise, N. Takahashi, T. Nishi

    7th IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA 2002  2002.7 

     More details

    Event date: 2002.7

    Language:English  

    Country:Germany  

  • Cell Tracking by estimating cell motions for high-throughput screening International conference

    Junya Hayashida, Ryoma Bise

    Resonance Bio International Symposium  2019.10 

     More details

    Language:English  

    Country:Japan  

  • Deep learning for cell segmentation with less annotation International conference

    Nishimura Kazuya, Dai Fei Elmer Ker, Ryoma Bise

    Resonance Bio International Symposium  2019.10 

     More details

    Language:English  

    Country:Japan  

  • Vascular registration in photoacoustic imaging by low-rank alignment via foreground,background and complement decomposition

    Ryoma Bise, Yingqiang Zheng, Imari Sato, Masakazu Toi

    2016.1 

     More details

    Language:English  

    Country:Other  

  • 非小細胞肺癌治療後切除症例の治療効果を判定する深層学習モデルの構築

    寺田 和弘, 吉澤 明彦, 劉 暁慶, 備瀬 竜馬, 羽賀 博典

    日本病理学会会誌  2023.3  (一社)日本病理学会

     More details

    Language:Japanese  

  • 腹部正中を横断するLinking皮下動脈の術前描出 用いるべき穿通枝を光音響イメージングで選ぶ

    津下 到, 齊藤 晋, Munisso Maria Chiara, 山本 豪志朗, 備瀬 竜馬, 吉川 彩, 八木 隆行, 森本 尚樹

    日本マイクロサージャリー学会学術集会プログラム・抄録集  2022.12  (一社)日本マイクロサージャリー学会

     More details

    Language:Japanese  

  • 病理診断へのAI応用の課題とその解決手法

    備瀬 竜馬

    日本病理学会会誌  2023.10  (一社)日本病理学会

     More details

    Language:Japanese  

  • 子宮頸部生検組織の組織学的診断を判定する深層学習モデルの構築(Development of a deep learning model to discriminate cervical intraepithelial lesions using WSIs)

    寺田 和弘, 劉 暁慶, 備瀬 竜馬, 北川 昌伸, 深山 正久, 羽賀 博典, 吉澤 明彦

    日本病理学会会誌  2024.2  (一社)日本病理学会

     More details

    Language:English  

  • 光音響イメージングによる皮弁血管マッピングの最前線 動脈・静脈の分離描出への挑戦

    津下 到, 齊藤 晋, Munisso Maria Chiara, 山本 豪志朗, 備瀬 竜馬, 吉川 彩, 八木 隆行, 森本 尚樹

    日本マイクロサージャリー学会学術集会プログラム・抄録集  2022.12  (一社)日本マイクロサージャリー学会

     More details

    Language:Japanese  

  • 人工知能による骨肉腫患者の予後予測 腫瘍切除標本における残存腫瘍細胞密度をディープラーニングを用いて算出

    川口 健悟, 美山 和毅, 遠藤 誠, 備瀬 竜馬, 孝橋 賢一, 廣瀬 毅, 鍋島 央, 藤原 稔史, 松本 嘉寛, 小田 義直, 中島 康晴

    日本整形外科学会雑誌  2024.3  (公社)日本整形外科学会

     More details

    Language:Japanese  

  • マイクロサージャリーにおける医工学技術の可能性 光音響イメージングによる皮弁手術支援システムの構築 皮下脂肪内血管の術前描出と血管地図シート

    津下 到, 齊藤 晋, Munisso Maria Chiara, 山本 豪志朗, 備瀬 竜馬, 吉川 彩, 八木 隆行

    日本コンピュータ外科学会誌  2022.6  (一社)日本コンピュータ外科学会

     More details

    Language:Japanese  

  • バイオイメージングと情報の協奏 バイオメディカル画像解析に関するLabel Efficient Learning

    内田 誠一, 備瀬 竜馬

    バイオイメージング  2022.8  日本バイオイメージング学会

     More details

    Language:Japanese  

▼display all

MISC

  • AIと病理 これまでの5年,これからの5年(第1回) 病理診断領域におけるAIの技術的側面

    備瀬 竜馬

    病理と臨床   41 ( 8 )   0875 - 0880   2023.8   ISSN:0287-3745

     More details

    Language:Japanese   Publisher:(株)文光堂  

  • 光超音波3Dイメージング技術の開発と医療応用

    備瀬 竜馬

    医用画像情報学会雑誌   39 ( 2 )   14 - 18   2022.6   ISSN:0910-1543

     More details

    Language:Japanese   Publisher:医用画像情報学会  

    これまで3次元の可視化が困難であった0.2mmの細血管とリンパ管を無被曝かつ簡単に高解像度で撮像できる光超音波イメージングの画像再構成の概要と機能性イメージングについて述べた。課題は体動による画質劣化、少数センサーによる画像再構築における画質劣化、再構築時に利用する音速と体内の音速分布不一致による画質劣化である。体動による画質悪化を改善する体動補正技術と実臨床応用例(皮弁手術支援、リンパ浮腫外科手術支援)を紹介した。

  • 教師なし・半教師あり・弱教師あり学習の最先端とバイオ医療画像応用

    @備瀬竜馬

    Medical Imaging Technology   2021.9

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: 10.11409/mit.39.135

  • 医用画像解析におけるパターン認識 Reviewed

    @備瀬竜馬,@内田誠一

    週間 医学のあゆみ(第五土曜特集「AIが切り拓く未来の医療」)   2020.10

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 九州大学の取組み:内視鏡画像診断支援の取組み

    @早志英朗, #安部健太郎, @備瀬竜馬, @内田誠一

    2019.4

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 培養中の幹細胞品質評価:画像を用いた評価技術とその貢献 生物工学会誌第92巻9号「特集:再生医療実現に向けた幹細胞培養工学の最前線」

    加藤竜司,清田泰次郎,備瀬竜馬

    生物工学会   2014.12

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 品質管理が開く再生医療‐画像解析による培養品質管理

    @備瀬竜馬

    医療機器学会誌   2011.5

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

▼display all

Industrial property rights

Patent   Number of applications: 4   Number of registrations: 1
Utility model   Number of applications: 0   Number of registrations: 0
Design   Number of applications: 0   Number of registrations: 0
Trademark   Number of applications: 0   Number of registrations: 0

Professional Memberships

  • IEEE

  • Information Processing Society of Japan

  • IEICE

Committee Memberships

  • Area Chair   Domestic

    2022.2 - 2022.8   

  • The 16th Asian Conference on Computer Vision (ACCV2022)   DEMO & EXHIBITION CHAIR   Foreign country

    2021.10 - 2023.3   

  • 2022年度(第75回)電気・情報関係学会九州支部連合大会   プログラム副編集委員長   Domestic

    2021.10 - 2022.8   

  • International Conference on Machine Vision Applications (MVA2023)   Financial Chair   Foreign country

    2021.3 - 2024.3   

  • Area Chair   Domestic

    2021.2 - 2021.8   

  • Steering committee member   Domestic

    2020.4 - 2023.3   

  • Area Chair   Domestic

    2020.2 - 2020.8   

  • Workshop on Computer Vision for Microscopy Image Analysis (CVMI)   Program Comittee   Foreign country

    2020.2 - 2020.7   

  • International Conference on Machine Vision Applications (MVA2021)   Financial Chair   Foreign country

    2020.1 - 2021.6   

  • Pacific-Rim Symposium on Image and Video Technology (PSIVT2019)   Program Comittee   Foreign country

    2019.2 - 2019.11   

  • Program Comittee   Domestic

    2019.2 - 2019.8   

  • Pacific-Rim Symposium on Image and Video Technology (PSIVT2018)   Program Comittee   Foreign country

    2018.2 - 2018.11   

  • Program Comittee   Domestic

    2018.2 - 2018.8   

  • Pacific-Rim Symposium on Image and Video Technology (PSIVT2017)   Program Comittee   Foreign country

    2017.2 - 2017.11   

  • Program Comittee   Domestic

    2017.2 - 2017.8   

  • Workshop on Computer Vision for Microscopy Image Analysis (CVMI)   Program Comittee   Foreign country

    2017.2 - 2017.7   

▼display all

Academic Activities

  • Program Chair International contribution

    The Workshop on Computer Vision for Microscopy Image Analysis (CVMI) in CVPR2024  ( Seattle UnitedStatesofAmerica ) 2024.3 - 2024.6

     More details

    Type:Competition, symposium, etc. 

  • Area Chair International contribution

    The 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI2024)  ( MARRAKESH Morocco ) 2024.2 - 2024.6

     More details

    Type:Competition, symposium, etc. 

  • Area Chair International contribution

    The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) 2024  ( Seattle Japan ) 2023.11 - 2024.6

     More details

    Type:Competition, symposium, etc. 

  • General Chair International contribution

    9th International Conference on Machine Vision Applications(MVA)  ( - Japan ) 2023.10 - 2025.8

     More details

    Type:Competition, symposium, etc. 

  • プログラム編集委員長

    2023年度(第76回)電気・情報関係学会九州支部連合大会  ( 崇城大学, 熊本 ) 2023.9

     More details

    Type:Competition, symposium, etc. 

  • Financial Chair International contribution

    8th International Conference on Machine Vision Applications(MVA)  ( Japan ) 2023.7

     More details

    Type:Competition, symposium, etc. 

  • Program Chair International contribution

    The Workshop on Computer Vision for Microscopy Image Analysis (CVMI) in CVPR2023  ( Vancouver, Canada UnitedStatesofAmerica ) 2023.6 - 2022.6

     More details

    Type:Competition, symposium, etc. 

  • DEMO & EXHIBITION CHAIRS International contribution

    16th Asian Conference on Computer Vision (ACCV2022)  ( Macau China ) 2022.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム副編集委員長

    2022年度(第75回)電気・情報関係学会九州支部連合大会  2022.9

     More details

    Type:Competition, symposium, etc. 

  • Area chair

    ( Japan ) 2022.7

     More details

    Type:Competition, symposium, etc. 

  • Program Chair International contribution

    The Workshop on Computer Vision for Microscopy Image Analysis (CVMI)  ( online UnitedStatesofAmerica ) 2022.6

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Proceedings of International Conference Number of peer-reviewed papers:18

  • Area chair

    ( Japan ) 2021.7

     More details

    Type:Competition, symposium, etc. 

  • Financial Chair International contribution

    7th International Conference on Machine Vision Applications(MVA)  ( online Japan ) 2021.7

     More details

    Type:Competition, symposium, etc. 

  • Program Chair International contribution

    The Workshop on Computer Vision for Microscopy Image Analysis (CVMI)  ( online UnitedStatesofAmerica ) 2021.6

     More details

    Type:Competition, symposium, etc. 

  • Program committee International contribution

    WACV2021  ( online UnitedStatesofAmerica ) 2021.1

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2021

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Proceedings of International Conference Number of peer-reviewed papers:20

  • Area chair

    ( Japan ) 2020.8

     More details

    Type:Competition, symposium, etc. 

  • Program Chair International contribution

    The 29th International Joint Conference on Artificial Intelligence and the 17th Pacific Rim International Conference on Artificial Intelligence  ( Yokohama Japan ) 2020.7 - 2020.4

     More details

    Type:Competition, symposium, etc. 

    Number of participants:7,500

  • Program Chair International contribution

    The Workshop on Computer Vision for Microscopy Image Analysis (CVMI)  ( Seattle UnitedStatesofAmerica ) 2020.6

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Proceedings of International Conference Number of peer-reviewed papers:14

  • Program Chair International contribution

    Pacific-Rim Symposium on Image and Video Technology (PSIVT)  ( Sydney Australia ) 2019.11

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Number of peer-reviewed articles in Japanese journals:3

    Proceedings of International Conference Number of peer-reviewed papers:16

    Proceedings of domestic conference Number of peer-reviewed papers:2

  • Program Committee International contribution

    Pacific-Rim Symposium on Image and Video Technology (PSIVT)  ( Wuhan, China China ) 2018.11

     More details

    Type:Competition, symposium, etc. 

  • General Chair International contribution

    The Joint Workshop on Machine Perception and Robotics (MPR)  ( Nishijin Plaza, Fukuoka-city Japan ) 2018.10

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:9

    Proceedings of domestic conference Number of peer-reviewed papers:1

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

    Number of peer-reviewed articles in Japanese journals:3

    Proceedings of International Conference Number of peer-reviewed papers:13

    Proceedings of domestic conference Number of peer-reviewed papers:0

▼display all

Research Projects

  • データサンプリングを前提とした機械学習の包括的枠組み

    Grant number:24K03002  2024.4 - 2029.3

    科学研究費助成事業  基盤研究(B)

    末廣 大貴, 備瀬 竜馬

      More details

    Grant type:Scientific research funding

    本研究では学習問題における「学習目的」(分類精度,適合率,回帰精度の最大化など)と「教師データ条件」(教師ありデータ,半教師ありデータなど)に着目し,汎用化に取り組む. 具体的には,以下の3つを明らかにする.
    ①多様な学習目的に対応する汎用データサンプリングの枠組み
    ②多様な教師データ条件に対応する汎用データサンプリングの枠組み
    ③複数の教師データ条件に対応する汎用データサンプリングの枠組み

    CiNii Research

  • Learning from partial label proportion for pathological image diagnosis

    Grant number:23K18509  2023 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    CiNii Research

  • Domain adaptation using curriculum learning.for biomedical image analysis

    Grant number:21K19829  2021 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

    Bise Ryoma

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    In this research project, we developed methods to address the domain shift problem in bio-medical image analysis. For example, we proposed a curriculum-based approach for learning cell shapes in cell detection tasks, gradually expanding the domain. This method aimed to overcome the challenge of models trained on a specific dataset (source domain) not performing well on datasets captured under different conditions (target domain). As a result, many paper were accepted in a top journal and conferences, e.g., MedIA (IF: 13.828), MICCAI (h5-index: 78), ISBI2023 (h5-index: 55), and WACV2022 (h5-index: 76).

    CiNii Research

  • 診断・治療適用のための光超音波3Dイメージングによる革新的画像診断装置の開発 「画像再構成技術の開発、およびAIによる生体特徴量解析」

    2020 - 2024

    国立研究開発法人日本医療研究開発機構 先進的医療機器・システム等技術開発事業

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • Weakly supervised learning using domain knowledge and meta-data in life science

    Grant number:20H04211  2020 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Bise Ryoma

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    In this research project, we develop machine-learning methods that use weakly-supervised data, which can be easily obtained based on specific to the life sciences domain. Specifically, we proposed methods for various tasks such as cell image analysis, pathology image analysis, and other applications, including detection, region segmentation, and tracking. As a result, we achieved significant outcomes, including 17 peer-reviewed papers, which included three publications in top journals (MedIA) and seven publications in top international conferences (ECCV, MICCAI, ICASSP).

    CiNii Research

  • AMED: 診断・治療適用のための光超音波3Dイメージングによる革新的画像診断装置の開発

    2019.9 - 2024.3

      More details

    Authorship:Coinvestigator(s) 

    脈管(血管、リンパ管)は、癌の増殖・転移、肝炎などの慢性炎症、虚血性心疾患、生活習慣病などに係わる重要疾患において、その発症と病勢を支配する極めて重要な要素である。特に、がん薬物治療の効果評価や、がんによって失われた機能を回復する再建術、がん術後後遺症であるリンパ浮腫外科治療の手技の向上において、微細な血管やリンパ管の「見える化」における必要度が一層高まっているが、既存の医療画像装置はこのニーズに応えるには機能や解像度の点で不十分であった。
    本研究開発課題では、光超音波3Dイメージング技術を開発することで、脈管を無被ばくかつ簡便に高解像度で三次元可視化する画像診断ソリューションを実現する事を目的としている。これまで三次元の可視化が困難であった0.2mmの細血管とリンパ管を画像化することで、高いスキルの必要なマイクロサージェリーによる再建術やリンパ浮腫外科治療等の診断・治療を確実かつ迅速に実施できる診断画像を提供し、さらに術後の外科的治療効果や乳がん薬物治療効果の評価モニタリングを実現するものである。

  • 医療ビッグデータ利活用を促進するクラウド基盤・AI画像解析に関する研究

    2019.4 - 2021.3

    国立研究開発法人日本医療研究開発機構 

      More details

    Authorship:Coinvestigator(s) 

    クラウド基盤の整備では、提案者らがこれまでに構築した既存のクラウド基盤を最大限に活用することにより、研究期間開始当初から、大量の医療画像データを収集・解析することを可能とする。本クラウド基盤では、学術団体が収集する匿名化された医療画像データを学術団体のデータベースからSINET5を経由してクラウド基盤へ高速に転送することが可能である。提案者らは、2018年度までに実施した臨床研究等ICT基盤構築研究事業の研究において、学術団体からのニーズ調査を実施しており、これらのニーズを満足する医療画像データの受入機能を提供する。また、AMEDが支援する学術団体が新たに追加された場合には、当該団体のニーズを調査し、クラウド基盤の機能拡張を行う。医療画像データの解析では、画像解析研究者が自ら開発した解析プログラムをクラウド基盤に持ち込み、医療画像データを解析することを可能とする。近年のAIを用いた画像解析では、深層学習を用いた方式が主流であるが、計算量が非常に大きいことが問題となる。クラウド基盤では、大量の計算を並列化して高速実行可能な高性能GPUを搭載したサーバを活用することでこの問題を解決する。
    AI画像解析技術の開発は、本提案にまつわるAI開発研究チームと、AMEDが支援する学術団体等と有機的に連携し、AI研究者と医学系研究者、さらには臨床現場も組み入れたPDCAサイクルに基づく手法をとる。こうした手法に基づき、戦略設計、タスク設定、学習データ整備、技術開発等を実施する。戦略設計においては、本提案にまつわる研究グループが主導的に開発課題の戦略設計を行い、各課題解決においてすべてのプロジェクトのシナジー効果を狙う。各参画機関は、国立情報学研究所では全体取りまとめを行い、同時に深層学習を中心とした機械学習技術の応用による医療画像解析についての検討を行う。東京大学は、深層学習を用いた医療画像解析、特に病変部分の高精度の検出手法について検討を行う。名古屋大学は、高度医用画像認識、特に画像中の撮影部位の分類やセグメンテーション等の検討を行う。九州大学では深層学習を含むパターン認識技術を用いた医用画像解析について検討を行う。奈良先端大学では、特に技術の応用面について検討し、具体的には手術支援技術について検討を行う

  • 正例自動サンプリングPU-Learningによるバイオ医療画像解析の省略化

    Grant number:19K22895  2019 - 2020

    日本学術振興会  科学研究費助成事業  挑戦的研究(萌芽)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • データ駆動型科学に基づく革新デバイス実現のための プラットフォーム開発

    2019

    I&E融合若手スタートアップ支援

      More details

    Authorship:Coinvestigator(s)  Grant type:On-campus funds, funds, etc.

  • 新学術領域(公募班):「動画中の多物体同時追跡技術」を用いた細胞社会のダイナミクスと広がりの定量的把握

    2018.5

      More details

    Authorship:Principal investigator 

    組織・臓器内のダイバーシティに富む細胞間の相互作用解析による生命現象の原理の解明や数理解析による理論構築といった研究において,自動定量技術は重要である.従来の細胞検出・追跡手法等の定量化技術は,単一種の細胞を仮定している場合が多く,本領域のようなダイバーシティに富む環境においては課題が残る.そこで,本研究課題では,細胞社会のような複数の細胞種が同時に存在しうる多様な環境を対象とした「動画中の多物体同時最適技術」と「多様なデータ解析技術」を用いた細胞社会のダイナミクスと広がりの定量的把握と知識発見を目的とする(図1).代表者保有の細胞検出・追跡技術を発展させ,新たに複数種の細胞を対象とした機械学習,細胞種(形状類似度)による対応付け制約等を導入した最適化対応付け手法を提案・導入することで,複数の細胞種が混在するダイバーシティに富む環境でもロバストに精度よく検出・追跡可能な手法を実現する.そして,個々の細胞の位置情報を示す「細胞社会における個々の細胞の広がり」,どこにどんな細胞種の集合が分布しているかといった「細胞社会全体の空間的広がり」,動的データから,個々の細胞が「いつ・どの細胞が・どう動いたか」「分裂・細胞死したか」の情報を示す「細胞社会構成員の個々のダイナミクス」,細胞社会の中で,どんな細胞種が集団としてどのように移動して,いつ遺伝子発現を行ったかを示す「細胞社会全体のダイナミクス」の定量化,及び「4方向それぞれの定量化結果からの知識発見」に必要な画像処理技術を新規に研究開発する.さらに,本領域の他の研究テーマに対して応用展開することで,知識発見に貢献する.

  • 新学術領域:公募班「超高密度環境でロバスト性と汎用性を実現した多物体追跡の研究開発と応用」

    2018.4 - 2020.3

      More details

    Authorship:Principal investigator 

    生体内・組織内における分子・細胞レベルでの静止画像・動画像・4D(3D+時間)画像の観測による生命現象の解明に関する研究において,より生体内に近い状態での画像定量化技術及びデータ解析技術は非常に重要になる.これまでのディッシュ上での観察と比べ,生体内では,細胞や分子等の観察対象が超高密度・大量に分布しており,画像データからの自動定量評価が難しいという課題があり,生物学分野における定量化研究の障壁となっている.
    本研究課題では,「対象物体が超高密度で大量分布している環境においてロバスト性と汎用性を実現する多物体追跡技術」と「群としての対象挙動指標の解析技術による知識発見」を開発・提供することで,客観的な評価・膨大なデータへのスケールアップを可能とし,これらの技術とバイオイメージング技術とのシナジーを起こし,生物学分野への技術革新起に貢献することを目的とする.

  • 超高密度環境でロバスト性と汎用性を実現した多物体追跡の研究開発と応用

    Grant number:18H04738  2018 - 2019

    日本学術振興会・文部科学省  科学研究費助成事業  新学術領域研究

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 「動画中の多物体同時追跡技術」を用いた細胞社会のダイナミクスと広がりの定量的把握

    Grant number:18H05104  2018 - 2019

    日本学術振興会・文部科学省  科学研究費助成事業  新学術領域研究

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • ImPACT「イノベーティブな可視化技術による新成長」

    2017.4 - 2019.3

      More details

    Authorship:Coinvestigator(s) 

    高齢化社会の到来に伴い、健康長寿で豊かな生活を実現し、病気や介護への不安を解消させる技術サポートが求められています。NIIは、病気の早期診断や超精密検査の実現を目指すImPACTに参加し、生体や物体内部を非侵襲・非破壊でリアルタイム三次元可視化する光超音波イメージングの高度化を行っています。光超音波システムは、レーザー照射により発生する超音波を検出し可視化する最先端計測技術です。この技術は、非侵襲・非破壊である上に、透過して深部まで照射できる光と超音波の両方の特性を活かし、肉眼では見えない様々な対象の可視化を可能にします。本研究では、コンピュータビジョン技術により、鮮明な画像を得るイメージング技術の高度化や、様々な情報を用いた画像解析による診断支援を行っています。例えば、撮影中の患者の体動による画質劣化に対して、画像の位置合わせにより患者の動きを補正し、画質改善した診断しやすい画像を提供できるようになります。また、疾病に関係が深い血管状態を把握するため、血管構造の自動抽出技術の開発を進めています。

  • 生体データ解析に基づく画像バイオマーカの抽出

    2017 - 2018

    革新的研究開発推進プログラム (ImPACT) 「イノベーティブな可視化技術による新成長産業の創出」

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • バイオメディカル画像解析を中心としたデータサイエンス研究

    2017

    システム情報科学研究院・スタートアップ支援経費

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • 全胚3D蛍光トラッキング法を用いた中内胚葉誘導因子の活性定量と細胞運命の追跡

    Grant number:25460258  2016 - 2018

    日本学術振興会  科学研究費助成事業  基盤研究(C)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

▼display all

Class subject

  • データサイエンス発展

    2023.10 - 2024.3   Second semester

  • システムプログラミング演習

    2023.10 - 2024.3   Second semester

  • データサイエンス実践Ⅳ

    2023.6 - 2023.8   Summer quarter

  • データサイエンス実践Ⅰ

    2023.6 - 2023.8   Summer quarter

  • データサイエンス実践Ⅱ

    2023.6 - 2023.8   Summer quarter

  • データサイエンス実践Ⅲ

    2023.6 - 2023.8   Summer quarter

  • システムプログラミング演習

    2022.10 - 2023.3   Second semester

  • プログラミング演習

    2022.6 - 2022.8   Summer quarter

  • データサイエンス実践Ⅳ

    2022.4 - 2022.9   First semester

  • データサイエンス実践Ⅰ

    2022.4 - 2022.9   First semester

  • データサイエンス実践Ⅱ

    2022.4 - 2022.9   First semester

  • データサイエンス実践Ⅲ

    2022.4 - 2022.9   First semester

  • システムプログラミング演習

    2021.10 - 2022.3   Second semester

  • データサイエンス演習二

    2021.6 - 2021.8   Summer quarter

  • プログラミング演習

    2021.6 - 2021.8   Summer quarter

  • データサイエンス概論二

    2021.6 - 2021.8   Summer quarter

  • データサイエンス演習一

    2021.6 - 2021.8   Summer quarter

  • システムプログラミング演習

    2020.10 - 2021.3   Second semester

  • データサイエンス演習二

    2020.4 - 2020.9   First semester

  • データサイエンス概論二

    2020.4 - 2020.9   First semester

  • データサイエンス演習一

    2020.4 - 2020.9   First semester

  • システムプログラミング演習

    2019.10 - 2020.3   Second semester

  • データサイエンス演習二

    2019.4 - 2019.9   First semester

  • データサイエンス概論二

    2019.4 - 2019.9   First semester

  • データサイエンス演習一

    2019.4 - 2019.9   First semester

  • システムプログラミング演習

    2018.10 - 2019.3   Second semester

  • データサイエンス概論二

    2018.4 - 2018.9   First semester

  • プログラミング演習

    2018.4 - 2018.9   First semester

  • データサイエンス演習二

    2018.4 - 2018.9   First semester

  • データサイエンス演習一

    2018.4 - 2018.9   First semester

  • システムプログラミング演習

    2017.10 - 2018.3   Second semester

  • システムプログラミング演習

    2017.10 - 2018.3   Second semester

  • データサイエンス演習二

    2017.4 - 2017.9   First semester

  • データサイエンス概論二

    2017.4 - 2017.9   First semester

  • データサイエンス演習一

    2017.4 - 2017.9   First semester

▼display all

FD Participation

  • 2022.1   Role:Participation   Title:【シス情FD】シス情関連の科学技術に対する国の政策動向(に関する私見)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.11   Role:Participation   Title:【シス情FD】若手教員による研究紹介 及び 研究費獲得のポイント等について③

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.10   Role:Participation   Title:【シス情FD】熊本高専と九大システム情報との交流・連携に向けて ー 3年半で感じた高専の実像 ー

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.9   Role:Participation   Title:博士後期課程の充足率向上に向けて

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.7   Role:Participation   Title:若手教員による研究紹介 及び 科研取得のポイント、その他について ②

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.6   Role:Participation   Title:若手教員による研究紹介 及び 科研取得のポイントについて ①

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.5   Role:Participation   Title:先導的人材育成フェローシップ事業(情報・AI分野)について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.12   Role:Participation   Title:Moodle&MS Teams連携によるオンライン講義実施報告(Youtube Prezi Powerpoint Wolframcloud そして TeX)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.11   Role:Participation   Title:マス・フォア・イノベーション卓越大学院について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.6   Role:Participation   Title:どんな3ポリシーが、どのように役立つのか ー 九州大学カリキュラム・マップの威力 -

    Organizer:Undergraduate school department

  • 2020.5   Role:Participation   Title:オンサイト授業 vs. オンライン授業:分かったこと,変わったこと

    Organizer:Undergraduate school department

  • 2020.4   Role:Participation   Title:新型コロナウイルスが誘起した社会変化に対する システム情報科学からの提言

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.4   Role:Participation   Title:Moodleを利用したe-Learning実例報告

    Organizer:Undergraduate school department

  • 2020.2   Role:Participation   Title:九州大学工学系改組の現状と今後の予定

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2022  慶応義塾大学医学部解剖学教室  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年11月―2023年3月

  • 2022  国立情報学研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年4月―2023年3月

  • 2021  慶応義塾大学医学部解剖学教室  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年11月―2022年3月

  • 2021  国立情報学研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年4月―2022年3月

  • 2020  国立情報学研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年4月―2021年3月

  • 2020  慶応義塾大学医学部解剖学教室  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年11月―2021年3月

  • 2019  国立情報学研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年4月―2021年3月

  • 2019  慶応義塾大学医学部解剖学教室  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年11月―2021年3月

  • 2018  国立情報学研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年4月―2021年3月

  • 2018  京都大学医学研究科外科学講座  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年4月―2019年3月

  • 2018  慶応義塾大学医学部解剖学教室  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年11月―2021年3月

  • 2017  国立情報学研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年4月―2020年3月

  • 2017  京都大学医学研究科外科学講座  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年4月―2019年3月

  • 2017  慶応義塾大学医学部解剖学教室  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2017年11月―2020年3月

▼display all

Other educational activity and Special note

  • 2022  Class Teacher 

  • 2021  Class Teacher 

  • 2020  Class Teacher 

  • 2019  Class Teacher 

  • 2018  Class Teacher