Updated on 2024/10/02

Information

 

写真a

 
IKEGAMI KEISUKE
 
Organization
Faculty of Agriculture Department of Bioresource Sciences Associate Professor
School of Agriculture Department of Bioresource and Bioenvironment(Concurrent)
Graduate School of Bioresource and Bioenvironmental Sciences Department of Bioscience and Biotechnology(Concurrent)
Title
Associate Professor
Contact information
メールアドレス
Tel
0928024598
Profile
Many organisms living on the Earth have a circadian clock with about 24-hour period, allowing important physiological functions to adapt to ambient light-dark cycle. A master clock in the brain called the suprachiasmatic nucleus (SCN) governs peripheral rhythms via hormonal and neural pathways. Furthermore, this clock is also important for seasonal responses by photoperiodic time measurement. Understanding these mechanisms will not only contribute animal reproduction and health, but also lead to breakthroughs in solving various issues facing modern society.    Currently, we are using mice, cells, and BIG data to understand glaucoma, which has the highest rate of blindness by using medical, behavioral, molecular biological, histological, physiological, functional, and data science techniques. We aim to elucidate the molecular mechanism underlying diurnal rhythm of intraocular pressure (inner eye pressure), and the relationship with lifestyle.     In addition, melatonin in the pineal gland, known as a sleep hormone, is known to be important in the circadian regulation and seasonal responses. However, its effects on other physiological functions remains uncovered. Furthermore, although pineal humoral factors other than melatonin are also synthesized, their functions also remain unclear. Therefore, we are trying to elucidate the physiological regulation of the pineal gland on the circadian clock, behavior, mood, and perceptual functions.
Homepage

Research Areas

  • Life Science / Ophthalmology

  • Life Science / Physiology

  • Life Science / Animal physiological chemistry, physiology and behavioral biology

Degree

  • Doctor of Agricultural Science

Research History

  • Kyushu University Faculty of Agriculture Associate Professor 

    2023.4 - Present

      More details

  • Aichi Medical University School of Medicine Lecturer 

    2021.1 - 2023.3

      More details

  • 2010年4月-2013年3月  JSPS 特別研究員(DC1) 2013年4月-2018年3月  近畿大学医学部 解剖学教室 助教 2018年4月-2020年12 月 愛知医科大学医学部 生理学講座 助教 2021年1月-2023年3月  愛知医科大学医学部 生理学講座 講師   

Research Interests・Research Keywords

  • Research theme: Seasonal changes of glycosylation on pituitary hormone in vertebrates

    Keyword: Glycosylation, pituitary hormone, seasonal changes

    Research period: 2024.5

  • Research theme: Understanding of effects of lifestyles and fatty acids on intraocular pressure for glaucoma therapy

    Keyword: BIG data, ToMMo, Lifestyle, season, weekly rhythm, feeding, nutritions, sleep, aging, fatty acid, trabecular meshwork, aquous humor, phagocytosis

    Research period: 2024.5

  • Research theme: 緑内障

    Keyword: 緑内障

    Research period: 2024

  • Research theme: retina

    Keyword: retina

    Research period: 2024

  • Research theme: glycan

    Keyword: glycan

    Research period: 2024

  • Research theme: aqueous humor

    Keyword: aqueous humor

    Research period: 2024

  • Research theme: intraocular pressure

    Keyword: intraocular pressure

    Research period: 2024

  • Research theme: TSH

    Keyword: TSH

    Research period: 2024

  • Research theme: circadian rhythm

    Keyword: circadian rhythm

    Research period: 2024

  • Research theme: pineal gland

    Keyword: pineal gland

    Research period: 2024

  • Research theme: after effect

    Keyword: after effect

    Research period: 2024

  • Research theme: seasonal responces

    Keyword: seasonal responces

    Research period: 2024

  • Research theme: sympathetic nervous system

    Keyword: sympathetic nervous system

    Research period: 2024

  • Research theme: melatonin

    Keyword: melatonin

    Research period: 2024

  • Research theme: glucocorticoids

    Keyword: glucocorticoids

    Research period: 2024

  • Research theme: trabecular meshwork

    Keyword: trabecular meshwork

    Research period: 2024

  • Research theme: suprachiasmatic nucleus SCN

    Keyword: suprachiasmatic nucleus SCN

    Research period: 2024

  • Research theme: Mechanisms of Life style on glaucoma development

    Keyword: life style, sleep, feeding, exacise, stress, IOP, glaucoma, season

    Research period: 2023.1

  • Research theme: Understanding of molecular mechanisms on circadian intraocular pressure rhythm

    Keyword: IOP, glaucoma, circadian rhythm, glucocorticoids, sympathetic noradrenaline, ciliary body, trabecular meshwork, aqueous humor

    Research period: 2020.4

  • Research theme: Pathway research of time signals regulating circadian intraocular pressure rhythm.

    Keyword: glucocorticoids, sympathetic nerve system, noradrenaline, SCG, adrenal gland, IOP, circadian rhythm, mice, Per2lucKI, cBmal1KO

    Research period: 2018.4 - 2020.10

  • Research theme: Regulatory mechanisms of pineal gland on circadian physiological functions

    Keyword: pineal gland, melatonin, circadian rhythm, suprachismatic nucleous, free-running period, jet-lag, negative-masking, retina, Opn4

    Research period: 2016.9

  • Research theme: Regulatory mechanisms of pineal humoral factors on mood in mice

    Keyword: pineal gland, melatonin, mice, autism, ASD, hyper activity, spcial interaction, brain development

    Research period: 2015.4

  • Research theme: Circadian yawning rhythm in rat

    Keyword: yawning, rat, diurnal changes, siesta

    Research period: 2014.3

  • Research theme: Effects of St8sia2 and its flanking region's IGF1 gene on murine development.

    Keyword: St8sia2, sialic acid, IGF1, brain, lethal, embryo, development, flanking region, C57BL/6 mice

    Research period: 2013.6 - 2019.6

  • Research theme: Glycans on TSH give dual physiological functions

    Keyword: Thyroid stimulating hormone, spring hormone, pars tuberalis, thyroid gland, sialic acid, IgG albumine, season

    Research period: 2010.4 - 2014.4

  • Research theme: Exploring of seasonal calender in fish brain

    Keyword: saccus vasculosus, pituitary gland, photoreceptor, TSH, Dio2, gonadal development

    Research period: 2010.4 - 2012.12

  • Research theme: Molecular mechanisms of photoperiodic time-measurement in vertebrates

    Keyword: photoperiodism, seasonal reproduction, circadian clock, day-length, TSH, mice, quail

    Research period: 2008.4 - 2013.3

  • Research theme: Effects of insuin on hepatic circadian rhythm regulation.

    Keyword: circadian clock genes, cell culture, phase, insulin, liver, rat

    Research period: 2007.4 - 2008.3

Awards

  • 第3回Rising Star リトリート ポスター賞

    2024.6   日本医学会連合  

    池上啓介

     More details

  • 久野寧記念賞

    2024.3   日本生理学会 環境生理学グループ   眼球線維柱帯におけるノルアドレナリンによる夜間食作用抑制が眼圧を上昇させる仕組みの解明

     More details

    “緑内障”は視神経が傷害され失明してしまう日本では失明原因第1位の眼疾患である。加齢に伴い発症が増加し、高齢化が進む多くの国々で非常に問題となっているが、予防や根治の方法は未だ確立されていない。さらに、進行が遅く、自覚症状が少ないため、気づいた時には悪化している場合が多いことから、新たな予防方法や治療法の開発が喫緊の課題になっている。
    眼圧は眼房水の産生と排出のバランスにより形成され、眼圧リズムの乱れは緑内障リスクを高めると考えられている。眼圧には昼行性夜行性生物関係なく夜間上昇する特徴的な概日リズムを示し、緑内障治療の鍵は夜間眼圧制御であるが、そもそも眼圧リズムの仕組みが分かっていなかった。眼圧リズムの昼夜逆転やリズムの消失は視神経障害と正の相関を示し、一部の緑内障患者は眼圧リズム異常である。このように緑内障発症は眼圧リズムと密接に関係し、眼圧リズム形成の仕組みの理解が必要不可欠である。これまでの我々の研究で、副腎グルココルチコイド(GC)および交感神経ノルアドレナリン(NE)の時間シグナルが、眼房水産生を介して眼圧リズムを生み出す仕組みを示唆した。しかし、眼房水排出を制御する仕組みは不明であったため、本研究では眼房水排出の概日制御機構の解明を目指した。
    マウスの眼房水産生や排出を制御することにより、排出が明期の眼圧低下に関与し、明期で高く暗期では低いことを示唆した。排出機構には細胞骨格の可塑性や食作用による排出抵抗の軽減が関わるが、薬理学的方法により明期の食作用増加が眼圧低下に関与することを発見した。そこで、GCとNEの排出責任部位である線維柱帯の食作用への影響を、ヒト不死化初代培養線維柱帯細胞で検証した。その結果、食作用に概日振動は見られなかったが、NEが食作用抑制する現象が明らかになった。ホスファチジルイノシトール三リン酸(PIP3)は食作用を促すことが知られているが、NEの制御経路を逆遺伝学および薬理学的にin vitroで探索したところ、主にβ1アドレナリン受容体を介してEPAC経路が活性化され、PIP3分解酵素SHIP1をリン酸化して線維柱帯PIP3を低下させることが示唆された。さらに、この経路の重要性をマウスの眼圧で検証したところ、β1受容体アゴニストDobutamineによる眼圧上昇には食作用抑制やEPAC/SHIP1活性化が関与し、夜間の眼圧上昇にはこれらの制御を介することが示唆された。本研究により、夜間の交感神経NE分泌上昇が線維柱帯食作用を抑制し、眼房水排出制御を介して眼圧リズムを形成する機構を明らかにした。これらの発見から緑内障患者への時間治療への応用が期待できる。

  • 第28回久野寧記念賞

    2024.3   日本生理学会 環境生理学グループ  

    池上啓介

     More details

  • 第100回日本生理学会学術大会 入澤宏・彩記念若手研究奨励賞

    2023.3   日本生理学会  

  • 第100回日本生理学会学術大会 入澤宏・彩記念若手研究奨励賞

    2023.3   日本生理学会  

    池上啓介

     More details

  • 第19回 (2021年度)日本時間生物学会学術奨励賞

    2021.11   日本時間生物学会   基礎科学部門

  • 第 61 回( 2020 年度)学術 奨励賞(医学)

    2021.6   公益財団法人 宇部興産学術振興財団  

  • ポスター賞

    2013.1   IGER(グリーン自然科学国際教育研究プログラム) annual meeting 2012、名古屋  

  • ポスター賞

    2012.9   第19回日本時間生物学会  

  • Young Investigator Award

    2012.6   10th International Symposium on Avian Endocrinology   Young Investigator Award

▼display all

Papers

  • Circadian rhythm of intraocular pressure Invited Reviewed

    Keisuke Ikegami

    The Journal of Physiological Sciences   74 ( 1 )   14   2024.3   ISSN:1880-6546 eISSN:1880-6562

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:The journal of physiological sciences : JPS  

    Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the β1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.

    DOI: 10.1186/s12576-024-00905-8

    Web of Science

    Scopus

    PubMed

    researchmap

  • FcRY is a key molecule controlling maternal blood IgY transfer to yolks during egg development in avian species Reviewed

    Mayuko Okamoto, Ryo Sasaki, Koki Ikeda, Kasumi Doi, Fumiya Tatsumi, Kenzi Oshima, Takaaki Kojima, Shusei Mizushima, Keisuke Ikegami, Takashi Yoshimura, Kyohei Furukawa, Misato Kobayashi, Fumihiko Horio, Atsushi Murai

    Frontiers in Immunology   15   2024.2   eISSN:1664-3224

     More details

    Language:Others   Publishing type:Research paper (scientific journal)   Publisher:Frontiers Media SA  

    Maternal immunoglobulin transfer plays a key role in conferring passive immunity to neonates. Maternal blood immunoglobulin Y (IgY) in avian species is transported to newly-hatched chicks in two steps: 1) IgY is transported from the maternal circulation to the yolk of maturing oocytes, 2) the IgY deposited in yolk is transported to the circulation of the embryo via the yolk sac membrane. An IgY-Fc receptor, FcRY, is involved in the second step, but the mechanism of the first step is still unclear. We determined whether FcRY was also the basis for maternal blood IgY transfer to the yolk in the first step during egg development. Immunohistochemistry revealed that FcRY was expressed in the capillary endothelial cells in the internal theca layer of the ovarian follicle. Substitution of the amino acid residue in Fc region of IgY substantially changed the transport efficiency of IgY into egg yolks when intravenously-injected into laying quail; the G365A mutant had a high transport efficiency, but the Y363A mutant lacked transport ability. Binding analyses of IgY mutants to FcRY indicated that the mutant with a high transport efficiency (G365A) had a strong binding activity to FcRY; the mutants with a low transport efficiency (G365D, N408A) had a weak binding activity to FcRY. One exception, the Y363A mutant had a remarkably strong binding affinity to FcRY, with a small dissociation rate. The injection of neutralizing FcRY antibodies in laying quail markedly reduced IgY uptake into egg yolks. The neutralization also showed that FcRY was engaged in prolongation of half-life of IgY in the blood; FcRY is therefore a multifunctional receptor that controls avian immunity. The pattern of the transport of the IgY mutants from the maternal blood to the egg yolk was found to be identical to that from the fertilized egg yolk to the newly-hatched chick blood circulation, via the yolk sac membrane. FcRY is therefore a critical IgY receptor that regulates the IgY uptake from the maternal blood circulation into the yolk of avian species, further indicating that the two steps of maternal–newly-hatched IgY transfer are controlled by a single receptor.

    DOI: 10.3389/fimmu.2024.1305587

    Scopus

    researchmap

  • Circadian expression and specific localization of synaptotagmin17 in the suprachiasmatic nucleus, the master circadian oscillator in mammals. Reviewed International journal

    Atsuko Fujioka, Mamoru Nagano, Keisuke Ikegami, Koh-Hei Masumoto, Tomoko Yoshikawa, Satoshi Koinuma, Ken-Ichi Nakahama, Yasufumi Shigeyoshi

    Brain research   1798   148129 - 148129   2022.11   ISSN:00068993

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Brain Research  

    The localization and function of synaptotagmin (syt)17 in the suprachiasmatic nucleus (SCN) of the brain, which is the master circadian oscillator, were investigated. The Syt17 mRNA-containing neurons were mainly situated in the shell region while SYT17 immunoreactive cell bodies and neural fibers were detected in the core and shell of the SCN and the subparaventricular zone (SPZ). Further, electron microscopy analysis revealed SYT17 in the rough endoplasmic reticulum (rER), Golgi apparatus (G), and large and small vesicles of neurons. Syt17 mRNA expression in the SCN showed a circadian rhythm, and light exposure at night suppressed its expression. In addition, the free running period of locomotor activity rhythm was shortened in Syt17-deletion mutant mice. These findings suggest that SYT17 is involved in the regulation of circadian rhythms.

    DOI: 10.1016/j.brainres.2022.148129

    Scopus

    PubMed

    researchmap

  • Suppression of trabecular meshwork phagocytosis by norepinephrine is associated with nocturnal increase in intraocular pressure in mice Reviewed

    Keisuke Ikegami, Satoru Masubuchi

    Communications Biology   5 ( 1 )   339   2022.4

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)   Publisher:Communications Biology  

    Intraocular pressure (IOP) is an important factor in glaucoma development, which involves aqueous humor (AH) dynamics, with inflow from the ciliary body and outflow through the trabecular meshwork (TM). IOP has a circadian rhythm entrained by sympathetic noradrenaline (NE) or adrenal glucocorticoids (GCs). Herein, we investigated the involvement of GC/NE in AH outflow. Pharmacological prevention of inflow/outflow in mice indicated a diurnal outflow increase, which was related to TM phagocytosis. NE showed a non-self-sustained inhibition in phagocytosis of immortalized human TM cells, but not GC. The pharmacological and reverse genetic approaches identified β1-adrenergic receptor (AR)-mediated exchange proteins directly activated by cyclic adenosine monophosphate (EPAC)-SHIP1 signal activation by ablation of phosphatidylinositol triphosphate, regulating phagocytic cup formation. Furthermore, we revealed the phagocytosis involvement in the β1-AR-EPAC-SHIP1-mediated nocturnal IOP rise in mice. These suggest that TM phagocytosis suppression by NE can regulate IOP rhythm through AH outflow. This discovery may aid glaucoma management.

    DOI: 10.1038/s42003-022-03295-y

    Scopus

    researchmap

  • Suppression of trabecular meshwork phagocytosis by norepinephrine is associated with nocturnal increase in intraocular pressure in mice. Reviewed

    Keisuke Ikegami, Satoru Masubuchi

    Communications Biology   5   339   2022.4

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    Suppression of trabecular meshwork phagocytosis by norepinephrine is associated with nocturnal increase in intraocular pressure in mice.

    DOI: 10.1038/s42003-022-03295-y.

  • Transgenic rats expressing dominant negative BMAL1 showed circadian clock amplitude reduction and rapid recovery from jet lag. International journal

    Yoichi Minami, Tomoko Yoshikawa, Mamoru Nagano, Satoshi Koinuma, Tadamitsu Morimoto, Atsuko Fujioka, Keiichi Furukawa, Keisuke Ikegami, Atsuhiro Tatemizo, Kentaro Egawa, Teruya Tamaru, Taizo Taniguchi, Yasufumi Shigeyoshi

    The European journal of neuroscience   53 ( 6 )   1783 - 1793   2021.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The circadian rhythms are endogenous rhythms of about 24 h, and are driven by the circadian clock. The clock centre locates in the suprachiasmatic nucleus. Light signals from the retina shift the circadian rhythm in the suprachiasmatic nucleus, but there is a robust part of the suprachiasmatic nucleus that causes jet lag after an abrupt shift of the environmental lighting condition. To examine the effect of attenuated circadian rhythm on the duration of jet lag, we established a transgenic rat expressing BMAL1 dominant negative form under control by mouse Prnp-based transcriptional regulation cassette [BMAL1 DN (+)]. The transgenic rats became active earlier than controls, just after light offset. Compared to control rats, BMAL1 DN (+) rats showed smaller circadian rhythm amplitudes in both behavioural and Per2 promoter driven luciferase activity rhythms. A light pulse during the night resulted in a larger phase shift of behavioural rhythm. Furthermore, at an abrupt shift of the light-dark cycle, BMAL1 DN (+) rat showed faster entrainment to the new light-dark cycle compared to controls. The circadian rhythm has been regarded as a limit cycle phenomenon, and our results support the hypothesis that modification of the amplitude of the circadian limit cycle leads to alteration in the length of the phase shift.

    DOI: 10.1111/ejn.15085

  • cAMP response element induces Per1 in vivo. Reviewed International journal

    Keisuke Ikegami, Masato Nakajima, Yoichi Minami, Mamoru Nagano, Satoru Masubuchi, Yasufumi Shigeyoshi

    Biochemical and biophysical research communications   531 ( 4 )   515 - 521   2020.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Light is an important cue for resetting the circadian clock. In mammals, light signals are thought to be transmitted to the cAMP response element (CRE) via a binding protein (CREB) to induce the expression of Per1 and Per2 genes in the mammalian circadian pacemaker, the suprachiasmatic nuclei (SCN). Several in vitro studies have suggested candidate CRE sites that contribute to the Per1 and Per2 induction by light, resulting in a phase shift of the circadian rhythm. However, it remains unclear whether the CREs are responsible for the light-induced Per1/2 induction. To address this question, we generated CRE-deleted mice in the Per1 and Per2 promoter regions. Deletion of a cAMP-responsive CRE in the Per1 promoter blunted light-induced Per1 expression in the SCN at night, while deletion of an ATF4 (CREB-2)-associated CRE in the Per2 promoter had no effect on its expression. These results suggested that the CRE in the Per1 promoter works for light induction but not CRE in the Per2 promoter. Behavioral rhythms observed under some light conditions were not affected by the CRE-deletion in Per1 promoter, suggesting that the attenuated Per1 induction did not affect the entrainment in some light conditions.

    DOI: 10.1016/j.bbrc.2020.07.105

  • Circadian Regulation of IOP Rhythm by Dual Pathways of Glucocorticoids and the Sympathetic Nervous System. Reviewed International journal

    Keisuke Ikegami, Yasufumi Shigeyoshi, Satoru Masubuchi

    Investigative ophthalmology & visual science   61 ( 3 )   26 - 26   2020.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Purpose: Elevated IOP can cause the development of glaucoma. The circadian rhythm of IOP depends on the dynamics of the aqueous humor and is synchronized with the circadian rhythm pacemaker, that is, the suprachiasmatic nucleus. The suprachiasmatic nucleus resets peripheral clocks via sympathetic nerves or adrenal glucocorticoids. However, the detailed mechanisms underlying IOP rhythmicity remain unclear. The purpose of this study was to verify this regulatory pathway. Methods: Adrenalectomy and/or superior cervical ganglionectomy were performed in C57BL/6J mice. Their IOP rhythms were measured under light/dark cycle and constant dark conditions. Ocular administration of corticosterone or norepinephrine was also performed. Localization of adrenergic receptors, glucocorticoid receptors, and clock proteins Bmal1 and Per1 were analyzed using immunohistochemistry. Period2::luciferase rhythms in the cultured iris/ciliary bodies of adrenalectomized and/or superior cervical ganglionectomized mice were monitored to evaluate the effect of the procedures on the local clock. The IOP rhythm of retina and ciliary epithelium-specific Bmal1 knockout mice were measured to determine the significance of the local clock. Results: Adrenalectomy and superior cervical ganglionectomy disrupted IOP rhythms and the circadian clock in the iris/ciliary body cultures. Instillation of corticosterone and norepinephrine restored the IOP rhythm. β2-Adrenergic receptors, glucocorticoid receptors, and clock proteins were strongly expressed within the nonpigmented epithelia of the ciliary body. However, tissue-specific Bmal1 knock-out mice maintained their IOP rhythm. Conclusions: These findings suggest direct driving of the IOP rhythm by the suprachiasmatic nucleus, via the dual corticosterone and norepinephrine pathway, but not the ciliary clock, which may be useful for chronotherapy of glaucoma.

    DOI: 10.1167/iovs.61.3.26

  • Interconnection between circadian clocks and thyroid function. Reviewed International journal

    Keisuke Ikegami, Samuel Refetoff, Eve Van Cauter, Takashi Yoshimura

    Nature reviews. Endocrinology   15 ( 10 )   590 - 600   2019.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Circadian rhythmicity is an approximately 24-h cell-autonomous period driven by transcription-translation feedback loops of specific genes, which are referred to as 'circadian clock genes'. In mammals, the central circadian pacemaker, which is located in the hypothalamic suprachiasmatic nucleus, controls peripheral circadian clocks. The circadian system regulates virtually all physiological processes, which are further modulated by changes in the external environment, such as light exposure and the timing of food intake. Chronic circadian disruption caused by shift work, travel across time zones or irregular sleep-wake cycles has long-term consequences for our health and is an important lifestyle factor that contributes to the risk of obesity, type 2 diabetes mellitus and cancer. Although the hypothalamic-pituitary-thyroid axis is under the control of the circadian clock via the suprachiasmatic nucleus pacemaker, daily TSH secretion profiles are disrupted in some patients with hypothyroidism and hyperthyroidism. Disruption of circadian rhythms has been recognized as a perturbation of the endocrine system and of cell cycle progression. Expression profiles of circadian clock genes are abnormal in well-differentiated thyroid cancer but not in the benign nodules or a healthy thyroid. Therefore, the characterization of the thyroid clock machinery might improve the preoperative diagnosis of thyroid cancer.

    DOI: 10.1038/s41574-019-0237-z

  • Effect of expression alteration in flanking genes on phenotypes of St8sia2-deficient mice. Reviewed International journal

    Keisuke Ikegami, Kazumasa Saigoh, Atsuko Fujioka, Mamoru Nagano, Ken Kitajima, Chihiro Sato, Satoru Masubuchi, Susumu Kusunoki, Yasufumi Shigeyoshi

    Scientific reports   9 ( 1 )   13634 - 13634   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 (ST8SIA2) synthesizes polysialic acid (PSA), which is essential for brain development. Although previous studies reported that St8sia2-deficient mice that have a mixed 129 and C57BL/6 (B6) genetic background showed mild and variable phenotypes, the reasons for this remain unknown. We hypothesized that this phenotypic difference is caused by diversity in the expression or function of flanking genes of St8sia2. A genomic polymorphism and gene expression analysis in the flanking region revealed reduced expression of insulin-like growth factor 1 receptor (Igf1r) on the B6 background than on that of the 129 strain. This observation, along with the finding that administration of an IGF1R agonist during pregnancy increased litter size, suggests that the decreased expression of Igf1r associated with ST8SIA2 deficiency caused lethality. This study demonstrates the importance of gene expression level in the flanking regions of a targeted null allele having an effect on phenotype.

    DOI: 10.1038/s41598-019-50006-5

  • Slow shift of dead zone after an abrupt shift of the light-dark cycle. Reviewed International journal

    Mamoru Nagano, Keisuke Ikegami, Yoichi Minami, Yuji Kanazawa, Satoshi Koinuma, Mitsugu Sujino, Yasufumi Shigeyoshi

    Brain research   1714   73 - 80   2019.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The suprachiasmatic nucleus (SCN) is the center of the mammalian circadian system. Environmental photic signals shifts the phase of the circadian rhythm in the SCN except during the dead zone, when the photic signal is gated somewhere on the way from the retina to the neurons in the SCN. Here we examined the phase of the dead zone after an abrupt delay of the LD cycles for several days by observing the mc-Fos induction in the SCN by light pulses. After an abrupt shift of the LD cycles, the dead zone showed a slow phase shift, about two hours per day, which was well corresponded with the slow phase shift of the rest-activity cycles. In our previous study we demonstrated that, after an abrupt shift of the LD cycles, the SCN showed transient endogenous desynchronization between shell and core regions that showed a slow and a rapid shift of the circadian rhythms, respectively. Therefore, the present findings on the phase shift of the dead zone after the LD cycles shift suggest that the phase of the dead zone is under the control of the timing signals from the shell region of the SCN.

    DOI: 10.1016/j.brainres.2019.02.014

  • Action spectrum for photoperiodic control of thyroid-stimulating hormone in Japanese quail (Coturnix japonica). Reviewed International journal

    Yusuke Nakane, Ai Shinomiya, Wataru Ota, Keisuke Ikegami, Tsuyoshi Shimmura, Sho-Ichi Higashi, Yasuhiro Kamei, Takashi Yoshimura

    PloS one   14 ( 9 )   e0222106   2019.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    At higher latitudes, vertebrates exhibit a seasonal cycle of reproduction in response to changes in day-length, referred to as photoperiodism. Extended day-length induces thyroid-stimulating hormone in the pars tuberalis of the pituitary gland. This hormone triggers the local activation of thyroid hormone in the mediobasal hypothalamus and eventually induces gonadal development. In avian species, light information associated with day-length is detected through photoreceptors located in deep-brain regions. Within these regions, the expressions of multiple photoreceptive molecules, opsins, have been observed. However, even though the Japanese quail is an excellent model for photoperiodism because of its robust and significant seasonal responses in reproduction, a comprehensive understanding of photoreceptors in the quail brain remains undeveloped. In this study, we initially analyzed an action spectrum using photoperiodically induced expression of the beta subunit genes of thyroid-stimulating hormone in quail. Among seven wavelengths examined, we detected maximum sensitivity of the action spectrum at 500 nm. The low value for goodness of fit in the alignment with a template of retinal1-based photopigment, assuming a spectrum associated with a single opsin, proposed the possible involvement of multiple opsins rather than a single opsin. Analysis of gene expression in the septal region and hypothalamus, regions hypothesized to be photosensitive in quail, revealed mRNA expression of a mammal-like melanopsin in the infundibular nucleus within the mediobasal hypothalamus. However, no significant diurnal changes were observed for genes in the infundibular nucleus. Xenopus-like melanopsin, a further isoform of melanopsin in birds, was detected in neither the septal region nor the infundibular nucleus. These results suggest that the mammal-like melanopsin expressed in the infundibular nucleus within the mediobasal hypothalamus could be candidate deep-brain photoreceptive molecule in Japanese quail. Investigation of the functional involvement of mammal-like melanopsin-expressing cells in photoperiodism will be required for further conclusions.

    DOI: 10.1371/journal.pone.0222106

  • Identification of circadian clock modulators from existing drugs. Reviewed International journal

    T Katherine Tamai, Yusuke Nakane, Wataru Ota, Akane Kobayashi, Masateru Ishiguro, Naoya Kadofusa, Keisuke Ikegami, Kazuhiro Yagita, Yasufumi Shigeyoshi, Masaki Sudo, Taeko Nishiwaki-Ohkawa, Ayato Sato, Takashi Yoshimura

    EMBO molecular medicine   10 ( 5 )   2018.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet-lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time-consuming. We therefore performed a high-throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period-shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA Dietary administration of DHEA to mice shortened free-running circadian period and accelerated re-entrainment to advanced light-dark (LD) cycles, thereby reducing jet-lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders.

    DOI: 10.15252/emmm.201708724

  • Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats. Reviewed International journal

    Yuji Kanazawa, Keisuke Ikegami, Mitsugu Sujino, Satoshi Koinuma, Mamoru Nagano, Yuki Oi, Tomoya Onishi, Shinichi Sugiyo, Isao Takeda, Hiroshi Kaji, Yasufumi Shigeyoshi

    Experimental gerontology   98   153 - 161   2017.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Aging is known to lead to the impaired recovery of muscle after disuse as well as the increased susceptibility of the muscle to damage. Here, we show that, in the older rats, reloading after disuse atrophy, causes the damage of the muscle fibers and the basement membrane (BM) that structurally support the muscle fibers. Male Wistar rats of 3-(young) and 20-(older) months of age were subjected to hindlimb-unloading for 2weeks followed by reloading for a week. In the older rats, the soleus muscles showed necrosis and central nuclei fiber indicating the regeneration of muscle fibers. Furthermore, ectopic immunoreactivity of collagen IV, a major component of the BM, remained mostly associated with the necrotic appearance, suggesting that the older rats were impaired with the ability of repairing the damaged BM. Further, after unloading and reloading, the older rats did not show a significant alteration, although the young rats showed clear response of Col4a1 and Col4a2 genes, both coding for collagen IV. In addition, during the recovery phase, the young rats showed increase in the amount of Hsp47 and Sparc mRNA, which are protein folding-related factor genes, while the older rats did not show any significant variation. Taken together, our findings suggest that the atrophic muscle fibers of the older rats induced by unloading were vulnerable to the weight loading, and that attenuated reactivity of the BM-synthesizing fibroblast to gravity contributes to the fragility of muscle fibers in the older animals.

    DOI: 10.1016/j.exger.2017.08.014

  • The hypothalamic-pituitary-thyroid axis and biological rhythms: The discovery of TSH's unexpected role using animal models. Reviewed International journal

    Keisuke Ikegami, Takashi Yoshimura

    Best practice & research. Clinical endocrinology & metabolism   31 ( 5 )   475 - 485   2017.10

     More details

    Language:English  

    Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms.

    DOI: 10.1016/j.beem.2017.09.002

  • The Hypothalamo-Pituitary-Thyroid (HPT)-axis: Animal Studies. (in press) Invited Reviewed

    Ikegami K, Yoshimura T

    Best Practice & Research Clinical Endocrinology & Metabolism   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Molecular mechanism regulating seasonality Reviewed

    Keisuke Ikegami, Takashi Yoshimura

    Biological Timekeeping: Clocks, Rhythms and Behaviour   589 - 605   2017.1

     More details

    Language:English  

    The mechanisms of vertebrate seasonal time measurement were a mystery for a long time, but recent comparative studies have uncovered the photoperiodic signal transduction cascades in birds, mammals, and fish. These studies reveal the universality and diversity of photoperiodic mechanisms. That is, the molecules involved are conserved, while the tissues responsible for these mechanisms are different in different species (Nakane and Yoshimura, Front Neurosci 8:115, 2014). It is well established that the circadian clock is involved in photoperiodic time measurement. However, the underlying mechanism that defines the photoinducible phase or critical photoperiod (i.e., how organisms measure day length using a circadian clock) is at the heart of photoperiodic time measurement, and this question remains to be answered by future studies.

    DOI: 10.1007/978-81-322-3688-7_28

  • 内分泌代謝疾患のtrends & topics 2017 内分泌 組織特異的TSH糖鎖修飾 Invited Reviewed

    池上啓介, 吉村崇

    Mebio   33 ( 9 )   11 - 18   2016.9

     More details

    Language:Japanese  

  • Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction. Reviewed International journal

    Keisuke Ikegami, Takashi Yoshimura

    General and comparative endocrinology   227   64 - 8   2016.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms.

    DOI: 10.1016/j.ygcen.2015.05.009

  • [Animals' clever adaptation strategy for seasonal changes in environment]. Reviewed

    Keisuke Ikegami, Takashi Yoshimura

    Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology   35 ( 4 )   103 - 6   2015.8

     More details

    Language:Japanese  

    Organisms living outside of tropical zones experience seasonal changes in environment. Organisms are using day length as a calendar to change their physiology and behavior such as seasonal breeding, hibernation, migration, and molting. A comparative biology approach revealed underlying mechanisms of vertebrate seasonal reproduction. Here we review the current understanding of vertebrate seasonal reproduction. We Aso describe the involvement of tissue-specific post-translational modification in functional diversification of a hormone.

  • ホルモンの糖鎖修飾による巧みな生理機能の分担戦略 Invited Reviewed

    池上啓介, 吉村崇

    日本比較内分泌学会   41 ( 156 )   127 - 128   2015.8

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.5983/nl2008jsce.41.127

  • 季節感知機構の解析から見えてきた動物の巧みな戦略 Invited Reviewed

    池上 啓介, 吉村 崇

    日本神経精神薬理学雑誌   35 ( 4 )   103 - 106   2015.8

     More details

    Language:Japanese  

  • Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression. Reviewed International journal

    Keisuke Ikegami, Yusuke Atsumi, Eriko Yorinaga, Hiroko Ono, Itaru Murayama, Yusuke Nakane, Wataru Ota, Natsumi Arai, Akinori Tega, Masayuki Iigo, Veerle M Darras, Kazuyoshi Tsutsui, Yoshitaka Hayashi, Shosei Yoshida, Takashi Yoshimura

    Endocrinology   156 ( 2 )   647 - 59   2015.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In temperate zones, animals restrict breeding to specific seasons to maximize the survival of their offspring. Birds have evolved highly sophisticated mechanisms of seasonal regulation, and their testicular mass can change 100-fold within a few weeks. Recent studies on Japanese quail revealed that seasonal gonadal development is regulated by central thyroid hormone activation within the hypothalamus, depending on the photoperiodic changes. By contrast, the mechanisms underlying seasonal testicular regression remain unclear. Here we show the effects of short day and low temperature on testicular regression in quail. Low temperature stimulus accelerated short day-induced testicular regression by shutting down the hypothalamus-pituitary-gonadal axis and inducing meiotic arrest and germ cell apoptosis. Induction of T3 coincided with the climax of testicular regression. Temporal gene expression analysis over the course of apoptosis revealed the suppression of LH response genes and activation of T3 response genes involved in amphibian metamorphosis within the testis. Daily ip administration of T3 mimicked the effects of low temperature stimulus on germ cell apoptosis and testicular mass. Although type 2 deiodinase, a thyroid hormone-activating enzyme, in the brown adipose tissue generates circulating T3 under low-temperature conditions in mammals, there is no distinct brown adipose tissue in birds. In birds, type 2 deiodinase is induced by low temperature exclusively in the liver, which appears to be caused by increased food consumption. We conclude that birds use low temperature-induced circulating T3 not only for adaptive thermoregulation but also to trigger apoptosis to accelerate seasonal testicular regression.

    DOI: 10.1210/en.2014-1741

  • Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Reviewed International journal

    Keisuke Ikegami, Xiao-Hui Liao, Yuta Hoshino, Hiroko Ono, Wataru Ota, Yuka Ito, Taeko Nishiwaki-Ohkawa, Chihiro Sato, Ken Kitajima, Masayuki Iigo, Yasufumi Shigeyoshi, Masanobu Yamada, Yoshiharu Murata, Samuel Refetoff, Takashi Yoshimura

    Cell reports   9 ( 3 )   801 - 10   2014.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Thyroid-stimulating hormone (TSH; thyrotropin) is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH) stimulates the thyroid gland to produce thyroid hormones (THs), whereas pars tuberalis-derived TSH (PT-TSH) acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is released into the circulation, it does not stimulate the thyroid gland. PD-TSH is known to have sulfated biantennary N-glycans, and sulfated TSH is rapidly metabolized in the liver. In contrast, PT-TSH has sialylated multibranched N-glycans; in the circulation, it forms the macro-TSH complex with immunoglobulin or albumin, resulting in the loss of its bioactivity. Glycosylation is fundamental to a wide range of biological processes. This report demonstrates its involvement in preventing functional crosstalk of signaling molecules in the body.

    DOI: 10.1016/j.celrep.2014.10.006

  • Thyrotoropin receptor knockout changes monoaminergic neuronal system and produces methylphenidate-sensitive emotional and cognitive dysfunction. Reviewed International journal

    Akihiro Mouri, Yuta Hoshino, Shiho Narusawa, Keisuke Ikegami, Hiroyuki Mizoguchi, Yoshiharu Murata, Takashi Yoshimura, Toshitaka Nabeshima

    Psychoneuroendocrinology   48   147 - 61   2014.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Attention deficit/hyperactivity disorder (ADHD) has been reported in association with resistance to thyroid hormone, a disease caused by a mutation in the thyroid hormone receptor β (TRβ) gene. TRβ is a key protein mediating down-regulation of thyrotropin (TSH) expression by 3,3',5-tri-iodothyronine (T3), an active form of thyroid hormone. Dysregulation of TSH and its receptor (TSHR) is implicated in the pathophysiology of ADHD but the role of TSHR remains elusive. Here, we clarified a novel role for TSHR in emotional and cognitive functions related to monoaminergic nervous systems. TSHR knockout mice showed phenotypes of ADHD such as hyperactivity, impulsiveness, a decrease in sociality and increase in aggression, and an impairment of short-term memory and object recognition memory. Administration of methylphenidate (1, 5 and 10mg/kg) reversed impulsiveness, aggression and object recognition memory impairment. In the knockout mice, monoaminergic changes including decrease in the ratio of 3-methoxy-4-hydroxyphenylglycol/noradrenaline and increase in the ratio of homovanillic acid/dopamine were observed in some brain regions, accompanied by increase in the expression of noradrenaline transporter in the frontal cortex. When TSH was completely suppressed by the supraphysiological administration of T3 to the adult mice, some behavioral and neurological changes in TSHR KO mice were also observed, suggesting that these changes were not due to developmental hypothyroidism induced by the inactivation of TSHR but to the loss of the TSH-TSHR pathway itself. Taken together, the present findings suggest a novel role for TSHR in behavioral and neurological phenotypes of ADHD.

    DOI: 10.1016/j.psyneuen.2014.05.021

  • Sperm activation by heat shock protein 70 supports the migration of sperm released from sperm storage tubules in Japanese quail (Coturnix japonica). Reviewed International journal

    Gen Hiyama, Mei Matsuzaki, Shusei Mizushima, Hideo Dohra, Keisuke Ikegami, Takashi Yoshimura, Kogiku Shiba, Kazuo Inaba, Tomohiro Sasanami

    Reproduction (Cambridge, England)   147 ( 2 )   167 - 78   2014.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Systems for maintaining the viability of ejaculated sperm in the female reproductive tract are widespread among vertebrates and invertebrates. In birds, this sperm storage function is performed by specialized simple tubular invaginations called sperm storage tubules (SSTs) in the uterovaginal junction (UVJ) of the oviduct. Although the incidence and physiological reasons for sperm storage in birds have been reported extensively, the mechanisms of sperm uptake by the SSTs, sperm maintenance within the SSTs, and control of sperm release from the SSTs are poorly understood. In this study, we demonstrated that the highly conserved heat shock protein 70 (HSP70) stimulates sperm motility in vitro and also that HSP70 expressed in the UVJ may facilitate the migration of sperm released from the SSTs. Quantitative RT-PCR analysis demonstrated that the expression of HSP70 mRNA in the UVJ increases before ovulation/oviposition. Gene-specific in situ hybridization and immunohistochemical analysis with a specific antibody to HSP70 demonstrated that HSP70 is localized in the surface epithelium of the UVJ. Furthermore, injection of anti-HSP70 antibody into the vagina significantly inhibited fertilization in vivo. In addition, we found that recombinant HSP70 activates flagellar movement in the sperm and that the binding of recombinant HSP70 to the sperm surface is mediated through an interaction with voltage-dependent anion channel protein 2 (VDAC2). Our results suggest that HSP70 binds to the sperm surface by interacting with VDAC2 and activating sperm motility. This binding appears to play an important role in sperm migration within the oviduct.

    DOI: 10.1530/REP-13-0439

  • Seasonal time measurement during reproduction. Reviewed

    Keisuke Ikegami, Takashi Yoshimura

    The Journal of reproduction and development   59 ( 4 )   327 - 33   2013.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Most species living outside the tropical zone undergo physiological adaptations to seasonal environmental changes and changing day length (photoperiod); this phenomenon is called photoperiodism. It is well known that the circadian clock is involved in the regulation of photoperiodism such as seasonal reproduction, but the mechanism underlying circadian clock regulation of photoperiodism remains unclear. Recent molecular analysis have revealed that, in mammals and birds, the pars tuberalis (PT) of the pituitary gland acts as the relay point from light receptors, which receive information about the photoperiod, to the endocrine responses. Long-day (LD)-induced thyroid-stimulating hormone (TSH) in the PT acts as a master regulator of seasonal reproduction in the ependymal cells (ECs) within the mediobasal hypothalamus (MBH) and activates thyroid hormone (TH) by inducing the expression of type 2 deiodinase in both LD and short-day (SD) breeding animals. Furthermore, the circadian clock has been found to be localized in the PT and ECs as well as in the circadian pacemaker(s). This review purposes to summarize the current knowledge concerning the involvement of the neuroendocrine system and circadian clock in seasonal reproduction.

    DOI: 10.1262/jrd.2013-035

  • Circadian clock gene Per2 is not necessary for the photoperiodic response in mice. Reviewed International journal

    Keisuke Ikegami, Masayuki Iigo, Takashi Yoshimura

    PloS one   8 ( 3 )   e58482   2013.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In mammals, light information received by the eyes is transmitted to the pineal gland via the circadian pacemaker, i.e., the suprachiasmatic nucleus (SCN). Melatonin secreted by the pineal gland at night decodes night length and regulates seasonal physiology and behavior. Melatonin regulates the expression of the β-subunit of thyroid-stimulating hormone (TSH; Tshb) in the pars tuberalis (PT) of the pituitary gland. Long day-induced PT TSH acts on ependymal cells in the mediobasal hypothalamus to induce the expression of type 2 deiodinase (Dio2) and reduce type 3 deiodinase (Dio3) that are thyroid hormone-activating and hormone-inactivating enzymes, respectively. The long day-activated thyroid hormone T3 regulates seasonal gonadotropin-releasing hormone secretion. It is well established that the circadian clock is involved in the regulation of photoperiodism. However, the involvement of the circadian clock gene in photoperiodism regulation remains unclear. Although mice are generally considered non-seasonal animals, it was recently demonstrated that mice are a good model for the study of photoperiodism. In the present study, therefore, we examined the effect of changing day length in Per2 deletion mutant mice that show shorter wheel-running rhythms under constant darkness followed by arhythmicity. Although the amplitude of clock gene (Per1, Cry1) expression was greatly attenuated in the SCN, the expression profile of arylalkylamine N-acetyltransferase, a rate-limiting melatonin synthesis enzyme, was unaffected in the pineal gland, and robust photoperiodic responses of the Tshb, Dio2, and Dio3 genes were observed. These results suggested that the Per2 clock gene is not necessary for the photoperiodic response in mice.

    DOI: 10.1371/journal.pone.0058482

  • The saccus vasculosus of fish is a sensor of seasonal changes in day length. Reviewed International journal

    Yusuke Nakane, Keisuke Ikegami, Masayuki Iigo, Hiroko Ono, Korenori Takeda, Daisuke Takahashi, Maiko Uesaka, Meita Kimijima, Ramu Hashimoto, Natsumi Arai, Takuya Suga, Katsuya Kosuge, Tomotaka Abe, Ryosuke Maeda, Takumi Senga, Noriko Amiya, Teruo Azuma, Masafumi Amano, Hideki Abe, Naoyuki Yamamoto, Takashi Yoshimura

    Nature communications   4   2108 - 2108   2013.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The pars tuberalis of the pituitary gland is the regulatory hub for seasonal reproduction in birds and mammals. Although fish also exhibit robust seasonal responses, they do not possess an anatomically distinct pars tuberalis. Here we report that the saccus vasculosus of fish is a seasonal sensor. We observe expression of key genes regulating seasonal reproduction and rhodopsin family genes in the saccus vasculosus of masu salmon. Immunohistochemical studies demonstrate that all of these genes are expressed in the coronet cells of the saccus vasculosus, suggesting the existence of a photoperiodic signalling pathway from light input to neuroendocrine output. In addition, isolated saccus vasculosus has the capacity to respond to photoperiodic signals, and its removal abolishes photoperiodic response of the gonad. Although the physiological role of the saccus vasculosus has been a mystery for several centuries, our findings indicate that the saccus vasculosus acts as a sensor of seasonal changes in day length in fish.

    DOI: 10.1038/ncomms3108

  • Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Reviewed International journal

    Daisuke Yamajuku, Takahiko Inagaki, Tomonori Haruma, Shingo Okubo, Yutaro Kataoka, Satoru Kobayashi, Keisuke Ikegami, Thomas Laurent, Tomoko Kojima, Keiji Noutomi, Seiichi Hashimoto, Hiroaki Oda

    Scientific reports   2   439 - 439   2012.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Resetting the peripheral clock and understanding the integration between the circadian rhythm and metabolic pathways are fundamental questions. To test whether insulin acts as a synchronizer for the hepatic clock by cell-autonomous mechanisms, the phase-resetting capabilities of insulin were investigated in cultured hepatic cells. We provide evidence that three-dimensional (3D) cell culture conditions that preserve the differentiated state of primary hepatocytes sustained the robustness of the molecular clock, while this robustness rapidly dampened under classical monolayer cell culture conditions. Herein, we established a 3D cell culture system coupled with a real-time luciferase reporter, and demonstrated that insulin directly regulates the phase entrainment of hepatocyte circadian oscillators. We found that insulin-deficient diabetic rats had a pronounced phase advance in their hepatic clock. Subsequently, a single administration of insulin induced phase-dependent bi-directional phase shifts in diabetic rat livers. Our results clearly demonstrate that insulin is a liver clock synchronizer.

    DOI: 10.1038/srep00439

  • Circadian clocks and the measurement of daylength in seasonal reproduction. Reviewed International journal

    Keisuke Ikegami, Takashi Yoshimura

    Molecular and cellular endocrinology   349 ( 1 )   76 - 81   2012.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Temperate zone organisms measure changes in daylength to adapt to seasonal changes in their environment. Recent studies have revealed that the long day (LD)-induced thyrotropin (TSH) in the pars tuberalis (PT) of the pituitary gland act as a master factor regulating seasonal reproduction on the the ependymal cells (ECs) within the mediobasal hypothalamus (MBH) to induce expression of type 2 deiodinase (Dio2), a thyroid hormone (TH)-activating enzyme in both LD and short day (SD) breeders. Locally activated TH in the MBH is believed to trigger GnRH secretion from the hypothalamus in LD breeders, while it terminates reproductive activity in SD breeders. Circadian clock is involved in seasonal time measurement and clock genes are expressed in the PT and ECs. Although circadian and melatonin-dependent control of TSH appears to link the circadian clock and the photoperiodic response in mammals, how this circadian clock measure daylength remains to be clarified.

    DOI: 10.1016/j.mce.2011.06.040

  • 脊椎動物の季節繁殖の制御機構 Invited Reviewed

    池上 啓介, 吉村 崇

    日本生殖内分泌学会雑誌   15   55 - 57   2010.10

     More details

    Language:Japanese  

  • A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Reviewed International journal

    Yusuke Nakane, Keisuke Ikegami, Hiroko Ono, Naoyuki Yamamoto, Shosei Yoshida, Kanjun Hirunagi, Shizufumi Ebihara, Yoshihiro Kubo, Takashi Yoshimura

    Proceedings of the National Academy of Sciences of the United States of America   107 ( 34 )   15264 - 8   2010.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    It has been known for many decades that nonmammalian vertebrates detect light by deep brain photoreceptors that lie outside the retina and pineal organ to regulate seasonal cycle of reproduction. However, the identity of these photoreceptors has so far remained unclear. Here we report that Opsin 5 is a deep brain photoreceptive molecule in the quail brain. Expression analysis of members of the opsin superfamily identified as Opsin 5 (OPN5; also known as Gpr136, Neuropsin, PGR12, and TMEM13) mRNA in the paraventricular organ (PVO), an area long believed to be capable of phototransduction. Immunohistochemistry identified Opsin 5 in neurons that contact the cerebrospinal fluid in the PVO, as well as fibers extending to the external zone of the median eminence adjacent to the pars tuberalis of the pituitary gland, which translates photoperiodic information into neuroendocrine responses. Heterologous expression of Opsin 5 in Xenopus oocytes resulted in light-dependent activation of membrane currents, the action spectrum of which showed peak sensitivity (lambda(max)) at approximately 420 nm. We also found that short-wavelength light, i.e., between UV-B and blue light, induced photoperiodic responses in eye-patched, pinealectomized quail. Thus, Opsin 5 appears to be one of the deep brain photoreceptive molecules that regulates seasonal reproduction in birds.

    DOI: 10.1073/pnas.1006393107

  • Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail. Reviewed International journal

    Keisuke Ikegami, Yasuhiro Katou, Kumiko Higashi, Takashi Yoshimura

    The Journal of comparative neurology   517 ( 3 )   397 - 404   2009.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The circadian clock is a fundamental property of living organisms and is involved in seasonal (photoperiodic) time measurement. Among vertebrates, birds have multiple circadian pacemakers in the eye, the pineal gland, and the suprachiasmatic nucleus (SCN), and have highly sophisticated photoperiodic mechanisms. However, because the removal of these circadian pacemakers fails to abolish the photoperiodic response, the existence of another "photoperiodic clock" has been suggested. Recent studies have revealed that the mediobasal hypothalamus (MBH) and the adjacent pars tuberalis (PT) of the pituitary gland constitute key components of the photoperiodic signal transduction machinery. In the present study, we generated a polyclonal antibody against the chicken circadian clock protein BMAL1 to examine BMAL1 distribution in the Japanese quail brain by using immunohistochemistry. BMAL1-like immunoreactivity (lir) was confirmed in the pineal gland and the medial SCN, which are critical circadian pacemakers. We also observed strong immunoreactivity in the MBH, including the ependymal cells (ECs), the infundibular nucleus (IN), the median eminence (ME), and the adjacent PT. Furthermore, semiquantitative analysis suggested that BMAL1-lir shows daily fluctuation in these regions. It is possible that circadian clocks in the photoperiodic signal transduction machinery such as the PT and the EC may be involved in the regulation of photoperiodism.

    DOI: 10.1002/cne.22165

▼display all

Books

  • ブレインサイエンス・レビュー = Brain science review

    ブレインサイエンス振興財団, 廣川 信隆 , 板東 武彦, 岡田 康志 , 高橋 琢哉, 三國 貴康, 竹本 研, 大川 宜昭, 池上 啓介, 岡本 麻友美, 平林 祐介, 丸岡 久人, 奥田 覚, 高橋 真有, 國松 淳, 田村 啓太

    アドスリー  2022    ISBN:9784910513065

     More details

    Language:Japanese  

    CiNii Books

  • 糖鎖生物学 -生命現象と糖鎖情報- (北島 健・佐藤ちひろ・門松健治・加藤晃一 編)

    池上啓介、吉村崇

    名古屋大学出版会  2020.2 

     More details

    Language:Others  

  • Molecular mechanism regulating seasonality In: Biological Timekeeping: Clocks, Rhythms and Behaviour

    Ikegami K, Yoshimura T(Role:Joint author)

    2017.3 

     More details

    Language:Others  

    Molecular mechanism regulating seasonality In: Biological Timekeeping: Clocks, Rhythms and Behaviour

Presentations

  • 哺乳類における概日履歴現象の分子制御機構の探索

    Keisuke Ikegami, Masubuchi Satoru, Shigeyoshi Yasufumi

    日本生理学会  2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:北九州   Country:Japan  

    Molecular regulatory mechanisms of after-effect in the mammalian circadian rhythm

  • 眼圧日内変動の分子制御機構の理解 Invited

    池上 啓介

    第100回 日本生理学会学術大会  2023.3 

     More details

    Event date: 2023.3

    Language:English  

    Country:Other  

    Molecular regulatory mechanism in circadian rhythm of intraocular pressure

  • Molecular regulatory mechanism in circadian rhythm of intraocular pressure Invited

    Keisuke Ikegami

    第100回 日本生理学会学術大会  2023.3 

     More details

    Event date: 2023.3

    Language:English   Presentation type:Symposium, workshop panel (public)  

    researchmap

  • 抗ニワトリBMAL1,CRY1抗体の作製

    池上啓介, 加藤泰弘, 東久美子, 吉村崇, 吉村崇

    時間生物学  2008.10 

     More details

    Language:Others  

    Country:Japan  

  • 抗ニワトリBMAL1,CRY1抗体の作製とウズラ脳における時計タンパク質の発現

    池上啓介, 加藤泰弘, 東久美子, 吉村崇, 吉村崇

    Annual Meeting of Japanese Avian Endocrinology  2008.10 

     More details

    Language:Others  

    Country:Japan  

  • 抗ニワトリBMAL1、CRY1抗体の作製

    池上啓介, 加藤泰弘, 東久美子, 吉村崇

    第15回日本時間生物学会  2008.11 

     More details

    Language:Japanese  

    Country:Other  

  • 抗ニワトリBMAL1、CRY1抗体の作製とウズラ脳における時計タンパク質の発現

    池上啓介, 加藤泰弘, 東久美子, 吉村崇

    第33回鳥類内分泌研究会  2008.11 

     More details

    Language:Japanese  

    Country:Other  

  • Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail. International conference

    Keisuke Ikegami, Yasuhiro Katou, Kumiko Higashi, Takashi Yoshimura

    XI Congress of the European Biological Rhythms Society (EBRS)  2009.8 

     More details

    Language:English  

    Country:Other  

    Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail.

  • 光周刺激の変換機構における概日時計タンパク質の局在

    池上啓介, 加藤泰弘, 東久美子, 吉村崇

    第32回日本神経科学会  2009.9 

     More details

    Language:Japanese  

    Country:Other  

  • ウズラ脳内の光周刺激伝達部位におけるBMAL1の局在

    池上啓介, 加藤泰弘, 東久美子, 吉村崇

    Program & Abstracts. 6th Congress of Asian Sleep Research Society, 34th Annual Meeting of Japanese Society of Sleep Research, 16th Annual Meeting of Japanese Society for Chronobiology Joint Congress 2009  2009.10 

     More details

    Language:Others  

    Country:Japan  

  • ウズラ脳内の光周刺激伝達部位におけるBMAL1の局在

    池上啓介, 加藤泰弘, 東久美子, 吉村崇

    第16回日本時間生物学会  2009.11 

     More details

    Language:Japanese  

    Country:Other  

  • Localization of circadian clock protein in the photoperiodic signal transduction machinery

    Keisuke Ikegami, Yasuhiro Katou, Kumiko Higashi, Takashi Yoshimura

    NEUROSCIENCE RESEARCH  2009.12 

     More details

    Language:English  

    Country:Japan  

  • 鳥類の脳深部光受容器の同定

    中根右介, 池上啓介, 小野ひろ子, 山本直之, 吉田松生, 蛭薙観順, 海老原史樹文, 久保義弘, 吉村崇

    時間生物学  2010.10 

     More details

    Language:Others  

    Country:Japan  

  • 季節繁殖を制御する脳深部光受容器の同定

    中根右介, 池上啓介, 小野ひろ子, 山本直之, 吉田松生, 蛭薙観順, 海老原史樹文, 久保義弘, 吉村崇

    Annual Meeting of Japanese Avian Endocrinology  2010.12 

     More details

    Language:Others  

    Country:Japan  

  • ウズラの季節性精巣退縮機構の解明

    池上啓介, 渥美優介, 渥美優介, 小野ひろ子, 村山至, 中根右介, 太田航, 新井菜津美, 手賀明倫, 飯郷雅之, 吉田松生, 吉村崇, 吉村崇

    日本家禽学会誌  2011.3 

     More details

    Language:Japanese  

    Country:Japan  

    ウズラの季節性精巣退縮機構の解明

  • ウズラの季節性精巣退縮機構の解明

    渥美 優介, 吉田 松生, 吉村 崇, 池上 啓介, 小野 ひろ子, 村山 至, 中根 右介, 太田 航, 新井 菜津美, 手賀 明倫, 飯郷 雅之

    日本繁殖生物学会 講演要旨集  2011.3 

     More details

    Language:Japanese  

    Country:Japan  

    Mechanism of seasonal testicular regression in quail

  • ウズラの季節性精巣退縮機構の解明

    池上啓介, 渥美優介, 小野ひろ子, 村山至, 中根右介, 太田航, 新井菜津美, 手賀明倫, 飯郷雅之, 吉田松生, 吉村崇

    日本家禽学会  2011.3 

     More details

    Language:Japanese  

    Country:Other  

  • Mechanism of seasonal testicular regression in quail. International conference

    Keisuke Ikegami, Yusuke Atsumi, Hiroko Ono, Itaru Murayama, Yusuke Nakane, Wataru Ota, Natsumi Arai, Akinori Tega, Masayuki Iigo, Shosei Yoshida, Takashi Yoshimura

    ICCPB 2011  2011.6 

     More details

    Language:English  

    Country:Other  

    Mechanism of seasonal testicular regression in quail.

  • Seasonal regulation of testicular size in quail. International conference

    Keisuke Ikegami, Yusuke Atsumi, Hiroko Ono, Itaru Murayama, Yusuke Nakane, Wataru Ota, Natsumi Arai, Akinori Tega, Masayuki Iigo, Shosei Yoshida, Takashi Yoshimura

    XII Congress of the EBRS  2011.8 

     More details

    Language:English  

    Country:Other  

    Seasonal regulation of testicular size in quail.

  • Mechanism of seasonal testicular regression in quail

    IKEGAMI Keisuke, ATSUMI Yusuke, ONO Hiroko, MURAYAMA Itaru, NAKANE Yusuke, OTA Wataru, ARAI Natsumi, TEGA Akinori, IIGO Masayuki, YOSHIDA Shosei, YOSHIMURA Takashi

    比較生理生化学  2011.9 

     More details

    Language:English  

    Country:Japan  

    Mechanism of seasonal testicular regression in quail

  • 鳥類の季節繁殖における精子幹細胞システムの解析

    村山至, 池上啓介, 中根右介, 市川理恵, 吉田松生, 吉村崇, 吉村崇

    時間生物学  2011.10 

     More details

    Language:Others  

    Country:Japan  

  • 光周性マスター制御因子TSHの発現誘導を指標とした光周反応の作用スペクトル

    中根右介, 亀井保博, 東正一, 新村毅, 小野ひろ子, 池上啓介, 山中貴達, 村山至, 吉田松生, 吉村崇

    時間生物学  2011.10 

     More details

    Language:Others  

    Country:Japan  

  • ウズラの季節性精巣退縮における低温刺激の影響

    渥美優介, 渥美優介, 池上啓介, 村山至, 中根右介, 吉田松生, 吉村崇, 吉村崇

    時間生物学  2011.10 

     More details

    Language:Others  

    Country:Japan  

  • Opsin 5 as a deep brain photoreceptor regulating photoperiodism

    Yusuke Nakane, Keisuke Ikegami, Hiroko Ono, Naoyuki Yamamoto, Shosei Yoshida, Yasuhiro Kamei, Sho-ichi Higashi, Kanjun Hirunagi, Shizufumi Ebihara, Yoshihiro Kubo, Takashi Yoshimura

    NEUROSCIENCE RESEARCH  2011.10 

     More details

    Language:English  

    Country:Japan  

  • ウズラの季節性精巣退縮における甲状腺ホルモンの機能解析

    池上啓介, 渥美優介, 渥美優介, 小野ひろ子, 村山至, 中根右介, 太田航, 新井奈津美, 手賀明倫, 飯郷雅之, 吉村崇, 吉村崇

    時間生物学  2011.11 

     More details

    Language:Japanese  

    Country:Japan  

    ウズラの季節性精巣退縮における甲状腺ホルモンの機能解析

  • ウズラの季節性精巣退縮における甲状腺ホルモンの機能解析

    池上啓介, 渥美優介, 小野ひろ子, 村山至, 中根右介, 太田航, 新井菜津美, 手賀明倫, 飯郷雅之, 吉村崇

    第18回日本時間生物学会  2011.11 

     More details

    Language:Japanese  

    Country:Other  

  • Seasonal regulation of quail testicular size. International conference

    Keisuke Ikegami, Yusuke Atsumi, Hiroko Ono, Itaru Murayama, Yusuke Nakane, Wataru Ota, Natsumi Arai, Akinori Tega, Masayuki Iigo, Shosei Yoshida, Takashi Yoshimura

    2nd EMBL-NIBB Minisymposium.  2011.11 

     More details

    Language:English  

    Country:Other  

    Seasonal regulation of quail testicular size.

  • 鳥類の季節繁殖を制御する脳深部光受容器の探索

    中根右介, 亀井保博, 東正一, 新村毅, 小野ひろ子, 池上啓介, 山中貴達, 村山至, 吉田松生, 吉村崇

    日本畜産学会大会講演要旨  2012.3 

     More details

    Language:Others  

    Country:Japan  

  • 哺乳類における新規光受容器Opsin5の発現解析

    太田航, 中根右介, 池上啓介, 吉村崇

    日本畜産学会大会講演要旨  2012.3 

     More details

    Language:Japanese  

    Country:Japan  

  • ウズラ精巣の季節性制御機構の解明

    池上啓介, 渥美優介, 小野ひろ子, 村山至, 中根右介, 太田航, 新井菜津美, 手賀明倫, 飯郷雅之, 吉田松生, 吉村崇

    日本畜産学会大会講演要旨  2012.3 

     More details

    Language:Japanese  

    Country:Japan  

    ウズラ精巣の季節性制御機構の解明

  • ウズラ精巣の季節性制御機構の解明

    池上啓介, 渥美優介, 小野ひろ子, 村山至, 中根右介, 太田航, 新井菜津美, 手賀明倫, 飯郷雅之, 吉田松生, 吉村崇

    日本畜産学会  2012.3 

     More details

    Language:Japanese  

    Country:Other  

  • Mechanism of seasonal changes in quail testicular size. International conference

    Keisuke Ikegami, Yusuke Atsumi, Hiroko Ono, Itaru Murayama, Yusuke Nakane, Wataru Ota, Natsumi Arai, Akinori Tega, Masayuki Iigo, Shosei Yoshida, Takashi Yoshimura

    SRBR2012  2012.5 

     More details

    Language:English  

    Country:Other  

    Mechanism of seasonal changes in quail testicular size.

  • Mechanism of seasonal change in quail testicular size. International conference

    Keisuke Ikegami, Yusuke Atsumi, Hiroko Ono, Itaru Murayama, Yusuke Nakane, Wataru Ota, Natsumi Arai, Akinori Tega, Masayuki Iigo, Shosei Yoshida, Takashi Yoshimura

    ISAE2012  2012.6 

     More details

    Language:English  

    Country:Other  

    Mechanism of seasonal change in quail testicular size.

  • 時計遺伝子Per2はマウスの光周反応に不可欠ではない

    池上啓介, 吉村崇

    第19回日本時間生物学会  2012.9 

     More details

    Language:Japanese  

    Country:Other  

  • ウズラの輸卵管で貯精に重要な役割を果たすタンパク質の同定

    笹浪知宏, 松崎芽衣, 濱野莉帆, 道羅英夫, 檜山源, 水島秀成, 池上啓介, 吉村崇

    日本畜産学会大会講演要旨  2013.3 

     More details

    Language:Japanese  

    Country:Japan  

  • サクラマス血管嚢における季節繁殖関連遺伝子群の発現

    飯郷雅之, 中根右介, 池上啓介, 小野ひろ子, 武田維倫, 武田維倫, 武田維倫, 高橋大輔, 上坂真衣子, 君嶋明太, 橋本蘭夢, 新井菜津美, 菅琢哉, 小菅克弥, 阿部朋孝, 阿部朋孝, 阿見彌典子, 東照雄, 天野勝文, 山本直之, 吉村崇, 吉村崇

    時間生物学  2013.10 

     More details

    Language:Others  

    Country:Japan  

  • サクラマスの血管嚢は季節繁殖を制御する季節センサーである

    池上啓介, 飯郷雅之, 中根右介, 前田遼介, 千賀琢己, 阿部秀樹, 山本直之, 吉村崇, 吉村崇

    時間生物学  2013.10 

     More details

    Language:Others  

    Country:Japan  

  • 新規光受容器「オプシン5」欠損マウスの行動解析

    太田航, 中根右介, 池上啓介, 吉村崇

    日本畜産学会大会講演要旨  2013.11 

     More details

    Language:Japanese  

    Country:Japan  

  • サクラマスの血管嚢は季節繁殖を制御する季節センサーである

    池上啓介, 飯郷雅之, 中根右介, 前田遼介, 千賀琢己, 阿部秀樹, 山本直之, 吉村崇

    第20回日本時間生物学会  2013.11 

     More details

    Language:Japanese  

    Country:Other  

  • 魚類の季節繁殖を制御する分子機構-1 季節繁殖関連遺伝子群のサクラマス血管嚢における発現

    飯郷雅之, 中根右介, 池上啓介, 小野ひろ子, 武田維倫, 高橋大輔, 上坂真衣子, 君嶋明太, 橋本蘭夢, 新井菜津美, 菅琢哉, 小菅克弥, 阿部朋孝, 阿見彌典子, 天野勝文, 東照雄, 山本直之, 吉村崇

    日本水産学会大会講演要旨集  2014.3 

     More details

    Language:Others  

    Country:Japan  

  • 魚類の季節繁殖を制御する分子機構-2 血管嚢はサクラマスの季節センサーである

    飯郷雅之, 小菅克弥, 武田維倫, 中根右介, 池上啓介, 前田遼介, 千賀琢己, 阿見彌典子, 天野勝文, 山本直之, 阿部秀樹, 吉村崇

    日本水産学会大会講演要旨集  2014.3 

     More details

    Language:Others  

    Country:Japan  

  • Strain-dependent embryonic lethality induced by flanking genes in homozygous ST8sia2-deficient mice. International conference

    Keisuke Ikegami, Kazumasa Saigoh, Mamoru Nagano, Susumu Kusunoki, Yasufumi Shigeyoshi

    第47回日本発生生物学会  2014.5 

     More details

    Language:English  

    Country:Other  

    Strain-dependent embryonic lethality induced by flanking genes in homozygous ST8sia2-deficient mice.

  • Pinealectomy enhances sensitivity to light in melatonin-proficient CBA/N mice. International conference

    Keisuke Ikegami, Yasufumi Shigeyoshi

    SRBR Meeting 2014  2014.6 

     More details

    Language:English  

    Country:Other  

    Pinealectomy enhances sensitivity to light in melatonin-proficient CBA/N mice.

  • Analysis of pineal function in melatonin-proficient CBA/N mice. International conference

    Keisuke Ikegami, Yasufumi Shigeyoshi

    The 30th Anniversary Meeting of Sapporo Symposium on Biological Rhythm  2014.7 

     More details

    Language:English  

    Country:Other  

    Analysis of pineal function in melatonin-proficient CBA/N mice.

  • 脊椎動物における光周性の制御機構

    池上啓介, 吉村崇

    日本動物学会大会予稿集  2014.9 

     More details

    Language:Others  

    Country:Japan  

  • 脊椎動物における光周性の制御機構 Invited

    池上啓介, 吉村崇

    第85回日本動物学会  2014.9 

     More details

    Language:Japanese  

    Country:Other  

    Photoperiodic response system in vertebrate

  • 魚類の季節センサー Seasonal sensor in fish

    中根 右介, 池上 啓介, 飯郷 雅之, 吉村 崇

    比較内分泌学  2014.10 

     More details

    Language:Japanese  

    Country:Japan  

    Seasonal sensor in fish

  • 春告げホルモンTSHにおける組織特異的翻訳後修飾の機能解析

    Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T

    第21回日本時間生物学会  2014.11 

     More details

    Language:English  

    Country:Other  

  • 春告げホルモンTSHにおける組織特異的翻訳後修飾の生理機能 Invited

    池上啓介, 吉村崇

    細胞センサーの分子機構・相互関連・ネットワーク研究会  2014.12 

     More details

    Language:Japanese  

    Country:Other  

  • 欠伸の日内変動と時刻依存的パターンの解析

    池上啓介, 重吉康史

    第92回日本生理学会  2015.3 

     More details

    Language:English  

    Country:Other  

  • Functional analysis of tissue-specific glycosylation of springtime hormone TSH. International conference

    Keisuke Ikegami, Xiao-Hui Liao, Yuta Hoshino, Hiroko Ono, Wataru Ota, Yuka Ito, Taeko Nishiwaki-Ohkawa, Chihiro Sato, Ken Kitajima, Masayuki Iigo, Yasufumi Shigeyoshi, Masanobu Yamada, Yoshiharu Murata, Samuel Refetoff, Takashi Yoshimura

    WCC & EBRS Meeting 2015  2015.8 

     More details

    Language:English  

    Country:Other  

    Functional analysis of tissue-specific glycosylation of springtime hormone TSH.

  • 非荷重と再荷重が老年期の骨格筋に与える影響

    金澤佑治, 筋野貢, 鯉沼聡, 長野護, 池上啓介, 大井優紀, 大西智也, 杉生真一, 武田功, 重吉康史

    日本解剖学会総会・全国学術集会講演プログラム・抄録集  2016.3 

     More details

    Language:Japanese  

    Country:Japan  

    非荷重と再荷重が老年期の骨格筋に与える影響

  • Functional analysis of pineal serotonin in mice. International conference

    Keisuke Ikegami, Mitsugu Sujino, Mamoru Nagano, Yasufumi Shigeyoshi

    The 64th NIBB Conference Evolution of Seasonal Timers  2016.4 

     More details

    Language:English  

    Country:Other  

    Functional analysis of pineal serotonin in mice.

  • Pineal serotonin modulates photic entrainment of the circadian center. International conference

    Keisuke Ikegami, Mitsugu Sujino, Mamoru Nagano, Yasufumi Shigeyoshi

    SRBR meeting 2016  2016.5 

     More details

    Language:English  

    Country:Other  

    Pineal serotonin modulates photic entrainment of the circadian center.

  • 後肢非荷重と再荷重が老化したヒラメ筋に与える影響

    金澤佑治, 筋野貢, 鯉沼聡, 長野護, 池上啓介, 大井優紀, 大西智也, 杉生真一, 武田功, 梶博史, 重吉康史

    日本解剖学会総会・全国学術集会講演プログラム・抄録集  2017.3 

     More details

    Language:Others  

    Country:Japan  

  • 廃用性筋萎縮後の再荷重負荷が老年ラットのヒラメ筋に与える影響

    金澤佑治, 池上啓介, 筋野貢, 鯉沼聡, 長野護, 大井優紀, 大西智也, 杉生真一, 武田功, 梶博史, 重吉康史

    日本筋学会学術集会プログラム・抄録集  2017.10 

     More details

    Language:Japanese  

    Country:Japan  

    サルコペニア・ロコモティブ症候群のバイオロジー 廃用性筋萎縮後の再荷重負荷が老年ラットのヒラメ筋に与える影響

  • マウスにおけるSCNによるコルチコステロンを介した網膜概日光感受性リズムの制御機構の解明

    池上啓介, 長野護, 重吉康史

    時間生物学  2017.10 

     More details

    Language:Others  

    Country:Japan  

  • 老化がラット骨格筋の基底板構築に与える影響

    金澤佑治, 池上啓介, 筋野貢, 鯉沼聡, 長野護, 杉生真一, 武田功, 梶博史, 重吉康史

    日本解剖学会総会・全国学術集会講演プログラム・抄録集  2018.3 

     More details

    Language:Others  

    Country:Japan  

  • 大型スペクトログラフを用いた季節繁殖を制御する脳深部光受容器の探索

    中根右介, 四宮愛, 太田航, 池上啓介, 新村毅, 東正一, 亀井保博, 吉村崇

    Annual Meeting of Japanese Avian Endocrinology  2018.10 

     More details

    Language:Others  

    Country:Japan  

  • マウス松果体液性因子は線条体におけるグルタミン酸シグナル伝達経路を制御することで自閉症様精神疾患を抑制する

    池上啓介, 毛利彰宏, 野田幸裕, 増渕悟, 重吉康史

    時間生物学  2018.10 

     More details

    Language:Others  

    Country:Japan  

  • 新規体内時計異常モデルの開発を企図した遺伝子改変ラットの作出

    南陽一, 吉川朋子, 長野護, 鯉沼聡, 池上啓介, 藤岡厚子, 重吉康史

    時間生物学  2019.10 

     More details

    Language:Others  

    Country:Japan  

    Development of genetically modified rats: a new circadian rhythm disorder model.

  • 不感帯(Dead zone)位相決定の視交叉上核責任領域-シェルかコアか-

    長野護, 池上啓介, 南陽一, 金澤佑治, 鯉沼聡, 筋野貢, 重吉康史

    時間生物学  2019.10 

     More details

    Language:Others  

    Country:Japan  

    Which region of the suprachiasmatic nucleus determines the phase of the dead zone, shell or core?

  • グルココルチコイドと交感神経による眼圧概日リズム制御経路の解明

    池上啓介, 重吉康史, 増渕悟

    時間生物学  2019.10 

     More details

    Language:Others  

    Country:Japan  

    Circadian regulation of intraocular pressure rhythm by both glucocorticoids and sympathetic nerves

  • 松果体メラトニンによる網膜の光感受性抑制機構の解明

    池上 啓介

    上原記念生命科学財団研究報告集  2020.4 

     More details

    Language:Japanese  

    Country:Japan  

  • 生体においてcAMP反応エレメント(CRE)がPer1の光誘導を生起する

    池上啓介, 池上啓介, 中嶋正人, 南陽一, 長野護, 増渕悟, 重吉康史

    時間生物学  2020.10 

     More details

    Language:Others  

    Country:Japan  

    cAMP response element induces Per1 in vivo

  • 概日時計中枢視交叉上核による眼圧概日リズムの制御機構の解明

    池上啓介, 重吉康史, 増渕悟

    日本生理学雑誌(Web)  2021.3 

     More details

    Language:Japanese  

    Country:Japan  

  • 概日時計中枢視交叉上核による眼圧概日リズムの制御機構の解明 Invited

    池上啓介

    第126回日本解剖学会総会・全国学術集会 / 第98回日本生理学会大会 合同大会  2021.3 

     More details

    Language:Others  

    Country:Other  

  • 交感神経ノルアドレナリンはシュレム管の眼房水排出を夜間抑制すことで眼圧概日リズムを制御する

    池上啓介, 増渕悟

    時間生物学  2021.10 

     More details

    Language:Others  

    Country:Japan  

    Sympathetic noradrenaline regulates circadian rhythm of intraocular pressure by nocturnal suppression of aqueous humor outflow in mice

  • 夜間眼圧上昇における交感神経ノルアドレナリンによる線維柱帯の食作用抑制の役割

    池上啓介

    第99回 日本生理学会学術大会  2022.3 

     More details

    Language:Others  

    Country:Other  

    Involvement of trabecular meshwork phagocytic suppression by sympathetic norepinephrine in nocturnal intraocular pressure rise

  • 哺乳類における松果体による生理機能制御 Invited

    池上啓介

    日本生理人類学会第84回大会フロンティアミーティング  2023.6 

     More details

    Language:Others  

    Country:Other  

  • 松果体による生理機能制御システムの解明

    池上啓介, 増渕悟, 重吉康史

    日本睡眠学会第45回定期学術集会・第30回日本時間生物学会学術大会合同大会  2023.9 

     More details

    Language:Others  

    Country:Other  

  • 松果体による生理機能制御システムの解明 Invited

    池上啓介

    日本睡眠学会第45回定期学術集会・第30回日本時間生物学会学術大会合同大会  2023.9 

     More details

    Language:Japanese  

    Country:Other  

  • 睡眠/概日リズム研究の中のメラトニン 松果体による生理機能制御システムの解明(ポスター番号JSC114)

    池上 啓介, 増渕 悟, 重吉 康史

    日本睡眠学会定期学術集会・日本時間生物学会学術大会合同大会プログラム・抄録集  2023.9  日本睡眠学会・日本時間生物学会

     More details

    Language:Japanese  

  • 眼球および眼周囲における生理機能の概日リズム 眼圧日内変動の分子制御機構の理解(Circadian rhythms of intra- and extra-ocular physiological functions Molecular regulatory mechanisms in circadian rhythm of intraocular pressure)

    Ikegami Keisuke

    The Journal of Physiological Sciences  2023.5  (一社)日本生理学会

     More details

    Language:English  

  • 松果体による生理機能制御システムの解明

    池上啓介, 増渕悟, 重吉康史

    日本睡眠学会第45回定期学術集会・第30回日本時間生物学会学術大会合同大会  2023.9 

     More details

    Presentation type:Poster presentation  

    researchmap

  • 松果体による生理機能制御システムの解明 Invited

    池上啓介

    日本睡眠学会第45回定期学術集会・第30回日本時間生物学会学術大会合同大会  2023.9 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • 夜間眼圧上昇における交感神経ノルエピネフリンによる線維柱帯の食作用抑制の関与(Involvement of trabecular meshwork phagocytic suppression by sympathetic norepinephrine in nocturnal intraocular pressure rise)

    Ikegami Keisuke, Masubuchi Satoru

    The Journal of Physiological Sciences  2022.12  (一社)日本生理学会

     More details

    Language:English  

  • Involvement of trabecular meshwork phagocytic suppression by sympathetic norepinephrine in nocturnal intraocular pressure rise

    Keisuke Ikegami

    第99回 日本生理学会学術大会  2022.3 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • 哺乳類における松果体による生理機能制御 Invited

    池上啓介

    日本生理人類学会第84回大会フロンティアミーティング  2023.6 

     More details

    Presentation type:Oral presentation (invited, special)  

    researchmap

  • カフェインによって生じる時計遺伝子に依存しない活動リズム

    増渕 悟, 矢野 多佳子, 小松 紘司, 池上 啓介, 藤堂 剛, 中村 渉

    日本睡眠学会定期学術集会・日本時間生物学会学術大会合同大会プログラム・抄録集  2023.9  日本睡眠学会・日本時間生物学会

     More details

    Language:Japanese  

  • Molecular regulatory mechanisms of after-effect in the mammalian circadian rhythm(タイトル和訳中)

    Ikegami Keisuke, Satoru Masubuchi, Yasufumi Shigeyoshi

    The Journal of Physiological Sciences  2024.5  (一社)日本生理学会

     More details

    Language:English  

  • Circasemidian, circadian, and longer-period activity rhythms in caffeine-treated molecular clock deficient mice(タイトル和訳中)

    Masubuchi Satoru, Yano Takako, Kouji Komatsu, Ikegami Keisuke, Todo Takeshi, Nakamura Wataru

    The Journal of Physiological Sciences  2024.5  (一社)日本生理学会

     More details

    Language:English  

▼display all

MISC

  • Circadian rhythm of intraocular pressure Reviewed

    Keisuke Ikegami

    The Journal of Physiological Sciences   2024.3

     More details

    Language:English  

    DOI: 10.1186/s12576-024-00905-8

  • Circadian rhythm of intraocular pressure(タイトル和訳中)

    Ikegami Keisuke

    The Journal of Physiological Sciences   74   1 of 9 - 9 of 9   2024.3   ISSN:1880-6546

     More details

    Language:English   Publisher:(一社)日本生理学会  

  • 生活リズムが副腎グルココルチコイドと交感神経を介して眼圧概日リズムを制御する分子機構の全容解明

    池上 啓介

    医科学応用研究財団研究報告   40   252 - 256   2023.2   ISSN:0914-5117

     More details

    Language:Japanese   Publisher:(公財)鈴木謙三記念医科学応用研究財団  

  • 哺乳類における概日履歴現象の分子制御機構の探索

    池上 啓介

    ブレインサイエンス・レビュー   2022.4

     More details

    Language:Japanese  

  • 哺乳類における概日履歴現象の分子制御機構の探索

    池上 啓介

    ブレインサイエンス・レビュー   2022   115 - 132   2022.4   ISBN:9784910513065

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publisher:(株)アドスリー  

    researchmap

  • 哺乳類における概日履歴現象の分子制御機構の探索

    池上 啓介

    ブレインサイエンス・レビュー   2022   115 - 132   2022.4

     More details

    Language:Japanese   Publisher:(株)アドスリー  

  • Functional analysis of tissue-specific post-translational modification of springtime hormone TSH

    IKEGAMI Keisuke, LIAO Xiao‐Hui, HOSHINO Yuta, ONO Hiroko, OTA Wataru, ITO Yuka, NISHIWAKI‐OHKAWA Taeko, SATO Chihiro, KITAJIMA Ken, IIGO Masayuki, SHIGEYOSHI Yasufumi, YAMADA Masanobu, MURATA Yoshiharu, REFETOFF Samuel, YOSHIMURA Takashi

    時間生物学   2014.10

     More details

    Language:English  

    Functional analysis of tissue-specific post-translational modification of springtime hormone TSH

▼display all

Professional Memberships

  • European Biological Rhythms Society

  • Society for Research on Biological Rhythms

  • JAPANESE SOCIETY FOR CHRONOBIOLOGY

  • PHYSIOLOGICAL SOCIETY OF JAPAN

  • JAPANESE SOCIETY OF DEVELOPMENTAL BIOLOGISTS

  • JAPANESE SOCIETY OF DEVELOPMENTAL BIOLOGISTS

      More details

  • PHYSIOLOGICAL SOCIETY OF JAPAN

      More details

  • JAPANESE SOCIETY FOR CHRONOBIOLOGY

      More details

  • Society for Research on Biological Rhythms

      More details

  • European Biological Rhythms Society

      More details

▼display all

Committee Memberships

  • 日本生理学会   Councilor   Domestic

    2023.3 - Present   

  • 日本生理学会   評議員  

    2023.3 - Present   

      More details

  • 日本時間生物学会   Councilor   Domestic

    2017.1 - Present   

  • 日本時間生物学会   編集委員  

    2017.1 - Present   

      More details

    Committee type:Academic society

    researchmap

  • 日本時間生物学会   評議員  

    2017.1 - Present   

      More details

    Committee type:Academic society

    researchmap

Academic Activities

  • Screening of academic papers

    Role(s): Peer review

    2024

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

  • 公募シンポジウム座長

    第100回日本生理学会  ( Japan ) 2023.3

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

  • 世話人

    日本生理学会 環境生理プレコングレス  ( Japan ) 2021.3

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2021

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

    Number of peer-reviewed articles in Japanese journals:1

  • 大会組織委員

    第67回中部日本生理学会  ( Japan ) 2020.10 - 2021.10

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

    Number of peer-reviewed articles in Japanese journals:1

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

    Number of peer-reviewed articles in Japanese journals:1

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:1

  • 日本時間生物学会誌

    2017.1 - Present

     More details

    Type:Academic society, research group, etc. 

  • 大会組織委員

    日本解剖学会近畿支部大会  ( Japan ) 2016.10

     More details

    Type:Competition, symposium, etc. 

  • 大会組織委員

    第20回日本時間生物学会学術大会  ( Japan ) 2013.11

     More details

    Type:Competition, symposium, etc. 

  • 世話人

    生物リズム若手研究者の集い  ( Japan ) 2011.8

     More details

    Type:Competition, symposium, etc. 

  • 世話人

    生物リズム若手研修者の集い  ( Japan ) 2010.8

     More details

    Type:Competition, symposium, etc. 

▼display all

Research Projects

  • 脊椎動物における未利用ホルモンの季節変動解明による畜産業の活性化

    2024.5

      More details

    Authorship:Principal investigator 

  • 眼球線維柱帯における食作用を増進させ緑内障リスクを軽減させる脂肪酸の探索

    2024

    一般財団法人 油脂工業会館 令和6年度 研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 概日時計により季節を読み取る仕組みの解明

    2024

    公益財団法人 ライフサイエンス振興財団 2023年度 研究助成金

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 夜間眼圧上昇を抑制する栄養素の探索とその分子制御機構の解明

    2023.4

  • 生活習慣および生活リズムが緑内障発症を加速化させる仕組みの解明

    2023.1

      More details

    Authorship:Principal investigator 

  • 眼圧日内変動の分子制御機構の解明

    2023

    公益財団法人 堀科学芸術振興財団 2022年度(第31回)研究助成(第1部)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 緑内障時間治療に向けた眼房水産生の概日分子制御機構の全容解明

    2022 - 2023

    一般財団法人 横山臨床薬理研究助成基金 令和4年度 一般研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 緑内障治療に向けた微弱電流刺激による眼球の若返り

    2022 - 2023

    公益財団法人 カシオ科学振興財団 第40回(令和4年度)研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 眼圧リズム形成の分子制御機構の全容解明

    2021 - 2023

    公益財団法人 豊秋奨学会  2021年度 研究費助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 眼圧概日リズムを制御する分子機構の解明

    2021 - 2023

    公益財団法人 宇部興産学術振興財団 第61回(2020年度)学術奨励賞(医学)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 眼圧の日内変動を制御する分子制御機構の解明

    2020.4

      More details

    Authorship:Principal investigator 

  • 自然環境下における睡眠覚醒調節メカニズムの解明

    Grant number:20KK0177  2020 - 2023

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 高眼圧による視神経障害および眼房水産生排出における概日リズム制御の研究

    2020 - 2023

    公益財団法人 武田科学振興財団 2020年度医学系研究助成(基礎)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 眼房水の産生排出によって眼圧概日リズムを統御する仕組みの解明

    2020 - 2022

    (公財)加藤記念バイオサイエンス振興財団 第32回(2020年度)加藤記念研究助成 M分野 「メディカルサイエンス分野」

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 概日履歴現象の分子制御機構と神経網の変遷

    2020 - 2021

    公益財団法人 ブレインサイエンス振興財団 2019年度研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 生活リズムが副腎グルココルチコイドと交感神経を介して眼圧概日リズムを制御する分子機構の全容解明

    2020 - 2021

    公益財団法人 ブレインサイエンス振興財団 2020年度 調査研究助成金

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 眼圧概日リズムの分子制御機構の解明

    Grant number:19K09962  2019 - 2021

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 眼圧概日リズムを制御する遺伝子の探索・解析

    2019 - 2020

    公益信託第24回日本医学会総会記念医学振興基金  第24回日本医学会総会記念医学振興基金研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 眼圧概日リズムのメカニズムと緑内障発症との関連解明

    2019 - 2020

    公益財団法人 テルモ生命科学振興財団  2019年度 研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 眼圧の概日リズムを制御する時間情報伝達経路の解明

    2018.4

      More details

    Authorship:Principal investigator 

  • 松果体メラトニンによる網膜の光感受性抑制機構の解明

    2018 - 2020

    公益財団法人 上原記念生命科学財団 平成30年度 研究奨励金

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 概日履歴現象異常モデルマウスを用いた履歴効果の仕組みの解明

    2018 - 2020

    公益財団法人 日東学術振興財団 第35回(2018年度) 研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 網膜における概日光応答リズムが概日時計により制御される仕組みの解明

    2018 - 2020

    公益財団法人 第-三共生命科学研究振興財団  平成30年度(第36回)研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 眼圧の概日リズムを制御するメカニズムの解明

    2018 - 2019

    公益財団法人 大幸財団 第28回自然科学系学術研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 不適切環境光入力による概日リズム障害発生機序の究明とその回避方策の検討

    Grant number:17K08580  2017 - 2019

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 哺乳類網膜におけるゲートの分子機構と活動リズムの位相反応への作用解析

    Grant number:17K15574  2017 - 2018

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 概日活動リズムの光位相反応における履歴現象の制御解析

    2016 - 2017

    公益財団法人 持田記念持田記念医学薬学振興財団 2016年度研究助成金

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 松果体液性因子による情動制御機構の解明

    2015.4

      More details

    Authorship:Principal investigator 

  • 哺乳類の松果体セロトニンによる概日リズム制御機構の解明

    2015 - 2017

    公益財団法人 武田科学振興財団 2015年度 医学系研究奨励

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 季節性感情障害におけるメラトニンの作用機構の解明

    2015

    グラクソスミスクライン 2015年度 グラクソスミスクライン研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • ラットを用いたあくびの日内変動の解明

    2014.3

      More details

    Authorship:Principal investigator 

  • 体内時計中枢ゲート機構の探求―位相特異的光照射情報遮断の仕組みに迫るー

    Grant number:26460326  2014 - 2016

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 哺乳類の概日活動リズム制御機構における新規松果体液性因子の探索

    Grant number:26860163  2014 - 2015

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 欠伸の生理学的意義と制御機構の解明

    2014 - 2015

    公益財団法人 住友財団  2014年度 基礎科学研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • St8sia2ノックアウトマウスにおけるフランキング領域が水頭症に及ぼす影響

    2014 - 2015

    近畿大学 奨励研究助成金

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • 遺伝学的解析によるシアル酸転移酵素St8sia2遺伝子近傍のIGF1遺伝子がマウス系統依存的に発生に影響を及ぼす仕組みの解明

    2013.6 - 2019.6

      More details

    Authorship:Principal investigator 

  • 脊椎動物の季節性測時機構の解明

    2010 - 2012

    Japan Society for the Promotion of Science  Research Fellowships for Young Scientists

      More details

    Authorship:Principal investigator  Grant type:Joint research

  • 脊椎動物における日長測時機構の解明

    2008.4

      More details

    Authorship:Principal investigator 

▼display all

Educational Activities

  • In undergraduate education, I am in charge of animal physiology and animal husbandry biological control, and provide guidance on basic principles related to animal physiology and the knowledge and practical skills necessary for husbandry management. In the undergraduate international course, we share lectures on Animal and Marine Life Science and provide education on molecular biology, including practical exercises. In graduate school education, I am in charge of special lectures on biological control systems and seminars on biological control systems, and provide guidance to deepen understanding and application of advanced biological systems.

Class subject

  • 動物生理学Ⅰ

    2024.10 - 2024.12   Fall quarter

  • 動物飼養生体制御学Ⅱ

    2024.6 - 2024.8   Summer quarter

  • Animal Life Science (分担)

    2024.4 - 2024.9   First semester

  • 飼料学実験

    2024.4 - 2024.9   First semester

  • 飼料学実験

    2024.4 - 2024.9   First semester

  • 農学入門II(分担)

    2024.4 - 2024.9   First semester

  • 動物生産科学概論(分担)

    2024.4 - 2024.9   First semester

  • 動物・海洋生物科学プロジェクト演習

    2023.10 - 2024.3   Second semester

  • 動物・海洋生物科学演習第一

    2023.10 - 2024.3   Second semester

  • 動物・海洋生物科学演習第二

    2023.10 - 2024.3   Second semester

  • 動物飼養生体制御学実習

    2023.10 - 2023.12   Fall quarter

  • 動物生理学Ⅰ

    2023.10 - 2023.12   Fall quarter

  • 生体制御システム学特論

    2023.10 - 2023.12   Fall quarter

  • 動物飼養生体制御学Ⅱ

    2023.6 - 2023.8   Summer quarter

  • 動物・海洋生物科学ティーチング演習

    2023.4 - 2024.3   Full year

  • 動物・海洋生物科学特別研究第一

    2023.4 - 2024.3   Full year

  • 動物・海洋生物科学特別研究第二

    2023.4 - 2024.3   Full year

  • Animal and Marine Life Science (分担)

    2023.4 - 2023.9   First semester

  • 農学入門II(分担)

    2023.4 - 2023.9   First semester

  • 動物・海洋生物科学特論第四

    2023.4 - 2023.9   First semester

▼display all

FD Participation

  • 2023.4   Role:Participation   Title:令和5年度第1回新任教員FD

    Organizer:University-wide

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2023  愛知医科大学医学部 生理学講座  Classification:Affiliate faculty  Domestic/International Classification:Japan 

Media Coverage

  • ノルアドレナリンが食作用抑制を介し眼圧概日リズムを制御する仕組みを解明 Newspaper, magazine

    QLife Pro 医療NEWS  2022.4

     More details

    ノルアドレナリンが食作用抑制を介し眼圧概日リズムを制御する仕組みを解明

  • 視交叉上核が、眼圧の概日リズムを制御する仕組みを明らかに Newspaper, magazine

    QLife Pro 医療NEWS  2020.3

     More details

    視交叉上核が、眼圧の概日リズムを制御する仕組みを明らかに

  • 眼圧リズムの制御構造を解明 Newspaper, magazine

    OPTRONICS ONLINE  2020.3

     More details

    眼圧リズムの制御構造を解明

  • 大幸財団 研究助成採択者 Newspaper, magazine

    中日新聞  2018.10

     More details

    大幸財団 研究助成採択者

  • 魚は脳で季節を感知 Newspaper, magazine

    日本経済新聞夕刊  2013.11

     More details

    魚は脳で季節を感知

  • 魚は脳で季節を感知 Newspaper, magazine

    朝日新聞、中日新聞、日本経済新聞、毎日新聞、読売新聞  2013.7

     More details

    魚は脳で季節を感知

▼display all