Updated on 2025/06/04

Information

 

写真a

 
NAKAMURA TAKAHIRO
 
Organization
Faculty of Agriculture Department of Bioscience and Biotechnology Professor
Plant Frontier Research Center (Concurrent)
School of Agriculture Department of Bioresource and Bioenvironment(Concurrent)
Graduate School of Bioresource and Bioenvironmental Sciences Department of Bioscience and Biotechnology(Concurrent)
Title
Professor
Contact information
メールアドレス
Tel
0928024721
Profile
We have focused on the coordinate gene expression among nucleus, chloroplast and mitochondria in plants. Especially, we have interested in the RNA metabolism. We further develop the application, such as plant breeding and custom RNA binding protein, base on the fundamental research. W have started the development of genome editing tools.
Homepage
External link

Research Areas

  • Life Science / Genome biology

Degree

  • Ph. D

Research History

  • (独)科学技術振興機構 戦略的創造研究推進事業 さきがけ研究者 エディットフォース株式会社 取締役 CSO(最高科学責任者)   

    (独)科学技術振興機構 戦略的創造研究推進事業 さきがけ研究者 エディットフォース株式会社 取締役 CSO(最高科学責任者)

  • なし   

Education

  • Nagoya University    

Research Interests・Research Keywords

  • Research theme: 1. Nuclear-cytoplasmic interaction in plant 2. Organelle gene expression 3. Cytoplasmic male sterility 4. Engineering of custom RNA binding protein 5. Genome editing

    Keyword: chloroplast, mitochondrion, RNA, plant, genome editing

    Research period: 2007.6

Awards

  • 「大学発ベンチャー表彰2019」 科学技術振興機構理事長賞

    2019.7   科学技術振興機構   PPRたんぱく質工学を利用した新たなゲノム編集技術で、DNA編集だけでなくRNA編集を統合できる技術としての将来性が高く、日本発のゲノム編集技術の事業化を外部機関との連携を活かして着実に進めている点が高く評価された。創薬、農業、食品など応用範囲は広く、世界初のRNA編集技術の実用化により、今後大きく成長することが期待される。

  • HK創造性開発資金 優秀特許表彰

    2018.1   九州大学 農学研究院  

  • 平成28年度 九州大学 研究・産学連携活動表彰

    2016.10   国立大学法人九州大学  

  • 平成22年度 九州大学 研究・産学連携活動表彰

    2010.10   国立大学法人九州大学  

Papers

  • Engineering rice Nramp5 modifies cadmium and manganese uptake selectivity using yeast assay system Reviewed

    Inoue, J., Teramoto, T., Kazama, T., Nakamura, T.

    Front Plant Sci.   15   1482099   2024.10

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3389/fpls.2024.1482099

    Repository Public URL: https://hdl.handle.net/2324/7341501

  • Construction of a Versatile, Programmable RNA-Binding Protein Using Designer PPR Proteins and Its Application for Splicing Control in Mammalian Cells Invited Reviewed International journal

    Yusuke Yagi, Takamasa Teramoto, Shuji Kaieda, Takayoshi Imai, Tadamasa Sasaki, Maiko Yagi, Nana Maekawa, Takahiro Nakamura

    Cells   2022.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.3390/cells11223529

  • U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells Reviewed International journal

    Mizuho Ichinose, Masuyo Kawabata, Yumi Akaiwa, Yasuka Shimajiri, Izumi Nakamura, Takayuki Tamai, Takahiro Nakamura, Yusuke Yagi, Bernard Gutmann

    Communications biology   2022.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells. Invited Reviewed International journal

    Kobayashi T, Yagi Y, Nakamura T

    Methods Mol Biol.   1469   147 - 155   2016.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/978-1-4939-4931-1_11

  • Mitochondrial ORF79 levels determine the timing of pollen abortion in cytoplasmic male sterile Reviewed International journal

    Kazama T, Itabashi E, Fujii S, Nakamura T, Toriyama K

    The Plant Journal   85 ( 6 )   707 - 716   2016.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: doi: 10.1111/tpj.13135

  • The challenges faced by EditForce Inc., to go beyond genome editing Reviewed International journal

    Yagi Y, Shirakawa M, Nakamura T

    Nature   2015.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    EditForce Inc., established in May 2015, provides an alternative option to genome editing and a novel tool for versatile RNA editing at the genomic scale, called ‘transcriptome editing’, based on pentatricopeptide repeat (PPR) protein engineering technologies. Our core technologies have been invented at Kyushu University, Japan. The company is located in Fukuoka city in Kyushu, a southwestern island of Japan. EditForce is an innovative company in the post-genomic era. Our mission is to provide novel DNA/RNA operating tools to understand and modify various living entities and to translate our PPR technologies in various biological industries, including the pharmaceutical and agricultural industries.

  • Quantitative analysis of motifs contributing to the interaction between PLS-subfamily members and their target RNA sequences in plastid RNA editing Reviewed International journal

    Kenji Okuda, Harumi Shoki, Miho Arai, Toshiharu Shikanai, Ian Small, Takahiro Nakamura

    PLANT JOURNAL   80 ( 5 )   870 - 882   2014.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In plant organelles, RNA editing alters specific cytidine residues to uridine in transcripts. Target cytidines are specifically recognized by pentatricopeptide repeat (PPR) proteins of the PLS subfamily, which have additional C-terminal E or E-DYW motifs. Recent in silico analysis proposed a model for site recognition by PLS-subfamily PPR proteins: one-PPR motif to one-nucleotide correspondence with the C-terminal last S motif aligning to the nucleotide at position -4 with respect to the editing site. Here we show quantitative biochemical data on site recognition by four PLS-subfamily proteins: CRR28 and OTP85 are DYW-class members while CRR21 and OTP80 are E-class members. The minimal RNA segments required for high affinity binding by these PPR proteins were experimentally determined. The results were generally consistent with the in silico based model. However, we clarified that several PPR motifs, including the C-terminal L2 and S motifs of CRR21 and OTP80, are dispensable for the RNA binding, suggesting distinct contributions of each PPR motif to site recognition. We also demonstrate that the DYW motif interacts with the target C and its 5′ proximal region (-3 to 0), whereas the E motif is not involved in binding.

    DOI: 10.1111/tpj.12687

  • The potential for manipulating RNA with pentatricopeptide repeat proteins Invited Reviewed International journal

    Yusuke Yagi, Takahiro Nakamura, Ian Small

    PLANT JOURNAL   78 ( 5 )   772 - 782   2014.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The pentatricopeptide repeat (PPR) protein family, particularly prevalent in plants, includes many sequence-specific RNA binding proteins involved in all aspects of organelle RNA metabolism including RNA stability, processing, RNA editing, and translation. PPR proteins consist of a tandem array of 2-30 PPR motifs each of which aligns to one nucleotide in the RNA target. The amino acid side-chains at 2-3 specific positions in each motif confer nucleotide specificity in a predictable and programmable manner. Thus, PPR proteins appear to provide an extremely promising opportunity to create custom RNA binding proteins with tailored specificity. We summarize recent progress in understanding RNA recognition by PPR proteins with a particular focus on potential applications of PPR-based tools for manipulating RNA, and on the challenges that remain to be overcome before these tools can be routinely used by the scientific community.

    DOI: 10.1111/tpj.12377

  • Heterogeneity of the 5 '-end in plant mRNA may be involved in mitochondrial translation

    Tomohiko Kazama, Yusuke Yagi, Kinya Toriyama, Takahiro Nakamura

    FRONTIERS IN PLANT SCIENCE   4   517   2013.12

     More details

    Language:English  

    DOI: 10.3389/fpls.2013.00517

  • Pentatricopeptide repeat proteins involved in plant organellar RNA editing

    Yusuke Yagi, Makoto Tachikawa, Hisayo Noguchi, Soichiro Satoh, Junichi Obokata, Takahiro Nakamura

    RNA BIOLOGY   10 ( 9 )   2013.9

     More details

    Language:English  

  • Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. Reviewed International journal

    Yusuke Yagi, Shimpei Hayashi, Keiko Kobayashi, Takashi Hirayama, Takahiro Nakamura

    PLoS ONE   8 ( 3 )   e57286   2013.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Pentatricopeptide repeat (PPR) proteins are eukaryotic RNA-binding proteins that are commonly found in plants. Organelle transcript processing and stability are mediated by PPR proteins in a gene-specific manner through recognition by tandem arrays of degenerate 35-amino-acid repeating units, the PPR motifs. However, the sequence-specific RNA recognition mechanism of the PPR protein remains largely unknown. Here, we show the principle underlying RNA recognition for PPR proteins involved in RNA editing. The distance between the PPR-RNA alignment and the editable C was shown to be conserved. Amino acid variation at 3 particular positions within the motif determined recognition of a specific RNA in a programmable manner, with a 1-motif to 1-nucleotide correspondence, with no gap sequence. Data from the decoded nucleotide frequencies for these 3 amino acids were used to assign accurate interacting sites to several PPR proteins for RNA editing and to predict the target site for an uncharacterized PPR protein.

    DOI: 10.1371/journal.pone.0057286

  • Mechanistic Insight into Pentatricopeptide Repeat Proteins as Sequence-Specific RNA-Binding Proteins for Organellar RNAs in Plants Invited Reviewed International journal

    Takahiro Nakamura, Yusuke Yagi, Keiko Kobayashi

    Plant Cell Physiol   53 ( 7 )   2012.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The pentatricopeptide repeat (PPR) protein family is highly expanded in terrestrial plants. Arabidopsis contains 450 PPR genes, which represents 2% of the total protein-coding genes. PPR proteins are eukaryote-specific RNA-binding proteins implicated in multiple aspects of RNA metabolism of organellar genes. Most PPR proteins affect a single or small subset of gene(s), acting in a gene-specific manner. Studies over the last 10 years have revealed the significance of this protein family in coordinated gene expression in different compartments: the nucleus, chloroplast, and mitochondrion. Here, we summarize recent studies addressing the mechanistic aspect of PPR proteins.

  • Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing Reviewed International journal

    Maki Murayama, Shimpei Hayashi1, Noriyuki Nishimura1, Mayumi Ishide, Keiko Kobayashi, Yusuke Yagi, Tadao Asami, Takahiro Nakamura, Kazuo Shinozaki, Takashi Hirayama

    J. Exp. Bot.   2012.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The phytohormone abscisic acid (ABA) plays pivotal roles in the regulation of developmental and environmental responses in plants. Identification of cytoplasmic ABA receptors enabled the elucidation of the main ABA signaling pathway, connecting ABA perception to either nuclear events or the action of several transporters. However, the physiological functions of ABA in cellular processes largely remain unknown. To obtain greater insight into the ABA response, we performed genetic screening to isolate ABA-related mutants of Arabidopsis and isolated several novel ABA-hypersensitive mutants. We further characterized one of those mutants—ahg11. Map-based cloning showed that AHG11 encodes a PPR type protein, which has potential roles in RNA editing. An AHG11-GFP fusion protein indicated that AHG11 mainly localized to the mitochondria. Consistent with this observation, the nad4 transcript, which normally undergoes RNA editing, lacks a single RNA editing event conferring a conversion of an amino acid residue in ahg11 mutants. The geminating ahg11 seeds have higher levels of reactive oxygen species responsive genes. Presumably partial impairment of mitochondrial function caused by an amino acid conversion in one of the Complex I components induces redox imbalance, which in turn confers abnormal response to the plant hormone.

    DOI: 10.1093/jxb/ers188

  • Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein Reviewed International journal

    Kobayashi K, Kawabata M, Hisano K, Kazama T, Matsuoka K, Sugita M, Nakamura T

    Nucleic Acids Res.   40   2012.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    葉緑体とミトコンドリアの遺伝子発現は核にコードされる遺伝子によって転写後のRNAのレベルで大きく制御されている。最近の研究で、植物で特有に大きなファミリーを形成するPPR蛋白質が配列特異的なRNA結合蛋白質として、前述のオルガネラRNA代謝に重要な役割を担うことが明らかになってきた。PPR蛋白質中の複数のPPRモチーフ(35アミノ酸)の繰り返しがRNA結合に働くと推測されているが、その詳細は明らかでない。我々はここに、PPR蛋白質のRNA結合の分子基盤を示した。まず、Pfamにおけるモチーフの定義がPPRモチーフのRNA結合ユニットとしての働きを正しく示すことを明らかにした。また、2個のPPRモチーフからなる一連の組換え蛋白質を用いた生化学的、計算科学的な解析から、5個のアミノ酸(1、4、8、12、ii(-2))がPPRモチーフのRNA結合表面を形成することを明らかにした。SELEX法などにより、配列特異的なRNA結合を解析したところ、PPRとRNAの相互作用の親和性、配列特異性に関わることをいくつかの特徴的なアミノ酸を見いだした。

  • Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts Reviewed International journal

    Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T

    Plant Cell   21   2009.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • A conserved DYW domain of the pentatricopeptide repeat protein possesses a novel endo-ribonuclease activity Reviewed International journal

    Nakamura T, Sugita M

    FEBS Lett.   582   2008.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice Reviewed International journal

    Kazama T, Nakamura T, Watanabe M, Sugita M, Toriyama K

    Plant J.   55   2008.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • A pentatricopeptide repeat protein is a site recognition factor in chloroplast RNA editing Reviewed International journal

    Okuda K, Nakamura T, Sugita M, Shimizu T, Shikanai T

    J. Biol. Chem.   281   2006.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Translational enhancement of target endogenous mRNA in mammalian cells using programmable RNA‐binding pentatricopeptide repeat proteins Reviewed International journal

    Ning Ping, Sayuri Hara‐Kuge, Yusuke Yagi, Tomohiko Kazama & Takahiro Nakamura

    Scientific Reports   14   251   2024.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1038/s41598-023-50776-z

  • Translational enhancement of target endogenous mRNA in mammalian cells using programmable RNA-binding pentatricopeptide repeat proteins

    Ping N., Hara-Kuge S., Yagi Y., Kazama T., Nakamura T.

    Scientific Reports   14 ( 1 )   251   2023.12

     More details

    Language:English   Publisher:Scientific Reports  

    Programmable protein scaffolds are invaluable in the development of genome engineering tools. The pentatricopeptide repeat (PPR) protein is an attractive platform for RNA manipulation because of its programmable RNA-binding selectivity, which is determined by the combination of amino acid species at three specific sites in the PPR motif. Translation is a key RNA regulatory step that determines the final gene expression level and is involved in various human diseases. In this study, designer PPR protein was used to develop a translational enhancement technique by fusion with the translation initiation factor eIF4G. The results showed that the PPR-eIF4G fusion protein could activate the translation of endogenous c-Myc and p53 mRNAs and control cell fate, indicating that PPR-based translational enhancement is a versatile technique applicable to various endogenous mRNAs in mammalian cells. In addition, the translational enhancement was dependent on both the target position and presence of eIF4G, suggesting the presence of an unknown translation activation mechanism.

    DOI: 10.1038/s41598-023-50776-z

    Scopus

    PubMed

  • Understanding RNA editing and its use in gene editing Invited Reviewed International journal

    Ruchika, Takahiro Nakamura

    3   100021   2022.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.ggedit.2022.100021

  • U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells

    Ichinose, M; Kawabata, M; Akaiwa, Y; Shimajiri, Y; Nakamura, I; Tamai, T; Nakamura, T; Yagi, Y; Gutmann, B

    COMMUNICATIONS BIOLOGY   5 ( 1 )   968   2022.9   eISSN:2399-3642

     More details

    Language:English   Publisher:Communications Biology  

    Programmable RNA editing offers significant therapeutic potential for a wide range of genetic diseases. Currently, several deaminase enzymes, including ADAR and APOBEC, can perform programmable adenosine-to-inosine or cytidine-to-uridine RNA correction. However, enzymes to perform guanosine-to-adenosine and uridine-to-cytidine (U-to-C) editing are still lacking to complete the set of transition reactions. It is believed that the DYW:KP proteins, specific to seedless plants, catalyze the U-to-C reactions in mitochondria and chloroplasts. In this study, we designed seven DYW:KP domains based on consensus sequences and fused them to a designer RNA-binding pentatricopeptide repeat (PPR) domain. We show that three of these PPR-DYW:KP proteins edit targeted uridine to cytidine in bacteria and human cells. In addition, we show that these proteins have a 5′ but not apparent 3′ preference for neighboring nucleotides. Our results establish the DYW:KP aminase domain as a potential candidate for the development of a U-to-C editing tool in human cells.

    DOI: 10.1038/s42003-022-03927-3

    Web of Science

    Scopus

    PubMed

  • Temperature-dependent fasciation mutants provide a link between mitochondrial RNA processing and lateral root morphogenesis Reviewed International journal

    Kurataka Otsuka, Akihito Mamiya, Mineko Konishi, Mamoru Nozaki, Atsuko Kinoshita, Hiroaki Tamaki, Masaki Arita, Masato Saito, Kayoko Yamamoto, Takushi Hachiya, Ko Noguchi, Takashi Ueda, Yusuke Yagi, Takehito Kobayashi, Takahiro Nakamura, Yasushi Sato, Takashi Hirayama, Munetaka Sugiyama

    eLife   10   e61611   2021.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.7554/eLife.61611

  • Comprehensive Prediction of Target RNA Editing Sites for PLS-Class PPR Proteins in Arabidopsis thaliana Reviewed

    Takehito Kobayashi, Yusuke Yagi, Takahiro Nakamura

    Plant and Cell Physiology   60 ( 4 )   862 - 874   2019.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Hundreds of RNA editing events, that is conversion of cytidines (Cs) to uridines (Us), have been observed in the mitochondrial and plastid transcriptome in vascular plants. Defects of C-to-U RNA editing affect a wide variety of physiological processes. These editing sites are recognized by pentatricopeptide repeat (PPR) superfamily proteins. PPR proteins are sequence-specific RNA binding proteins that participate in multiple aspects of organellar RNA metabolism. They are categorized into P and PLS subclasses, where PLS-class proteins are largely identified as RNA editing PPRs. Elucidating the principle involved in PPR-RNA recognition, the so-called PPR code, has enhanced our understanding of the recognition of RNA editing sites, thereby enabling prediction of target RNA editing sites for uncharacterized PLS-class proteins. Computational PPR-RNA prediction in RNA editing can be applied to the study of PPR-deficient plants that are genetically isolated from physiological abnormalities. However, the use of PPR-RNA prediction in RNA editing is still restricted due to ambiguous procedures and prediction reliability. Here, we refined the PPR code dataset, and the reliability of the computational prediction was quantitatively evaluated using known RNA editing PPRs. With this knowledge, a computational analysis was conducted in the 'PPR-to-editing site' and 'editing site-to-PPR' directions, against 199 PLS-class proteins and 499 organelle RNA editing sites in Arabidopsis thaliana. We propose 52 plausible PPR-RNA pairs for uncharacterized proteins and editing sites. The presented data will facilitate the study of organellar RNA editing involved in diverse physiological processes in A. thaliana.

    DOI: 10.1093/pcp/pcy251

  • Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems Reviewed

    Kawabe Yoshinori, Shinya Komatsu, Shodai Komatsu, Mai Murakami, Akira Ito, Tetsushi Sakuma, Takahiro Nakamura, Takashi Yamamoto, Masamichi Kamihira

    Journal of Bioscience and Bioengineering   125 ( 5 )   599 - 605   2018.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Chinese hamster ovary (CHO) cells have been used as host cells for the production of pharmaceutical proteins. For the high and stable production of target proteins, the transgene should be integrated into a suitable genomic locus of host cells. Here, we generated knock-in CHO cells, in which transgene cassettes without a vector backbone sequence were integrated into the hprt locus of the CHO genome using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) systems. We investigated the efficiency of targeted knock-in of transgenes using these systems. As a practical example, we generated knock-in CHO cells producing an scFv-Fc antibody using the CRIS-PITCh system mediated by microhomology sequences for targeting. We found that the CRIS-PITCh system can facilitate targeted knock-in for CHO cell engineering.

    DOI: 10.1016/j.jbiosc.2017.12.003

  • Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems Invited Reviewed International journal

    Yoshinori Kawabe, Shinya Komatsu, Shodai Komatsu, Mai Murakami, Akira Ito, Tetsushi Sakuma, Takahiro Nakamura, Takashi Yamamoto, Masamichi Kamihira

    J. Biosci. Bioeng.   125 ( 5 )   599 - 605   2018.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jbiosc.2017.12.003

  • Recent progress toward RNA manipulation with engineered pentatricopeptide repeat proteins

    Takayoshi Imai, Yusuke Yagi, Takahiro Nakamura

    Applied RNA Bioscience   151 - 160   2018.4

     More details

    Language:English  

    Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are widely distributed in plants. They contain 2 to 30 repeating units of ~35-amino acid PPR motifs. They are known to play important roles in RNA processing, RNA editing, and translational regulation. Recent studies on the RNA recognition mode of PPR proteins revealed that one PPR motif interacts with one nucleotide. In addition, it was revealed that amino acids at three specific positions in a single motif serve to specify its binding base. Thus, mutation of these amino acids can cause a modification of the binding specificity of PPR motifs. Indeed, the engineered PPR motifs fused with various effector domains are shown to bind to and manipulate RNAs in a controlled manner. In this review, we summarize the recent progress in structural studies on PPR motifs. We focus on their RNA recognition mode and discuss the potentials of PPR as novel, versatile tools for RNA manipulation.

    DOI: 10.1007/978-981-10-8372-3_10

  • Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice Reviewed

    Tomohiko Kazama, Etsuko Itabashi, Shinya Fujii, Takahiro Nakamura, Kinya Toriyama

    Plant Journal   85 ( 6 )   707 - 716   2016.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Cytoplasmic male sterility (CMS) is an important agricultural trait characterized by lack of functional pollen, and caused by ectopic and defective mitochondrial gene expression. The pollen function in CMS plants is restored by the presence of nuclear-encoded restorer of fertility (Rf) genes. Previously, we cloned Rf2, which restores the fertility of Lead Rice (LD)-type CMS rice. However, neither the function of Rf2 nor the identity of the mitochondrial gene causing CMS has been determined in LD-CMS rice. Here, we show that the mitochondrial gene orf79 acts as a CMS-associated gene in LD-CMS rice, similar to its role in BT-CMS rice originating from Chinsurah Boro II, and Rf2 weakly restores fertility in BT-CMS rice. We also show that RF2 promotes degradation of atp6-orf79 RNA in a different manner from that of RF1, which is the Rf gene product in BT-CMS rice. The amount of ORF79 protein in LD-CMS rice was one-twentieth of the amount in BT-CMS rice. The difference in ORF79 protein levels probably accounts for the mild and severe pollen defects in LD-CMS and BT-CMS rice, respectively. In the presence of Rf2, accumulation of ORF79 was reduced to almost zero and 25% in LD-CMS and BT-CMS rice, respectively, which probably accounts for the complete and weak fertility restoration abilities of Rf2 in LD-CMS and BT-CMS rice, respectively. These observations indicate that the amount of ORF79 influences the pollen fertility in two strains of rice in which CMS is induced by orf79.

    DOI: 10.1111/tpj.13135

  • Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids. Reviewed International journal

    Sakuma T, Takenaga M, Kawabe Y, Nakamura T, Kamihira M, Yamamoto T

    Int J Mol Sci.   16 ( 10 )   23849 - 23866   2015.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3390/ijms161023849

  • Pentatricopeptide repeat motifs in the processing enzyme PRORP1 in Arabidopsis thaliana play a crucial role in recognition of nucleotide bases at T psi C loop in precursor tRNAs Reviewed International journal

    Takayoshi Imai, Takahiro Nakamura, Maeda, Taku, Xuzhu Gao, Yoshimitsu Kakuta, Takashi Nakashima, makoto kimura

    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS   450 ( 4 )   1541 - 1546   2014.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bbrc.2014.07.030

  • Two DYW Subclass PPR Proteins are Involved in RNA Editing of ccmFc and atp9 Transcripts in the Moss Physcomitrella patens: First Complete Set of PPR Editing Factors in Plant Mitochondria

    Mizuho Ichinose, Chieko Sugita, Yusuke Yagi, Takahiro Nakamura, Mamoru Sugita

    PLANT AND CELL PHYSIOLOGY   54 ( 11 )   1907 - 1916   2013.11

     More details

    Language:English  

    DOI: 10.1093/pcp/pct132

  • Pentatricopeptide repeat proteins involved in plant organellar RNA editing Reviewed

    Yusuke Yagi, Makoto Tachikawa, Hisayo Noguchi, Soichirou Satoh, Junichi Obokata, Takahiro Nakamura

    RNA biology   10 ( 9 )   1236 - 1242   2013.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    C-to-U RNA editing has been widely observed in organellar RNAs in terrestrial plants. Recent research has revealed the significance of a large, plant-specific family of pentatricopeptide repeat (PPR) proteins for RNA editing and other RNA processing events in plant mitochondria and chloroplasts. PPR protein is a sequence-specific RNA-binding protein that identifies specific C residues for editing. Discovery of the RNA recognition code for PPR motifs, including verification and prediction of the individual RNA editing site and its corresponding PPR protein, expanded our understanding of the molecular function of PPR proteins in plant organellar RNA editing. Using this knowledge and the co-expression database, we have identified two new PPR proteins that mediate chloroplast RNA editing. Further, computational target assignment using the PPR RNA recognition codes suggests a distinct, unknown mode-of-action, by which PPR proteins serve a function beyond site recognition in RNA editing.

    DOI: 10.4161/rna.24908

  • Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants Reviewed

    Takahiro Nakamura, Yusuke Yagi, Keiko Kobayashi

    Plant and Cell Physiology   53 ( 7 )   1171 - 1179   2012.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The pentatricopeptide repeat (PPR) protein family is highly expanded in terrestrial plants. Arabidopsis contains 450 PPR genes, which represents 2 of the total protein-coding genes. PPR proteins are eukaryote-specific RNA-binding proteins implicated in multiple aspects of RNA metabolism of organellar genes. Most PPR proteins affect a single or small subset of gene(s), acting in a gene-specific manner. Studies over the last 10 years have revealed the significance of this protein family in coordinated gene expression in different compartments: the nucleus, chloroplast and mitochondrion. Here, we summarize recent studies addressing the mechanistic aspect of PPR proteins.

    DOI: 10.1093/pcp/pcs069

  • Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein Reviewed

    Keiko Kobayashi, Masuyo Kawabata, Keizo Hisano, Tomohiko Kazama, Ken Matsuoka, Mamoru Sugita, Takahiro Nakamura

    Nucleic Acids Research   40 ( 6 )   2712 - 2723   2012.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The expressions of chloroplast and mitochondria genes are tightly controlled by numerous nuclear-encoded proteins, mainly at the post-transcriptional level. Recent analyses have identified a large, plant-specific family of pentatricopeptide repeat (PPR) motif-containing proteins that are exclusively involved in RNA metabolism of organelle genes via sequence-specific RNA binding. A tandem array of PPR motifs within the protein is believed to facilitate the RNA interaction, although little is known of the mechanism. Here, we describe the RNA interacting framework of a PPR protein, Arabidopsis HCF152. First, we demonstrated that a Pfam model could be relevant to the PPR motif function. A series of proteins with two PPR motifs showed significant differences in their RNA binding affinities, indicating functional differences among PPR motifs. Mutagenesis and informatics analysis putatively identified five amino acids organizing its RNA binding surface [the 1st, 4th, 8th, 12th and 'ii'(-2nd) amino acids] and their complex connections. SELEX (Systematic evolution of ligands by exponential enrichment) and nucleobase preference assays determined the nucleobases with high affinity for HCF152 and suggested several characteristic amino acids that may be involved in determining specificity and/or affinity of the PPR/RNA interaction.

    DOI: 10.1093/nar/gkr1084

  • A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions Reviewed International journal

    Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K

    Plant J.   68   2011.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    原色素体(plastid)から葉緑体(chloroplast)への分化の過程で、色素体の遺伝子発現システムは、光合成を可能とする葉緑体のそれに大きく変化する。イネのv1(virescent1)変異体では、低温状態で葉緑体分化が損なわれる。我々は本論文で、v1遺伝子を同定し、この遺伝子が葉緑体局在のNUS1蛋白質をコードすることを明らかにした。NUS1のC末端側は、原核生物でリボソームRNAの転写に働く転写集結抑制因子と良く似た構造を有す。また、NUS1は葉緑体成熟途中で特異的に発現していた。RNA免疫沈降実験、およびゲルシフト法により、NUS1は16S rRNAの上流領域を含むいくつかの葉緑体RNAと結合することを明らかにした。NUS1変異体では、低温下での葉緑体形成途中で、葉緑体中のrRNAの成熟および蓄積が損なわれており、その結果、葉緑体遺伝子の転写および翻訳の広範囲にわたる異常が観察された。以上の結果は、NUS1が低温ストレス状態での原色素体から葉緑体への分化において、その遺伝子発現系の構築に重要な役割を果たすことを示唆している。

    DOI: 10.1111/j.1365-313X.2011.04755.x

  • Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts Reviewed

    Kenji Okuda, Anne Laure Chateigner-Boutin, Takahiro Nakamura, Etienne Delannoy, Mamoru Sugita, Fumiyoshi Myouga, Reiko Motohashi, Kazuo Shinozaki, Ian Small, Toshiharu Shikanai

    Plant Cell   21 ( 1 )   146 - 156   2009.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The plant-specific DYW subclass of pentatricopeptide repeat proteins has been postulated to be involved in RNA editing of organelle transcripts. We discovered that the DYW proteins CHLORORESPIRATORY REDUCTION22 (CRR22) and CRR28 are required for editing of multiple plastid transcripts but that their DYW motifs are dispensable for editing activity in vivo. Replacement of the DYW motifs of CRR22 and CRR28 by that of CRR2, which has been shown to be capable of endonucleolytic cleavage, blocks the editing activity of both proteins. In return, the DYW motifs of neither CRR22 nor CRR28 can functionally replace that of CRR2. We propose that different DYW family members have acquired distinct functions in the divergent processes of RNA maturation, including RNA cleavage and RNA editing.

    DOI: 10.1105/tpc.108.064667

  • A conserved DYW domain of the pentatricopeptide repeat protein possesses a novel endoribonuclease activity Reviewed

    Takahiro Nakamura, Mamoru Sugita

    FEBS Letters   582 ( 30 )   4163 - 4168   2008.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Many plant pentatricopeptide repeat (PPR) proteins are known to contain a highly conserved C-terminal DYW domain whose function is unknown. Recently, the DYW domain has been proposed to play a role in RNA editing in plant organelles. To address this possibility, we prepared recombinant DYW proteins and tested their cytidine deaminase activity. However, we could not detect any activity in the assays we used. Instead, we found that the recombinant DYW domains possessed endoribonuclease activity and cleaved before adenosine residues in the RNA molecule. Some DYW-containing PPR proteins may catalyze site-specific cleavage of target RNA species.

    DOI: 10.1016/j.febslet.2008.11.017

  • Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice Reviewed

    Tomohiko Kazama, Takahiro Nakamura, Masao Watanabe, Mamoru Sugita, Kinya Toriyama

    Plant Journal   55 ( 4 )   619 - 628   2008.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In BT-type cytoplasmic male sterile rice (Oryza sativa L.) with Chinsurah Boro II cytoplasm, cytoplasmic male sterility (CMS) is caused by an accumulation of the cytotoxic peptide ORF79. The ORF79 protein is expressed from a dicistronic gene atp6-orf79, which exists in addition to the normal atp6 gene in the BT-type mitochondrial genome. The CMS is restored by a PPR (pentatricopeptide-repeat) gene, Rf1, via RNA processing. However, it has not yet been elucidated how the accumulation of ORF79 is reduced by the action of the Rf1 protein. Here, we report that the level of processed orf79 transcripts in the restorer line was reduced to 50% of the unprocessed atp6-orf79 transcripts in the CMS line. Ninety percent of the processed orf79 transcripts, which remained after degradation, were not associated with the ribosome for translation. Our data suggests that the processing of atp6-orf79 transcripts diminishes the expression of orf79 by the translational reduction and degradation of the processed orf79 transcripts.

    DOI: 10.1111/j.1365-313X.2008.03529.x

  • A cyanobacterial non-coding RNA, Yfr1, is required for growth under multiple stress conditions Reviewed

    Takahiro Nakamura, Kumiko Naito, Naoto Yokota, Chieko Sugita, Mamoru Sugita

    Plant and Cell Physiology   48 ( 9 )   1309 - 1318   2007.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Small, regulatory, non-coding RNA (ncRNA) is involved in various cell functions in both prokaryotes and eukaryotes. However, information on ncRNA in cyanobacteria is still scarce. We studied ncRNA genes by computational screening to compare the intergenic regions of the Synechococcus elongatus PCC 6301 genome with the genomes of three freshwater cyanobacteria. We identified an ncRNA gene in S. elongatus, which has been previously described as yfr1 in marine cyanobacteria. The S. elongatus yfr1 gene is 65 nucleotides long and is positioned between guaB and trxA. We found a high conservation of the yfr1 gene in most cyanobacterial lineages. A yfr1-deficient mutant showed reduced growth under various stress conditions, e.g. oxidative stress and high salt stress conditions, and showed unusual accumulation of sbtA mRNA. A gel shift assay demonstrated interaction of the Yfr1 RNA with sbtA mRNA in vitro. This suggests that the sbtA transcript is a target RNA for the Yfr1 RNA.

    DOI: 10.1093/pcp/pcm098

  • A pentatricopeptide repeat protein is a site recognition factor in chloroplast RNA editing Reviewed

    Kenji Okuda, Takahiro Nakamura, Mamoru Sugita, Toshiyuki Shimizu, Toshiharu Shikanai

    Journal of Biological Chemistry   281 ( 49 )   37661 - 37667   2006.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In higher plants, RNA editing is a post-transcriptional process that converts C to U in organelle mRNAs. We have previously shown that an Arabidopsis thaliana crr4 mutant is defective with respect to RNA editing for creating the translational initial codon of the plastid ndhD gene (the ndhD-1 site). CRR4 contains 11 pentatricopeptide repeat motifs but does not contain any domains that are likely to be involved in the editing activity. The green fluorescent protein fused to the putative transit peptide of CRR4 targeted the plastid. The recombinant CRR4 expressed in Escherichia coli specifically bound to the 25 nucleotides of the upstream and the 10 nucleotides of the downstream sequences surrounding the editing site of ndhD-1. The target C nucleotide of this editing is not essential for the binding of CRR4. Taken together with the genetic evidence, we conclude that the pentatricopeptide repeat protein CRR4 is a sequence-specific RNA-binding protein that acts as a site recognition factor in plastid RNA editing.

    DOI: 10.1074/jbc.M608184200

  • Transcript profiling in plastid arginine tRNA-CCG gene knockout moss Construction of Physcomitrella patens plastid DNA microarray Reviewed

    Takahiro Nakamura, C. Sugiura, Y. Kobayashi, M. Sugita

    Plant Biology   7 ( 3 )   258 - 265   2005.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The moss Physcomitrella patens is a newly established model plant that is widely used for the characterization of gene function by targeted gene knockout or over-expression. The target gene disruption occurs in both the nuclear and chloroplast genomes. We applied DNA microarray technology to the P. patens plastid genome for large-scale analysis of transcripts. A microarray was constructed containing 108 DNA fragments to detect all annotated plastid genes. We analyzed the transcript profile in a knockout transformant for the arginine tRNA gene, trnR-CCG, and confirmed previous results that rbcL and psal transcripts accumulate in similar levels to wild-type moss, and accD transcript level is higher than those of wild-type moss. Additionally, the plastid DNA microarray revealed that most plastid genes were expressed at similar levels in wild-type and transformant mosses. This indicates that tmR-CCG is not essential for the expression of plastid genes.

    DOI: 10.1055/s-2005-865620

  • Chloroplast RNA-binding and pentatricopeptide repeat proteins Reviewed

    Takahiro Nakamura, G. Schuster, M. Sugiura, M. Sugita

    Biochemical Society Transactions   32 ( 4 )   571 - 574   2004.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Chloroplast gene expression is mainly regulated at the post-transcriptional level by numerous nuclear-encoded RNA-binding protein factors. In the present study, we focus on two RNA-binding proteins: cpRNP (chloroplast ribonucleoprotein) and PPR (pentatricopeptide repeat) protein. These are suggested to be major contributors to chloroplast RNA metabolism. Tobacco cpRNPs are composed of five different proteins containing two RNA-recognition motifs and an acidic N-terminal domain. The cpRNPs are abundant proteins and form heterogeneous complexes with most ribosome-free mRNAs and the precursors of tRNAs in the stroma. The complexes could function as platforms for various RNA-processing events in chloroplasts. It has been demonstrated that cpRNPs contribute to RNA stabilization, 3′-end formation and editing. The PPR proteins occur as a superfamily only in the higher plant species. They are predicted to be involved in RNA/DNA metabolism in chloroplasts or mitochondria. Nuclear-encoded HCF152 is a chloroplast-localized protein that usually has 12 PPR motifs. The null mutant of Arabidopsis, hcf152, is impaired in the 5′-end processing and splicing of petB transcripts. HCF152 binds the petB exon-intron junctions with high affinity. The number of PPR motifs controls its affinity and specificity for RNA. It has been suggested that each of the highly variable PPR proteins is a gene-specific regulator of plant organellar RNA metabolism.

    DOI: 10.1042/BST0320571

  • Chloroplast RNA-binding and pentatricopeptide repeat proteins Reviewed International journal

    Nakamura T, Schuster G, Sugiura M, Sugita M

    Biochem. Soc. Trans.   32   2004.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA Reviewed

    Takahiro Nakamura, Karin Meierhoff, Peter Westhoff, Gadi Schuster

    European Journal of Biochemistry   270 ( 20 )   4070 - 4081   2003.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The nonphotosynthetic mutant of Arabidopsis hcf152 is impaired in the processing of the chloroplast polycistronic transcript, psbB-psbT-psbH-petB-petD, resulting in non-production of the essential photosynthetic cytochrome b6f complex. The nucleus-encoded HCF152 gene was identified to encode a pentatricopeptide repeat (PPR) protein composed primarily of 12 PPR motifs, similar to other proteins of this family that were identified in mutants defected in chloroplast gene expression. To understand the molecular mechanism of how HCF152 modulates chloroplast gene expression, the molecular and biochemical properties should be revealed. To this end, HCF152 and several truncated versions were produced in bacteria and analyzed for RNA-binding and protein-protein interaction. It was found that two HCF152 polypeptides bind to form a homodimer, and that this binding is impaired by a single amino acid substitute near the carboxyl terminus, replacing leucine with proline. Recombinant HCF152 bound with higher affinity RNA molecules, resembling the petB exon-intron junctions, as well as several other molecules. The highest affinity was found to RNA composed of the poly(A) sequence. When truncated proteins composed of different numbers of PPR motifs were analyzed for RNA-binding, it was found that two PPR motifs were required for RNA-binding, but had very low affinity. The affinity to RNA increased significantly when proteins composed of more PPR motifs were analyzed, displaying the highest affinity with the full-length protein composed of 12 PPR motifs. Together, our data characterized the nuclear-encoded HCF152 to be a chloroplast RNA-binding protein that may be involved in the processing or stabilization of the petB transcript by binding to the exonintron junctions.

    DOI: 10.1046/j.1432-1033.2003.03796.x

  • Array-based analysis on tobacco plastid transcripts Preparation of a genomic microarray containing all genes and all intergenic regions Reviewed

    Takahiro Nakamura, Yumiko Furuhashi, Keiko Hasegawa, Hiroshi Hashimoto, Kazufumi Watanabe, Junichi Obokata, Mamoru Sugita, Masahiro Sugiura

    Plant and Cell Physiology   44 ( 8 )   861 - 867   2003.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The plastid genome of higher plants includes about 120 genes. We adopted genomic array technologies to the tobacco plastid genome. A microarray was constructed, consisting of 220 DNA fragments that cover the whole genome sequence. Each DNA fragment corresponds to a single known gene or an intergenic region. We evaluated reliability of this microarray by comparing the plastid RNA level in light- or dark-grown tobacco seedlings. The transcripts encoding photosynthetic subunits increased significantly in light-grown tissues as expected. Furthermore, we found unexpected signals in several intergenic regions, suggesting the existence of novel transcripts in tobacco plastids.

    DOI: 10.1093/pcp/pcg101

  • HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs Reviewed

    Karin Meierhoff, Susanne Felder, Takahiro Nakamura, Nicole Bechtold, Gadi Schuster

    Plant Cell   15 ( 6 )   1480 - 1495   2003.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The psbB-psbT-psbH-petB-petD operon of higher plant chloroplasts is a heterogeneously composed transcriptional unit that undergoes complex RNA processing events until the mature oligocistronic RNAs are formed. To identify the nucleus-encoded factors required for the processing and expression of psbB-psbT-psbH-petB-petD transcripts, we performed mutational analysis using Arabidopsis. The allelic nuclear mutants hcf152-1 and hcf152-2 were identified that are affected specifically in the accumulation of the plastidial cytochrome b6f complex. In both mutants, reduced amounts of spliced petB RNAs (encoding the cytochrome b6 subunit) were detected, thus explaining the observed protein deficiencies. Additionally, mutant hcf152-1 is affected in the accumulation of transcripts cleaved between the genes psbH and petB. As a result of a close T-DNA insertion, the HCF152 gene was cloned and its identity confirmed by complementation of homozygous mutant plants. HCF152 encodes a pentatricopeptide repeat (PPR) protein with 12 putative PPR motifs that is located inside the chloroplast. The protein shows a significant structural, but not primary, sequence similarity to the maize protein CRP1, which is involved in the processing and translation of the chloroplast petD and petA RNAs. In addition, we found that HCF152 is an RNA binding protein that binds certain areas of the petB transcript. The protein possibly exists in the chloroplast as a homodimer and is not associated with other proteins to form a high molecular mass complex.

  • Nuclear-encoded proteins involved in function of chloroplast RNAs Reviewed

    Takahiro Nakamura, Mamoru Sugita

    Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme   48 ( 15 Suppl )   2168 - 2175   2003

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma Reviewed

    Takahiro Nakamura, Masaru Ohta, Masahiro Sugiura, Mamoru Sugita

    Journal of Biological Chemistry   276 ( 1 )   147 - 152   2001.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Post-transcriptional RNA processing is an important step in the regulation of chloroplast gene expression, and a number of chloroplast ribonucleoproteins (cpRNPs) are likely to be involved in this process. The major tobacco cpRNPs are composed of five species: cp28, cp29A, cp29B, cp31, and cp33 and these are divided into three groups (I, II, and III). By immunoprecipitation, gel filtration, and Western blot analysis, we demonstrated that these cpRNPs are abundant stromal proteins that exist as complexes with ribosome-free mRNAs. Many ribosome-free psbA mRNAs coprecipitate with cpRNPs, indicating that the majority of stromal psbA mRNAs are associated with cpRNPs. In addition, an in vitro mRNA degradation assay indicated that exogenous psbA mRNA is more rapidly degraded in cpRNP-depleted extracts than in nondepleted extracts. When the depleted extract was reconstituted with recombinant cpRNPs, the psbA mRNA in the extract was protected from degradation to a similar extent as the psbA mRNA in the nondepleted extract. Moreover, restoration of the stabilizing activity varied following addition of individual group-specific cpRNPs alone or in combination. When the five cpRNPs were supplemented in the depleted extract, full activity was restored. We propose that these cpRNPs act as stabilizing factors for nonribosome-bound mRNAs in the stroma.

    DOI: 10.1074/jbc.M008817200

  • Quantitative Analysis of Transiently Expressed mRNA in Particle-Bombarded Tobacco Seedlings Reviewed

    Tetsuya Miyamoto, Takahiro Nakamura, Issei Nagao, Junichi Obokata

    Plant Molecular Biology Reporter   18 ( 2 )   101 - 107   2000.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    This study demonstrates that quantitative RT-PCR can be used to measure transient expression of genes introduced into plant cells by particle bombardment. An expression construct for β-glucuronidase was introduced into tobacco seedlings by particle bombardment followed by real-time quantitative RT-PCR of β-glucuronidase mRNA using a fluorogenic TaqMan probe. β-glucuronidase mRNA expression peaked within 2 h after gene transfer. β-glucuronidase protein activity was maximally elevated in plant cells 8 h after gene transfer and remained elevated for up to 50 h. This method is very sensitive, quantitating the target GUS transcript in 10 pg total RNA.

    DOI: 10.1007/BF02824017

  • Chloroplast ribonucleoproteins are associated with both mRNAs and intron-containing precursor tRNAs Reviewed

    Takahiro Nakamura, Masaru Ohta, Masahiro Sugiura, Mamoru Sugita

    FEBS Letters   460 ( 3 )   437 - 441   1999.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Tobacco chloroplasts possess five conserved ribonucleoproteins (cpRNPs). To elucidate the function of cpRNPs we analyzed their localization and target nucleic acid molecules in chloroplasts. Immunoprecipitation of the stromal extract and Northern analysis revealed that cpRNPs are associated in vivo with not only various species of chloroplast mRNAs but also intron-containing precursor (pre-) tRNAs. This observation strongly suggests that cpRNPs are involved in RNA processing, including mRNA stability and pre-tRNA splicing.

    DOI: 10.1016/S0014-5793(99)01390-3

  • Chloroplast ribonucleoproteins (RNPs) as phosphate acceptors for casein kinase II Purification by ssDNA-cellulose column chromatography Reviewed

    Motoki Kanekatsu, Akiyoshi Ezumi, Takahiro Nakamura, Kenzo Ohtsuki

    Plant and Cell Physiology   36 ( 8 )   1649 - 1656   1995.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Using ssDNA-cellulose column chromatography, a 34 kDa ribonucleoprotein (p34) has been purified from a 0.4 M KCl crude extract of spinach chloroplasts as an effective phosphate acceptor for casein kinase II (CK-II) in vitro. Monomeric and oligomeric CK-IIs were copurified with p34 by the column chromatography and the kinases were separated from p34 by means of Mono Q column chromatography. It was found that (i) the purified p34 (pi 4.9) was phosphorylated specifically by CK-II in vitro; and (ii) similar polypeptides, such as p35 (pI 4.7) and p39 (pI 4.9) in maize and p33 (pI 4.7) in liverwort, were detected as ssDNA-binding chloroplast proteins phosphorylated by CK-II in vitro. The findings suggest that (i) RNPs that function as phosphate acceptors for CK-II exist commonly in chloroplasts among plant cells; and (ii) the physiological activity of RNPs is regulated by their specific phosphorylation by CK-II in chloroplasts.

▼display all

Books

  • 植物由来の核酸結合モジュール, PPRタンパク質を利用したDNA/RNA編集技術の開発

    田村泰造、中村崇裕(Role:Joint author)

    2021.3 

     More details

    Responsible for pages:Vol.59 No.3 Page. 113 - 121   Language:Japanese   Book type:Scholarly book

    DOI: 化学と生物

  • ゲノム編集食品「DNA切断酵素、RNA操作技術」

    中村崇裕(Role:Joint author)

    NTS出版  2021.2 

     More details

    Language:Japanese   Book type:Scholarly book

  • 最新のゲノム編集技術と用途応用「ゲノム編集関連技術の開発動向とその産業利用」

    太田 賢,中村崇裕(Role:Joint author)

    シーエムシー出版  2021.2 

     More details

    Language:Japanese   Book type:Scholarly book

  • B&I「国産ゲノム編集技術プラットフォームの確立」

    中村崇裕、刑部敬史、加藤義雄(Role:Joint author)

    バイオインダストリー協会  2021.1 

     More details

    Language:Japanese   Book type:Scholarly book

  • 実験医学 コラム「RNA編集ツールとしてのPPR技術の開発」

    西光悦、八木祐介、中村崇裕(Role:Joint author)

    羊土社  2019.5 

     More details

    Language:Japanese   Book type:Scholarly book

  • 月間細胞「PPRタンパク質を用いた新規なRNA操作技術」

    佐々木忠将、八木祐介、中村崇裕(Role:Joint author)

    北隆館  2019.2 

     More details

    Language:Japanese   Book type:Scholarly book

  • ゲノム編集とその医療応用

    田村泰造、中村崇裕

    2018.6 

     More details

    Language:Japanese  

  • 実験医学増刊・All aboutゲノム編集

    中村 崇裕(Role:Joint author)

    2016.4 

     More details

    Language:Japanese   Book type:Scholarly book

  • 進化するゲノム編集技術

    中村 崇裕(Role:Joint author)

    株式会社エヌ・ティー・エス  2015.9 

     More details

    Language:Japanese   Book type:Scholarly book

▼display all

Presentations

  • PPRタンパク質を利用した トランスクリプトーム編集技術の開発 Invited

    中村崇裕

    第462回CBI学会講演会  2025.2  CBI学会

     More details

    Event date: 2025.2

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:オンライン  

  • PPRタンパク質を利用したトランスクリプトーム編集技術の開発 Invited

    中村崇裕

    オルガネラワークショップ  2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神戸   Country:Japan  

  • PPR protein-based transcriptome editing Invited International conference

    Takahiro Nakamura

    JAACT  2023.11 

     More details

    Event date: 2023.11 - 2023.12

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Nagoya   Country:Japan  

  • PPR蛋白質を利用したDNA/RNA編集技術の開発、および事業化 Invited

    中村崇裕

    All 九州アカデミア x MEDISCOセミナー  2023.11 

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:on line   Country:Japan  

  • 「ゲノム編集産業化実証ラボ」のご紹介

    中村崇裕

    九州農業week  2023.5 

     More details

    Event date: 2023.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:熊本   Country:Japan  

  • 「ゲノム編集産業化実証ラボ」の紹介 Invited

    中村崇裕

    福岡・久留米発!地域バイオコミュニティの発展と成長  2023.1 

     More details

    Event date: 2023.1

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

  • PPR蛋白質を利用したDNA/RNA編集技術の開発 Invited

    中村崇裕

    第38回 日本植物バイオテクノロジー学会(つくば)大会シンポジウム  2022.6 

     More details

    Event date: 2022.6

    Language:Japanese  

    Country:Japan  

  • ゲノム編集産業化プラットフォーム ・国産ゲノム編集技術とその産業化を目指して Invited

    中村崇裕

    「福岡バイオコミュニティ」の挑戦  2021.11 

     More details

    Event date: 2021.11

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:東京   Country:Japan  

  • 国産ゲノム編集技術プラットフォームの構築 Invited

    中村崇裕

    植物化学シンポジウム  2021.11 

     More details

    Event date: 2021.11

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • NEDOスマートセルPJにおけるゲノム編集技術の開発 Invited

    中村崇裕

    日本ゲノム編集学会会員特別セミナー 「ゲノム編集の研究動向」  2021.3 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:on line   Country:Japan  

  • 大学発ゲノム編集技術の産業化における諸課題 Invited

    中村崇裕

    JBAシンポジウム「ゲノム編集技術の社会実装に伴う諸問題にどう対処すべきか?」  2020.10 

     More details

    Event date: 2020.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:on line   Country:Japan  

  • PPRタンパク質を利用したDNA/RNA編集技術の開発 Invited

    中村崇裕

    プロジェクト横断型公開シンポジウム 「植物のゲノム編集基盤技術開発の現状と展望」  2020.2 

     More details

    Event date: 2020.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Designer RNA binding protein based on PPR protein, as a new modality for targeted therapy International conference

    T Nakamura, Y Yagi

    ESCGT2019  2019.10 

     More details

    Event date: 2019.10

    Language:English   Presentation type:Oral presentation (general)  

    Venue:BArcelona, Spain   Country:Spain  

  • PPR蛋白質を利用したDNA/RNA編集技術の開発 Invited

    中村崇裕

    JADCI/JSHDR2019  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡   Country:Japan  

  • PPR蛋白質の配列特異的なRNAとの結合の理解と利用 Invited

    中村崇裕

    日本育種学会・シンポジウム  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:奈良   Country:Japan  

  • PPR蛋白質を利用したDNA/RNA編集技術の開発 Invited

    中村崇裕

    農芸化学回西日本支部例会  2019.5 

     More details

    Event date: 2019.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:熊本   Country:Japan  

  • PPR技術で創るDNA/RNA編集技術 Invited International conference

    中村崇裕

    国際医薬品開発展  2019.3 

     More details

    Event date: 2019.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • PPR蛋白質を利用したDNA/RNA編集技術の開発 Invited

    中村崇裕

    産学官連携秋季シンポジウム  2018.12 

     More details

    Event date: 2018.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 国産ゲノム・RNA編集技術の医療での展開 Invited

    @中村崇裕

    革新的医薬・核酸医薬の開発  2018.1 

     More details

    Event date: 2018.1

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡   Country:Japan  

  • PPR motif as a New DNA/RNA Binding Module for Genome/Transcriptome Editing Invited International conference

    @中村崇裕

    AFELiSA  2017.11 

     More details

    Event date: 2017.11

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡   Country:Japan  

  • DNA、RNAの両方を操作する次世代型ゲノム編集技術の開発 Invited

    @中村崇裕

    第58回ヒューマンサイエンス・バイオインターフェース  2017.5 

     More details

    Event date: 2017.5 - 2018.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:東京   Country:Japan  

  • 第9回DNA鑑定学会 Invited

    中村 崇裕

    植物科学シンポジウム2016 植物科学とイノベーション  2016.12 

     More details

    Event date: 2016.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

  • PPRタンパク質を用いたDNA/RNA操作技術の開発 Invited

    中村 崇裕

    第9回DNA鑑定学会  2016.11 

     More details

    Event date: 2016.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

  • PPRタンパク質を用いたDNA/RNA操作技術の開発 Invited

    中村 崇裕

    日本植物学会 第80回大会理事会主催シンポジウム  2016.9 

     More details

    Event date: 2016.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:沖縄   Country:Japan  

  • PPR motif as a new module for genome and transcriptome editing-from organelle biology to protein engineering- Invited International conference

    Takahiro Nakamura

    2016.2 

     More details

    Event date: 2016.2

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Fukuoka   Country:Japan  

    The pentatricopeptide repeat (PPR) protein family is a eukaryotic specific protein family that is specially expanded in plant (~500), whereas very few in other organisms (five in yeast and six in human). Most PPR proteins are gene-specific regulators of mitochondria and chloroplast gene expression, suggesting that PPR protein is evolved for control of endosymbiotic organelle genome. PPR proteins function as sequence-specific RNA/DNA binding proteins in various RNA/DNA metabolisms including RNA cleavage, splicing, RNA editing, and translation, through recognition by tandem arrays of degenerate 35-amino-acid repeating units, the PPR motifs. Recently, we have cracked the RNA/DNA recognition code: one PPR motif corresponds to one nucleotide, and amino acid variances at three particular positions confer the nucleotide specificity with programmable manner, and further above principles could be applied for both RNA- and DNA-binding PPR proteins. Our finding opened another possibility, the use of PPR motif on “genome editing” (DNA manipulation) and “transcriptome editing” (RNA manipulation). I would like to present current perspective about PPR protein family in endosymbiotic genome regulation, and our recent activities of PPR engineering for genome and transcriptome editing.

  • PPRタンパク質を利用した次世代型ゲノム編集技術 Invited

    中村 崇裕

    第8回DNA鑑定学会大会  2015.12 

     More details

    Event date: 2015.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

    様々な生物のゲノム配列情報が明らかになり、ゲノム機能の解明などの従来の還元的な生物学に加えて、新しい生命システムの構築などの構成的な生物学が加速しつつある。このため、数十億塩基対から構成されるゲノム中の目的の1つの遺伝子、もしくはゲノムから転写される目的の1つのRNAを特異的に操作・改変する技術が求められている。最近、設計可能な人工ヌクレアーゼなどを用いた革新的なDNA操作技術であるゲノム編集が確立し、ゲノム中の特定の遺伝子の破壊や外来遺伝子の狙った位置への導入が可能になり、その利用が大きく期待されているが、その基本技術は全て海外で特許化されており、産業利用を視野に入れた独自の国産技術の確立が望まれる。一方、生物の複雑さや種の独自性に、多様な選択的スプライシングや非常に多くの蛋白質非コードRNAが大きく関わることが示唆されているが、ゲノム編集と対となるような汎用的なRNA操作技術は確立されていない。
    我々は植物に多く含まれるPPRタンパク質を材料に、DNAおよびRNAそれぞれの操作技術の開発を行っている。PPRタンパク質は、35アミノ酸からなるPPRモチーフの連続で構成され、配列特異的なRNAまたはDNA結合蛋白質として働く。我々は、PPRタンパク質のDNA/RNA認識コードを解明し、特定の配列に結合する人工のDNA結合タンパク質およびRNA結合タンパク質、それぞれを設計するための基礎知的基盤を確立した。本講演では、既存のゲノム編集技術、およびPPRタンパク質を利用したRNA/DNA操作技術の開発の現状と可能性について紹介します。

  • PPR motif as a New DNA/RNA Binding Modulefor Genome/transcriptome Editing Invited International conference

    Takahiro Nakamura

    International Symposium on Plant Genome Engineering  2015.11 

     More details

    Event date: 2015.11

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Tukuba   Country:Japan  

    Determination of complete genome sequences (DNA) and the transcriptome (RNA) for a wide variety of organisms have opened a new biological era for understanding of the complex genetic functions that define living entities. New technologies have recently emerged that enable targeted editing of genomes in diverse systems, by using designer nucleases with programmable, sequence-specific DNA binding modules of ZF finger and TALE protein, and a guide RNA-based CRISPR/CAS9 system. These advances are driving new approaches to many areas including agriculture, biotechnology and studies of genome structure and function. In contract, versatile, programmable RNA binding module that enables manipulation of a single specific RNA in the living cell, is not available to date.
    The PPR (pentatricopeptide repeat) motif-containing protein, that organizes a large family in plants, is a sequence-specific RNA or DNA binding protein involving in multiple aspects of organelle RNA/DNA metabolisms including RNA stability, processing, RNA editing, and transcription. PPR proteins consist of a tandem array of PPR motifs (degenerated 35 amino acids) in variety repeat length (2-27 repeats).
    Recently, we cracked the RNA/DNA recognition code: one PPR motif corresponds to one nucleotide, and amino acid variances at three particular positions confer the nucleotide specificity with programmable manner, and the code can be shared between RNA- and DNA-binding PPR proteins. Here we show our recent progress and future perspective of the PPR protein engineering for genome and transcriptome editing.

  • PPR motif as a New DNA/RNA Binding Modulefor Genome/transcriptome Editing Invited

    Takahiro Nakamura

    Conference on Transposition and Genome Engineering 2015  2015.11 

     More details

    Event date: 2015.11

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Nara   Country:Japan  

    Recently established genome editing technologies using ZF, TALE and CRISPR/Cas9 are driving new approaches to many areas of biotechnology and studies of genome structure and function. In contract, versatile, programmable RNA binding module that enables manipulation of a specific RNA in the living cell, is not available to date. The PPR (pentatricopeptide repeat) motif-containing protein, that organizes a large family in plants, is a sequence-specific RNA/DNA binding protein involving in multiple aspects of organelle gene expression. PPR proteins consist of a tandem array of PPR motifs (35 amino acids) in variety repeat length (2-27 repeats). Using Biochemical and informatics approaches, we successfully cracked the RNA/DNA recognition code: one PPR motif corresponds to one nucleotide, and amino acid variances at three particular positions confer the nucleotide specificity with programmable manner, and further above principles could be applied for both RNA- and DNA-binding PPR proteins. Our finding facilitates the use of PPR motif on “genome editing” (DNA manipulation) and “transcriptome editing” (RNA manipulation). We would like to show our recent progress and future perspective for the PPR protein engineering for genome and transcriptome editing.

  • PPRモチーフを利用したカスタムDNA/RNA結合タンパク質の設計とゲノム編集での利用 Invited

    中村 崇裕

    第6回Molecular Cardiovascular Conference II  2015.9 

     More details

    Event date: 2015.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡   Country:Japan  

    近年、設計可能な人工ヌクレアーゼなどを用いて、ゲノム中の特定の遺伝子を破壊したり、外来遺伝子を狙った位置に導入する「ゲノム編集」技術が確立し、先天的な疾患に関連する遺伝子の改変などの応用展開が期待されている。しかし、ゲノム編集の基幹技術は全て海外で特許化されており、かつ特許権の帰属が複雑なため、国産のゲノム編集技術の確立が望まれる。
    一方、ゲノムプロジェクトによって、多様な選択的スプライシングや膨大な量の蛋白質非コードRNAが発見され、ゲノム情報の発現におけるRNAの生物学的重要性が再認識された。RNA段階の制御と様々な後天的な疾患との関連が示唆されている。しかし、ゲノム編集と対となるようなRNA操作技術は確立されていない。
    植物に多く含まれるPPR (pentatricopeptide repeat) 蛋白質は、35アミノ酸からなるPPRモチーフの連続で構成され、配列特異的なRNAまたはDNA結合蛋白質として働く。我々は、1つのPPRモチーフが1つの塩基に対応すること、結合塩基がモチーフ中の3箇所のアミノ酸によりコード化できること、DNAおよびRNA結合型PPRモチーフが同じ動作原理で核酸を認識すること、を見いだした。すなわち、PPRモチーフをモジュール化・集積することで、RNAとDNAの両方について、特定の配列に結合する蛋白質分子を設計することができる。本講演では、現存のゲノム編集技術、および純国産のDNA/RNA結合モジュールであるPPRモチーフについて、開発の現状と可能性について紹介します。

  • PPRタンパク質を利用したDNA/RNA操作技術の開発 Invited

    中村 崇裕

    第5回合成生物学シンポジウム  2015.8 

     More details

    Event date: 2015.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神戸   Country:Japan  

    様々な生物のゲノム配列情報が明らかになり、ゲノム機能の解明などの従来の還元的な生物学に加えて、新しい生命システムの構築などの構成的な生物学が加速しつつある。このため、数十億塩基対から構成されるゲノム中の目的の1つの遺伝子、もしくはゲノムから転写される目的の1つのRNAを特異的に操作・改変する技術が求められている。最近、設計可能な人工ヌクレアーゼなどを用いた革新的なDNA操作技術であるゲノム編集が確立し、ゲノム中の特定の遺伝子の破壊や外来遺伝子の狙った位置への導入が可能になり、その利用が大きく期待されているが、その基本技術は全て海外で特許化されており、産業利用を視野に入れた独自の国産技術の確立が望まれる。一方、生物の複雑さや種の独自性に、多様な選択的スプライシングや非常に多くの蛋白質非コードRNAが大きく関わることが示唆されているが、ゲノム編集と対となるような汎用的なRNA操作技術は確立されていない。
    我々は植物に多く含まれるPPRタンパク質を材料に、DNAおよびRNAそれぞれの操作技術の開発を行っている。PPRタンパク質は、35アミノ酸からなるPPRモチーフの連続で構成され、配列特異的なRNAまたはDNA結合蛋白質として働く。我々は、PPRタンパク質のDNA/RNA認識コードを解明し、特定の配列に結合する人工のDNA結合タンパク質およびRNA結合タンパク質、それぞれを設計するための基礎知的基盤を確立した。本シンポジウムでは、既存のゲノム編集技術、およびPPRタンパク質を利用したRNA/DNA操作技術の開発の現状と可能性について紹介します。

  • PPR Motifs and Their Engineering Invited International conference

    Takahiro Nakamura

    Gordon Research Conference, Reengineering Photosynthetic Organelles  2015.1 

     More details

    Event date: 2015.1

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Ventura, CA   Country:United States  

  • PPRタンパク質を用いたゲノム編集技術開発 Invited

    中村 崇裕

    植物ゲノム編集ワークショップ  2014.11 

     More details

    Event date: 2014.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:倉敷   Country:Japan  

  • ゲノム編集と新しいDNA/RNA結合モジュール、PPRモチーフ Invited

    中村 崇裕

    第51回 化学関連支部合同九州大会  2014.6 

     More details

    Event date: 2014.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:小倉   Country:Japan  

  • ゲノム編集と新しいDNA/RNA結合モジュール、PPRモチーフ Invited

    中村 崇裕

    第32回 日本動物工学会 シンポジウム 「日本のバイオ医薬品開発を支える先端技術」  2014.6 

     More details

    Event date: 2014.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

  • ゲノム編集の新しいDNA/RNA結合モジュール、PPRモチーフ Invited

    中村 崇裕

    ゲノム編集ワークショップ「ゲノム編集の現状と可能性」  2014.5 

     More details

    Event date: 2014.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡   Country:Japan  

  • PPR motif: オルガネラ研究からRNA/DNA操作ツールの開発へ Invited

    中村 崇裕, 八木祐介

    第55回日本植物生理学会年会  2014.3 

     More details

    Event date: 2014.3

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:富山   Country:Japan  

  • ゲノム編集の現状、およびPPRを用いた国産技術開発の取組

    中村 崇裕

    植物バイオテク懇話会  2013.7 

     More details

    Event date: 2013.7

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京都   Country:Japan  

  • 植物オルガネラの遺伝子発現に働くPPR蛋白質、そのRNA認識基盤 Invited

    中村 崇裕

    「植物ミトコンドリア研究の新展開」、岡山大学資源植物科学研究所 共同利用・共同研究拠点ワークショップ  2013.1 

     More details

    Event date: 2013.1

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:岡山   Country:Japan  

  • Molecular basis for the RNA recognition of the pentatricopeptide repeat (PPR) protein Invited International conference

    Takahiro Nakamura

    The 2nd Meeting on RNA and Biofunctions-Asia Study “RNA Biofunctions and Viruses”  2013.1 

     More details

    Event date: 2013.1

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Fukuoka   Country:Japan  

  • Molecular basis for the RNA recognition of the pentatricopeptide repeat protein Invited International conference

    Takahiro Nakamura

    Frontiers in Plant RNA research 2012  2012.10 

     More details

    Event date: 2012.10

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Sapporo   Country:Japan  

  • PPR蛋白質のRNA認識に機能するアミノ酸の解析

    小林啓子、久野恵三、川畑万寿代、松岡健、中村崇裕

    第55回日本植物生理学会年会  2012.3 

     More details

    Event date: 2012.3

    Presentation type:Symposium, workshop panel (public)  

    Venue:京都産業大学   Country:Japan  

  • Pentatricopeptide repeat (PPR) モチーフのRNA認識コード

    八木 祐介、林晋平、小林 啓子、平山隆志、中村崇裕

    第55回日本植物生理学会年会  2012.3 

     More details

    Event date: 2012.3

    Presentation type:Oral presentation (general)  

    Venue:京都産業大学   Country:Japan  

  • 任意のRNA配列に結合、切断する蛋白質の設計方法 Invited

    中村崇裕

    JST主催・九州大学 新技術説明会  2012.1 

     More details

    Event date: 2012.1

    Presentation type:Oral presentation (general)  

    Venue:東京都千代田区、JST・東京本部別館   Country:Japan  

  • 植物で大きなファミリーを形成するPPR蛋白質の配列特異的なRNA認識メカニズムとその利用 Invited

    中村 崇裕

    東京理科大学 総合研究機構、RNA科学総合研究センター 公開シンポジウム「RNA科学の現状と将来」  2012.6 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  • 植物ミトコンドリア遺伝子発現の分子基盤解明と育種への応用 Invited

    中村 崇裕

    日本育種学会  2012.9 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:京都   Country:Japan  

  • 植物オルガネラ遺伝子発現を司るPPR蛋白質、そのRNA認識の分子基盤 Invited

    中村 崇裕

    国立遺伝学研究所 研究集会 「生殖とオルガネラ:細胞質における遺伝情報の次世代への伝達・分配」  2012.12 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:三島   Country:Japan  

  • ゲノム編集と植物育種における現状 Invited

    中村 崇裕

    九州農業研究発表会  2014.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡   Country:Japan  

  • ゲノム編集の概念と技術の現状 Invited

    中村 崇裕

    平成26年度日本水産学会秋季大会 ミニシンポジウム 水産物におけるゲノム編集の現状と展望  2014.9 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡   Country:Japan  

  • PPR motif as a new RNA/DNA binding module for genome editing Invited International conference

    Takahiro Nakamura

    JAACT2014 Symposium  2014.11 

     More details

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Kokura, Kita-kyushu   Country:Japan  

▼display all

Industrial property rights

Patent   Number of applications: 14   Number of registrations: 4
Utility model   Number of applications: 0   Number of registrations: 0
Design   Number of applications: 0   Number of registrations: 0
Trademark   Number of applications: 0   Number of registrations: 0

Professional Memberships

  • 日本植物生理学会

  • 農芸化学会

  • ゲノム編集学会

Committee Memberships

  • 日本農芸化学会西日本支部   参与   Domestic

    2021.4 - 2024.3   

  • ゲノム編集学会   将来計画委員会   Domestic

    2016.4 - 2024.3   

Academic Activities

  • JST・A-STEP評価アドバイザー

    Role(s): Review, evaluation

    2024.4 - 2026.3

     More details

    Type:Scientific advice/Review 

  • JST・さきがけ評価委員

    Role(s): Review, evaluation

    2024.4 - 2025.3

     More details

    Type:Scientific advice/Review 

  • Peer review of academic papers

    Role(s): Peer review

    2024

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:5

  • 日本学術振興会・科学研究費助成事業・審査員

    Role(s): Review, evaluation

    2022.4 - 2026.3

     More details

    Type:Scientific advice/Review 

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

  • 大会長

    日本ゲノム編集学会・第6回大会  ( Japan ) 2021.6

     More details

    Type:Competition, symposium, etc. 

    Number of participants:100

  • JST・未来社会創業事業/評価委員

    Role(s): Review, evaluation

    2021.4 - 2026.3

     More details

    Type:Scientific advice/Review 

  • 戦略的創造研究推進事業(社会技術研究開発)「ゲノム倫理」研究会研究会会員

    Role(s): Review, evaluation

    JST  2021.3 - 2026.3

     More details

    Type:Scientific advice/Review 

  • Screening of academic papers

    Role(s): Peer review

    2021

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:8

  • JST未来創造事業 研究開発運営会議委員

    Role(s): Review, evaluation

    JST  2020.6 - 2026.3

     More details

    Type:Scientific advice/Review 

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:6

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:10

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:7

  • 特許出願技術動向調査—ゲノム編集及び遺伝子治療関連技術—、有識者委員

    Role(s): Review, evaluation

    特許庁  2016.4 - 2017.3

     More details

    Type:Scientific advice/Review 

  • Organizer International contribution

    JAACT2014, Symposiumm "Impact of genome editing technologies on animal cell engineering"  ( Kokura, Kitashushu Japan ) 2014.11

     More details

    Type:Competition, symposium, etc. 

    Number of participants:200

  • オーガナイザー

    第55回日本植物生理学会シンポジウム「植物の個体制御におけるRNA機能」  ( Japan ) 2014.3

     More details

    Type:Competition, symposium, etc. 

    Number of participants:200

  • オーガナイザー

    「植物ミトコンドリア研究の新展開」、岡山大学資源植物科学研究所 共同利用・共同研究拠点ワークショップ  ( Japan ) 2013.1

     More details

    Type:Competition, symposium, etc. 

    Number of participants:100

  • 「イノベーション創出基礎的研究推進事業」書類審査専門委員

    Role(s): Review, evaluation

    (独)農業・食品産業技術総合研究機構 生物系特定産業技術研究支援センター  2011.4 - 2012.3

     More details

    Type:Scientific advice/Review 

▼display all

Research Projects

  • ミトコンドリア遺伝子のゲノム編集

    2025.4 - 2026.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • グアユールのゴム生産向上に向けた農業技術研究

    2022.7 - 2025.12

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • ゲノム編集産業化プラットフォーム構築に関する業務委託

    2022.4 - 2026.3

    Research commissions

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • バイオDX産学共創拠点

    2022 - 2025

    COI-NEXT

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • Establishment of transcriptome engineering technique using PPR protein

    Grant number:22H02611  2022 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    中村 崇裕

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    ポスト・ゲノム(DNA)編集として、RNAを操作するトランスクリプトーム編集が注目され始めている。本研究では、PPRタンパク質を利用したトランスクリプトーム編集への利用、医療応用を進める。特に、「翻訳制御」に着目し、これまでの研究で示唆された未知の翻訳開始機構の解明、医療応用にむけたProof-of-conceptの獲得、に取り組む。

    CiNii Research

  • ゲノム編集産業利用の実証プラットフォームの構築

    2021.10 - 2022.3

    Research commissions

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • Development of integrated animal cell engineering system for biopharmaceutical production

    Grant number:20H00322  2020 - 2023

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    Kamihira Masamichi

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

    Based on the gene engineering technology for animal cells that we have developed, we have constructed a cell engineering cycle for the production of functional cells used in biopharmaceutical production and cellular medicines. This has enabled the systematization of functional modification of animal cells. Additionally, as part of the development of original elementary technologies in cell engineering, we have worked on developing new host cells, creating artificial gene expression control systems, producing transgenic chickens using primordial germ cells, and advancing embryo manipulation technology to generate transgenic chickens. We have applied these efforts to the production of biopharmaceuticals and the creation of functional cells, making it possible to design and create cells and chickens with specific functions.

    CiNii Research

  • 新規ゲノム工学技術の開発

    2019.4 - 2026.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • 高活性型PPRヌクレアーゼの開発

    2017.4 - 2021.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • ゲノム編集による革新的な有用細胞・生物作成技術の創出

    2016 - 2020

    JST-OPERA

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • DNA結合型PPRタンパク質の体系的な解析

    Grant number:16H05067  2016 - 2018

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • PPR技術の免疫化学療法への適用に関する研究

    2015.12 - 2019.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • PPRタンパク質を利用した次世代型ゲノム編集技術の研究用試薬を目的とした開発に関する共同研究

    2015.4 - 2017.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • PPRモチーフを利用したカスタムRNA結合蛋白質の研究用試薬を目的とした開発

    2014.8 - 2016.8

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • CHO細胞の性能向上のためのゲノム編集技術の開発:ゲノム編集技術を用いたCHO細胞のRNA操作技術の開発

    2014.8 - 2015.2

    Research commissions

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • ゲノム編集技術と開花促進技術の基盤技術の確立と高度化

    2014 - 2018

    SIP(戦略的イノベーション創造プログラム)

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • 植物の共生オルガネラ制御におけるPPRシステムの解析

    Grant number:26117718  2014 - 2015

    Japan Society for the Promotion of Science・Ministry of Education, Culture, Sports, Science and Technology  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • PPRコードを利用した細胞質雄性不稔の稔性回復因子の同定と創成

    Grant number:25293319  2013 - 2015

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • RNA編集を利用した植物ミトコンドリア遺伝子解析手法の確立

    Grant number:25660296  2013 - 2014

    Grants-in-Aid for Scientific Research  Grant-in-Aid for challenging Exploratory Research

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • PPRモチーフをRNA結合モジュールに用いたトランスクリプトーム編集技術の開発

    2013

    P&P 「ゲノム・エピゲノム研究拠点形成」

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • RNA編集を利用したミトコンドリア点変異株の収集と解析

    2012 - 2013

    Grants-in-Aid for Scientific Research  Grant-in-Aid for challenging Exploratory Research

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 種特異的なPPR蛋白質によるオルガネラ制御機構の解析

    2012 - 2013

    Japan Society for the Promotion of Science・Ministry of Education, Culture, Sports, Science and Technology  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • PPRモチーフを利用したカスタムRNA結合蛋白質の設計

    2012 - 2013

    科学技術新興機構・研究成果展開事業 研究成果最適展開支援プログラムA-STEP

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • ライフサイエンス研究奨励/ゲノム編集の新しい核酸結合モジュールとしてのPPR蛋白質に関する研究

    2012

      More details

    Grant type:Donation

  • ゲノム編集技術の新しい核酸結合モジュールとしてのPPR蛋白質に関する研究

    2012

    P&P平成23~25年度・Aタイプ 「ゲノム・エピゲノム研究拠点形成」

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • ダイコンの雄性不稔回復遺伝子の機能

    2011.4 - 2012.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • ダイコンの雄性不稔・稔性回復システムの分子機構とその多様性形成メカニズムの解明

    Grant number:22380008  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 植物オルガネラ遺伝情報を維持・制御するPPR蛋白質のRNA認識コードの網羅的解析

    Grant number:22681028  2010 - 2012

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (A)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 植物ミトコンドリア遺伝子発現の分子基盤解明と育種への応用

    2009 - 2011

    イノベーション創出基礎的研究推進事業(技術シーズ開発型、若手研究者育成枠)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 食シグナルバイオロジーに支援された植物サイエンスの拠点形成

    2007 - 2011

    SSPにかかる経費

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

▼display all

Educational Activities

  • (大学院)
    生物機能分子化学
    (学部)
    バイオテクノロジー詳論
    (基幹教育)
    分子生物学
    (国際コース)
    Molecular Biology

Class subject

  • バイオテクノロジー詳論

    2024.4 - 2025.3   Second semester

  • Molecular Biosciences

    2024.4 - 2024.9   First semester

  • 分子生物学

    2024.4 - 2024.9   First semester

  • IUP Molecular Biology

    2024.4 - 2024.6   Spring quarter

  • Molecular Biosciences

    2023.4 - 2023.9   First semester

  • 分子生物学

    2023.4 - 2023.9   First semester

  • G30 Molecular Biology

    2023.4 - 2023.9   First semester

  • 分子生物学

    2022.4 - 2022.9   First semester

  • Molecular Biosciences

    2022.4 - 2022.9   First semester

  • G30 Molecular Biology

    2022.4 - 2022.9   First semester

  • 分子生物学

    2021.4 - 2021.9   First semester

  • G30 Molecular Biology

    2021.4 - 2021.9   First semester

  • Molecular Biosciences

    2021.4 - 2021.9   First semester

  • 生物機能分子化学Ⅰ

    2021.4 - 2021.9   First semester

  • G30 Molecular Biology

    2020.4 - 2020.9   First semester

  • 特別講義科目「Challenges in agricultural science and technology of plants」

    2020.4 - 2020.9   First semester

  • 生物機能分子化学Ⅰ

    2020.4 - 2020.9   First semester

  • Molecular Bioscience

    2020.4 - 2020.9   First semester

  • 理系ディシプリン科目「分子生物学」

    2020.4 - 2020.9   First semester

  • 理系ディシプリン科目「分子生物学」

    2019.4 - 2019.9   First semester

  • G30 Molecular Biology

    2019.4 - 2019.9   First semester

  • Molecular Bioscience

    2018.4 - 2018.9   First semester

  • 理系ディシプリン科目「分子生物学」

    2018.4 - 2018.9   First semester

  • G30 Molecular Biology

    2018.4 - 2018.9   First semester

  • 生物機能分子化学Ⅰ

    2018.4 - 2018.9   First semester

  • 遺伝子組換え生物の利用と制御

    2017.10 - 2018.3   Second semester

  • アカデミックフロンティア

    2017.4 - 2017.9   First semester

  • 理系ディシプリン科目「分子生物学」

    2016.4 - 2016.9   First semester

  • 遺伝子組換え生物の利用と制御

    2016.4 - 2016.9   First semester

  • G30 Molecular Biology

    2016.4 - 2016.9   First semester

  • 生物機能分子化学講座コア科目「蛋白質化学特論」

    2016.4 - 2016.9   First semester

  • 生物機能分子化学講座コア科目「蛋白質化学特論」

    2015.4 - 2015.9   First semester

  • 理系ディシプリン科目「分子生物学」

    2015.4 - 2015.9   First semester

  • 生物化学

    2014.10 - 2015.3   Second semester

  • G30 Molecular Biology

    2014.4 - 2014.9   First semester

  • 生物機能分子化学講座コア科目「蛋白質化学特論」

    2014.4 - 2014.9   First semester

  • G30 Molecular Biology

    2013.4 - 2013.9   First semester

  • 特別講義科目「Challenges in agricultural science and technology of plants」

    2013.4 - 2013.9   First semester

  • 生物産業創成学コース・生物産業創成学特論「植物バイオテクノロジーと産業」

    2011.10 - 2012.3   Second semester

  • 植物栄養学

    2011.4 - 2011.9   First semester

  • 生物機能分子化学演習第一

    2024.10 - 2025.3   Second semester

  • 生物機能分子化学演習第二

    2024.10 - 2025.3   Second semester

  • Master's Thesis

    2024.4 - 2025.3   Full year

  • 修士論文

    2024.4 - 2025.3   Full year

  • Seminar in a Specified Field Ⅱ

    2024.4 - 2025.3   Full year

  • Master's Thesis Research Ⅱ

    2024.4 - 2025.3   Full year

  • 生物機能分子化学プロジェクト演習

    2024.4 - 2025.3   Full year

  • 生物機能分子化学特別研究第二

    2024.4 - 2025.3   Full year

  • 生物機能分子化学特別研究第一

    2024.4 - 2025.3   Full year

  • 分子生物学

    2024.4 - 2024.9   First semester

  • Molecular Biology Ⅰ

    2024.4 - 2024.6   Spring quarter

  • 生物機能分子化学Ⅰ(国際コース)

    2024.4 - 2024.6   Spring quarter

  • 生物機能分子化学Ⅰ(E科目)

    2024.4 - 2024.6   Spring quarter

▼display all

FD Participation

  • 2025.1   Role:Participation   Title:DX化によって広がる研究の可能性

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2024.12   Role:Speech   Title:競争的資金獲得に向けた農学研究院等FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2024.12   Role:Participation   Title:性の多様性を考える研修会

    Organizer:University-wide

  • 2024.9   Role:Participation   Title:薬物依存対策研修会

    Organizer:University-wide

  • 2024.9   Role:Participation   Title:共創学部—その新しい取り組みと展望

    Organizer:University-wide

  • 2024.5   Role:Participation   Title:学部国際コース(IUP)の現状と Dual-Degree Programの運営について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.1   Role:Participation   Title:国費特別プログラム「未来の農を 描くビジョンデザイン実践プログラム」実施に向けて

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.11   Role:Participation   Title:「人を対象とする生命科学・医学系研究に関する倫理指針」について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.7   Role:Participation   Title:科研費を獲りにいこう! 科研費獲得の技術と工夫

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.9   Role:Participation   Title:科研費を獲りにいこう! 勝ち抜く気合と技術

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.6   Role:Participation   Title:九州大学はどのような教育を目指していくのか         -教学マネジメント枠組みに則した教員活動評価に向けてー

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.5   Role:Participation   Title:優良な博士人材の獲得と育成に向けて

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2014.11   Role:Participation   Title:平成25年度博士課程教育リーディングプログラム「持続可能な社会を 開く決断科学大学院プログラム」について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2014.7   Role:Participation   Title:ハラスメント防止の要点

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2014.3   Role:Participation   Title:第7回農学研究院FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2013.11   Role:Participation   Title:JSPSグローバル人材育成推進事業(特色型)        ”国際的視野を持ったアグリバイオリーダーの育成” 事業について          -九大で農学を英語で学び、海外でアグリバイオを学ぶ-

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2012.4   Role:Participation   Title:新任教員の研修

    Organizer:University-wide

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2023  広島大学  Classification:Intensive course  Domestic/International Classification:Japan 

  • 2017  大阪府立大学 応用生命科学特別講義  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:集中講義

  • 2016  大阪府立大学大学院生命環境科学研究科  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2016年9月20日、11月26日

  • 2015  大阪府立大学大学院生命環境科学研究科  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:平成27年 8月12日 ~ 平成27年 8月13日

Social Activities

  • ゲノム編集実証ラボの開設

    福岡バイオコミュニティ  久留米リサーチパーク  2022.10 - 2026.3

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

    福岡バイオコミュニティ事業のもと、ゲノム編集の産業利用の加速を目的とした「ゲノム編集実証ラボ」を開設

  • 「九州大学学術研究都市」セミナーにて、「PPRタンパク質を利用したDNA/RNA編集技術の開発」について公演

    OPACK  東京  2019.11

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 国際医薬品開発展・PPR技術で創るDNA/RNA編集技術

    国際医薬品開発展  東京ビッグサイト  2019.3

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

  • 福岡県青少年科学館企画「これが福岡のサイエンスマンたちだ!」

    福岡県新産業振興課  2018.3

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

  • BioJapan主催者セミナー:Genome/Transcriptome Editing technologies, based on PPR protein engineering

    経産省  東京  2017.9

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

  • Innovation Japan:DNA、RNAの両方を操作する第四世代ゲノム編集技術

    JST  東京  2017.8

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

  • 日経バイオテク プロフェッショナルセミナー ゲノム編集が生み出す新ビジネス

    日経バイオテク  東京  2017.7

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Seminar, workshop

  • 次世代バイオ産業創出研究会「第4世代ゲノム編集技術 」

    久留米リサーチネットワーク  2017.4

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Seminar, workshop

  • 「知の集積と活用の場」九州プラットフォーム「核酸結合型PPRタンパク質モジュールの強みとゲノム編集が切り拓く未来」

    Joint-IFF  2016.7

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 九州キャリアイベント「研究者になろうと思った経緯、その後」

    リバネス  2016.7

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • システム生命科学 夏の学校、として高校教員向けに、ゲノム編集について講演

    九州大学 農学研究院  福岡  2015.6

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • PPR技術の産業化を目的としたベンチャー、EditForce株式会社、の設立

    EditForce株式会社  2015.5

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

    PPR技術の医療、農業、工業への応用を目的としたベンチャー企業を設立した

  • 九州大学テクノロジーフォーラムにて「PPRタンパク質を利用した次世代型ゲノム編集技術」として、産学連携を趣旨に講演

    九州大学  東京  2014.12

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Seminar, workshop

  • サイエンスカフェ「モノ作りを支える植物細胞内の小さな工場」

    農芸化学会  福岡  2013.11

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • アグリビジネス創出フェア 「PPRモチーフを核酸結合モジュールに用いた国産ゲノム編集技術の開発」

    農林水産省  東京  2013.10

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other

  • 共進化社会創成拠点フォーラム 「PPRモチーフを用いた純国産ゲノム編集・トランスクリプトーム編集技術の開発」

    九州大学  東京  2013.3

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

▼display all

Media Coverage

  • 福岡をバイオの一大集積地に Newspaper, magazine

    化学工業日報  2022.12

     More details

    福岡をバイオの一大集積地に

  • ゲノム編集清貧 実用支援 Newspaper, magazine

    化学工業日報  2022.11

     More details

    ゲノム編集清貧 実用支援

  • ゲノム編集実用化「橋渡し」 Newspaper, magazine

    読売新聞  2022.11

     More details

    ゲノム編集実用化「橋渡し」

  • ゲノム編集活用へラボ開設 Newspaper, magazine

    読売新聞  2022.10

     More details

    ゲノム編集活用へラボ開設

  • 遺伝子を自在に操作「ゲノム編集」の研究拠点が久留米に開設 TV or radio program

    NHK  2022.10

     More details

    遺伝子を自在に操作「ゲノム編集」の研究拠点が久留米に開設

  • 久留米市に「ゲノム編集」実証ラボ開設 TV or radio program

    テレビ西日本  2022.10

     More details

    久留米市に「ゲノム編集」実証ラボ開設

  • ゲノム編集産業化ネットワーク、編集技術の産業利用を後押し Newspaper, magazine

    日経バイオテク  2022.1

     More details

    ゲノム編集産業化ネットワーク、編集技術の産業利用を後押し

  • 国産化ゲノム編集技術、注目のPPRたんぱく質 Newspaper, magazine

    化学工業日報  2020.10

     More details

    国産化ゲノム編集技術、注目のPPRたんぱく質

  • Focalpointにて技術の紹介 Newspaper, magazine

    Nature  2019.10

     More details

    Focalpointにて技術の紹介

  • 大学発ベンチャー表彰2019の受賞企業特集 Newspaper, magazine

    産学官連携ジャーナル  2019.10

     More details

    大学発ベンチャー表彰2019の受賞企業特集

  • 遺伝子編集技術をもつ企業として大学初ベンチャーが紹介 Newspaper, magazine

    日刊工業新聞  2019.7

     More details

    遺伝子編集技術をもつ企業として大学初ベンチャーが紹介

  • 解禁・ゲノム編集(4) いでよ国産技術 Newspaper, magazine

    日本経済新聞  2019.3

     More details

    解禁・ゲノム編集(4) いでよ国産技術

  • 日本初の新規DNA/RNA操作技術の開発 Newspaper, magazine

    産学官連携ジャーナル  2019.2

     More details

    日本初の新規DNA/RNA操作技術の開発

  • ゲノム上書き、病をデリート(バイオ医療NEXT) Newspaper, magazine

    日経産業新聞  2018.10

     More details

    ゲノム上書き、病をデリート(バイオ医療NEXT)

  • 日本発ゲノム編集ツールPPRは原核生物にも存在 Newspaper, magazine

    日経バイオテクONLINE  2018.10

     More details

    日本発ゲノム編集ツールPPRは原核生物にも存在

  • 新バイオ技術始動 Newspaper, magazine

    読売新聞  2017.8

     More details

    新バイオ技術始動

  • ゲノム編集 日本出遅れ。九州大学が新しいゲノム編集技術を開発。 Newspaper, magazine

    日本経済新聞  2017.4

     More details

    ゲノム編集 日本出遅れ。九州大学が新しいゲノム編集技術を開発。

  • 九大発VC 3億円調達へ、ゲノム編集を商業利用へ Newspaper, magazine

    2017.4

     More details

    九大発VC 3億円調達へ、ゲノム編集を商業利用へ

  • ゲノム編集 RNAに照準 Newspaper, magazine

    日本経済産業新聞  2016.10

     More details

    ゲノム編集 RNAに照準

  • 第4世代のゲノム編集技術が招く新世界 Newspaper, magazine

    日経バイオテクONLINE  2016.6

     More details

    第4世代のゲノム編集技術が招く新世界

  • 九州大学発 独自のDNA、RNA操作技術 Newspaper, magazine

    Forbes Japan  2016.5

     More details

    九州大学発 独自のDNA、RNA操作技術

  • ゲノム編集 Newspaper, magazine

    日本経済新聞  2016.1

     More details

    ゲノム編集

  • わが国初のゲノム編集ベンチャーの設立 Newspaper, magazine

    日本経済新聞  2015.12

     More details

    わが国初のゲノム編集ベンチャーの設立

  • 我が国の第4世代のゲノム編集技術 Newspaper, magazine

    日経バイオテク  2015.9

     More details

    我が国の第4世代のゲノム編集技術

  • ゲノム編集新世紀 Newspaper, magazine

    日経バイオテク  2015.5

     More details

    ゲノム編集新世紀

  • 遺伝子の編集技術の確立 TV or radio program

    NHK  2013.4

     More details

    遺伝子の編集技術の確立

  • 九⼤と広⼤、DNA結合型PPRたんぱく質の特許を出願、ゲノム編集の国産技術開発へ Newspaper, magazine

    日経バイオテクonline  2013.4

     More details

    九⼤と広⼤、DNA結合型PPRたんぱく質の特許を出願、ゲノム編集の国産技術開発へ

  • PPRたんぱく質、RNA・DNA認識コード解明 Newspaper, magazine

    日刊工業新聞  2013.4

     More details

    PPRたんぱく質、RNA・DNA認識コード解明

▼display all

Activities contributing to policy formation, academic promotion, etc.

  • 2020.4 - 2021.3   国立国会図書館

    ゲノム編集の技術と影響、に関するレクチャー、執筆

  • 2019.5 - 2026.3   JST-RISTEX

    ゲノム倫理研究会 メンバー

  • 2018.6 - 2018.12   環境省

    カルタヘナ法におけるゲノム編集技術等検討会 専門委員

  • 2016.6 - 2016.12  

    平成28年度特許出願技術動向調査「ゲノム編集及び遺伝子治療関連技術」 専門委員

  • 2016.1 - 2016.3  

    経済産業省商務情報政策局生物化学産業化 研究開発事業にかかる第三者審査委員会

Acceptance of Foreign Researchers, etc.

  • Acceptance period: 2022.10 - 2023.6   (Period):1 month or more

    Nationality:India

    Business entity:Japan Science and Technology Agency

Travel Abroad

  • 2019.10

    Staying countory name 1:Spain   Staying institution name 1:International convention center, Barcelona

  • 2015.1

    Staying countory name 1:United States   Staying institution name 1:Ventura, CA