Updated on 2024/12/06

Information

 

写真a

 
SAWA SHINICHIRO
 
Organization
Medical Institute of Bioregulation Research Center for Systems Immunology Professor
Medical Institute of Bioregulation Research Center for Systems Immunology(Concurrent)
Graduate School of Medical Sciences Department of Medicine(Concurrent)
Graduate School of Medical Sciences Department of Medical Sciences(Concurrent)
Title
Professor
Contact information
メールアドレス
Tel
0926426962

Degree

  • June 2000, M.D.

  • July 2016, Ph.D (Medical science) Osaka University

Research History

  • Kyushu University Medical Insitute of Bioregulation Professor Professor

    2019.1 - Present

      More details

    Country:Japan

  • Hokkaido University Institute for Genetic Medicine Associate Professor Associate Professor(PI)

    2016.10 - 2018.12

      More details

    Notes:Leading Initiative for Excellent Young Researchers

  • The University of Tokyo Graduate School of Medicine Assistant Professor Assistant Professor

    2012.8 - 2016.9

      More details

    Country:Japan

  • National Center for Child Health and Development Division of Immunology, Department of Medical Subspecialties Fellow Clinical Fellow

    2011.4 - 2012.7

      More details

    Country:Japan

  • Institute Pasteur Department of Immunology Academic Researcher Post-doctral Fellow

    2006.9 - 2011.3

      More details

    Country:France

  • Suita Municipal Hospital Department of Pediatrics 非常勤医師 Medical Doctor

    2006.7 - 2006.8

      More details

    Country:Japan

  • Osaka University Graduate School of Frontier Biosciences Academic Researcher Designated scientist

    2006.4 - 2006.6

      More details

    Country:Japan

  • Kanagawa Children's Medical Center Pediatrics Residency Junior Resident

    2000.4 - 2002.3

      More details

    Country:Japan

▼display all

Education

  • Osaka University   Graduate School   Medicine

    2002.4 - 2006.3

      More details

    Country:Japan

  • Osaka University   Faculty of Medicine   Medical school

    1994.4 - 2000.3

      More details

    Country:Japan

Research Interests・Research Keywords

  • Research theme: Elucidation of immne-organ development

    Keyword: Thymus, Bone Marrow, Payer's patch, Lymph Node

    Research period: 2019.3 - Present

  • Research theme: Elucidation of macrophage niche in the intestine

    Keyword: mucosal immunology, macrophage, niche, microenvironment

    Research period: 2019.1 - Present

  • Research theme: To elucidate defense against virus in respiratory organ.

    Keyword: Respitratory virus infection, lung mucosal immunology,Mesenchymal cell, Omics analysis

    Research period: 2019.1 - 2025.12

Awards

  • 日本医師会医学研究奨励賞

    2017.11   日本医師会  

  • 日本免疫学会研究奨励賞

    2011.11   日本免疫学会  

  • 井上研究奨励賞

    2007.2   井上科学振興財団  

Papers

  • RANK drives structured intestinal epithelial expansion during pregnancy Invited Reviewed International coauthorship

    Masahiro Onji, Verena Sigl, Thomas Lendl, Maria Novatchkova, Asier Ullate-Agote, Amanda Andersson-Rolf, Ivona Kozieradzki, Rubina Koglgruber, Tsung-Pin Pai,Dominic Lichtscheidl, Komal Nayak, Matthias Zilbauer, Natalia A. Carranza García, Laura Sievers, Maren Falk-Paulsen, Shane J.F. Cronin, Astrid Hagelkruys, Shinichiro Sawa, Lisa C Osborne, Philip Rosenstiel, Manolis Pasparakis, Jürgen Ruland, Hiroshi Takayanagi, Hans Clevers, Bon-Kyoung Koo, and Josef . Penninger

    Nature   2024.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41586-024-08284-1.

  • Synovial-tissue resident macrophages play proinflammatory functions in the pathogenesis of RA while maintaining the phenotypes in the steady state Reviewed International journal

    #Kai K., @Yamad H., Tsurui R., Sakura K, Fujimura K., Kawahara S., Akasakia Y., Tsushima H., Fujiwara T., Hara D., Fukushi J., @Sawa S., @Nakashima Y

    Immunological Medicine   2024.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: doi: 10.1080/25785826.2023.2300853

  • Single-cell RNA sequencing of intestinal immune cells in neonatal necrotizing enterocolitis Reviewed International journal

    Kazuo Oshima, Akinari Hinoki, Hiroo Uchida, Yujiro Tanaka, Yusuke Okuno, Yasuhiro Go, Chiyoe Shirota, Takahisa Tainaka, Wataru Sumida, Kazuki Yokota, Satoshi Makita, Aitaro Takimoto, Yoko Kano, @Shinichiro Sawa

    Pediatr Surg Int.   2023.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s00383-023-05461-7

  • Dermal Vγ6+ γδ T17 Cells Are Involved in Skin Pressure Ulcers in Mice. Reviewed International journal

    @Keiichiro Mine, #Xin Tun, @Shinya Hatano, @Naoto Noguchi, @Yoichiro Iwakura, @Shinichiro Sawa, @Seiho Nagafuchi, @Yasunobu Yoshikai

    The Journal of investigative dermatology   2022.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.jid.2021.12.030

  • Retinal VEGF-A Overexpression Is Not Sufficient to Induce Lymphangiogenesis Regardless of VEGF-C Upregulation and Lyve1+ Macrophage Infiltration. Reviewed International journal

    #Iori Wada, @Shintaro Nakao, @Muneo Yamaguchi, @Yoshihiro Kaizu, @Mitsuru Arima, @Shinichiro Sawa, @Koh-Hei Sonoda

    Investigative ophthalmology & visual science   62 ( 13 )   17   2021.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1167/iovs.62.13.17

  • Fibroblasts as a source of self-antigens for central immune tolerance Reviewed International journal

    Takeshi Nitta, Masanori Tsutsumi Sachiko Nitta, Ryunosuke Muro, Emma C. Suzuki, Kenta Nakano, Yoshihiko Tomofuji, @Shinichiro Sawa, Tadashi Okamura, Josef M. Penninger, Hiroshi Takayanagi

    Nature Immunology   21 ( 10 )   1172 - 1180   2020.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41590-020-0756-8

  • S100A4 Protein Is Essential for the Development of Mature Microfold Cells in Peyer's Patches. Reviewed International journal

    #Kunimura K, @Sakata D, #Tun X, @Uruno T, @Ushijima M, Katakai T, @Shiraishi A, Aihara R, Kamikaseda Y, Matsubara K, Kanegane H, @Sawa S, Eberl G, @Ohga S, Yoshikai Y, @Fukui Y.

    Cell Rep   29 ( 9 )   2823 - 2834   2019.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.celrep.2019.10.091

  • Targeted deletion of RANKL in M cell inducer cells by the Col6a1-Cre driver Reviewed

    Kazuki Nagashima, Shinichiro Sawa, Takeshi Nitta, Alejandro Prados, Vasiliki Koliaraki, George Kollias, Tomoki Nakashima, Hiroshi Takayanagi

    Biochemical and Biophysical Research Communications   493 ( 1 )   437 - 443   2017.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The gut-associated lymphoid tissues (GALTs), including Peyer's patches (PPs), cryptopatches (CPs) and isolated lymphoid follicles (ILFs), establish a host-microbe symbiosis by the promotion of immune reactions against gut microbes. Microfold cell inducer (MCi) cells in GALTs are the recently identified mesenchymal cells that express the cytokine RANKL and initiate bacteria-specific immunoglobulin A (IgA) production via induction of microfold (M) cell differentiation. In the previous study, the Twist2-Cre driver was utilized for gene deletion in mesenchymal cells including MCi cells. In order to investigate MCi cells more extensively, it will be necessary to develop experimental tools in addition to the Twist2-Cre driver mice and characterize such drivers in specificity and efficiency. Here we show that M cell differentiation and IgA production are impaired in the targeted deletion of RANKL by the Col6a1-Cre driver. We compared Col6a1-Cre with Twist2-Cre in terms of the specificity for mesenchymal cells in GALTs. Col6a1-Cre CAG-CAT-EGFP mice exhibited EGFP expression in podoplanin+CD31 cells including MCi cells, while Twist2-Cre mice were shown to target endothelial cells and podoplanin+CD31 cells. Tnfsf11fl/Δ Col6a1-Cre mice exhibited the absence of M cells and severe IgA reduction together with an alteration in gut microbial composition. Moreover, we analyzed germ free mice to test whether changes in the microbiota are the cause of M cell deficiency. M cell differentiation was normal in the CPs/ILFs of germ free mice, indicating that MCi cells induce M cells independently of microbial colonization. This study demonstrates that Col6a1-Cre driver mice are as useful as Twist2-Cre driver mice for functional analyses of GALT-resident mesenchymal cells, including MCi cells.

    DOI: 10.1016/j.bbrc.2017.09.004

  • Osteoimmunology The conceptual framework unifying the immune and skeletal systems Reviewed

    Kazuo Okamoto, Tomoki Nakashima, Masahiro Shinohara, Takako Negishi-Koga, Noriko Komatsu, Asuka Terashima, Shinichiro Sawa, Takeshi Nitta, Hiroshi Takayanagi

    Physiological Reviews   97 ( 4 )   1295 - 1349   2017.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression.Wealso focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.

    DOI: 10.1152/physrev.00036.2016

  • Lymphatic Endothelial Cells Control Initiation of Lymph Node Organogenesis Reviewed

    Lucas Onder, Urs Mörbe, Natalia Pikor, Mario Novkovic, Hung Wei Cheng, Thomas Hehlgans, Klaus Pfeffer, Burkhard Becher, Ari Waisman, Thomas Rülicke, Jennifer Gommerman, Christopher G. Mueller, Shinichiro Sawa, Elke Scandella, Burkhard Ludewig

    Immunity   47 ( 1 )   80 - 92.e4   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Lymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event. LEC activation was mediated mainly by signaling through receptor activator of NF-κB (RANK) and the non-canonical NF-κB pathway and was steered by sphingosine-1-phosphate-receptor-dependent retention of LTi cells in the LN anlage. Finally, the finding that pharmacologically enforced interaction between LTi cells and LECs promotes ectopic LN formation underscores the central LTo function of LECs.

    DOI: 10.1016/j.immuni.2017.05.008

  • Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota Reviewed

    Kazuki Nagashima, Shinichiro Sawa, Takeshi Nitta, Masanori Tsutsumi, Tadashi Okamura, Josef M. Penninger, Tomoki Nakashima, Hiroshi Takayanagi

    Nature Immunology   18 ( 6 )   675 - 682   2017.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Immunoglobulin A (IgA) maintains a symbiotic equilibrium with intestinal microbes. IgA induction in the gut-associated lymphoid tissues (GALTs) is dependent on microbial sampling and cellular interaction in the subepithelial dome (SED). However it is unclear how IgA induction is predominantly initiated in the SED. Here we show that previously unrecognized mesenchymal cells in the SED of GALTs regulate bacteria-specific IgA production and diversify the gut microbiota. Mesenchymal cells expressing the cytokine RANKL directly interact with the gut epithelium to control CCL20 expression and microfold (M) cell differentiation. The deletion of mesenchymal RANKL impairs M cell-dependent antigen sampling and B cell-dendritic cell interaction in the SED, which results in a reduction in IgA production and a decrease in microbial diversity. Thus, the subepithelial mesenchymal cells that serve as M cell inducers have a fundamental role in the maintenance of intestinal immune homeostasis.

    DOI: 10.1038/ni.3732

  • SLAM-associated protein favors the development of iNKT2 over iNKT17 cells Reviewed

    Marie Laure Michel, Christelle Lenoir, Bérangère Massot, Séverine Diem, Benoit Pasquier, Shinichiro Sawa, Rachel Rignault-Bricard, Agnès Lehuen, Gérard Eberl, André Veillette, Maria Leite-de-Moraes, Sylvain Latour

    European Journal of Immunology   46 ( 9 )   2162 - 2174   2016.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Invariant NKT (iNKT) cells differentiate in the thymus into three distinct lineages defined by their cytokine and transcription factor expression. Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is essential for early stages of iNKT cell development, but its role during terminal differentiation of iNKT1, iNKT2, or iNKT17 cells remains unclear. Taking advantage of SAP-deficient mice expressing a Vα14-Jα18 TCRα transgene, we found that SAP is critical not only for IL-4 production but also for the terminal differentiation of IL-4-producing iNKT2 cells. Furthermore, without SAP, the IL-17 producing subset is expanded, while IFN-γ-producing iNKT1 differentiation is only moderately compromised. Lack of SAP reduced the expression of the transcription factors GATA-3 and promyelocytic leukemia zinc finger, but enhanced the levels of retinoic acid receptor-related orphan receptor γt. In the absence of SAP, lineage commitment was actually shifted toward the emergence of iNKT17 over iNKT2 cells. Collectively, our data unveil a new critical regulatory function for SAP in thymic iNKT cell fate decisions.

    DOI: 10.1002/eji.201646313

  • RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation Reviewed

    Lynett Danks, Noriko Komatsu, Matteo M. Guerrini, Shinichiro Sawa, Marietta Armaka, George Kollias, Tomoki Nakashima, Hiroshi Takayanagi

    Annals of the Rheumatic Diseases   75 ( 6 )   1187 - 1195   2016.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Objective RANKL is mainly expressed by synovial fibroblasts and T cells within the joints of rheumatoid arthritis patients. The relative importance of RANKL expression by these cell types for the formation of bone erosions is unclear. We therefore aimed to quantify the contribution of RANKL by each cell type to osteoclast differentiation and bone destruction during inflammatory arthritis. Methods RANKL was specifically deleted in T cells (Tnfsf11flox/Δ Lck-Cre), in collagen VI expressing cells including synovial fibroblasts (Tnfsf11flox/Δ Col6a1-Cre) and in collagen II expressing cells including articular chondrocytes (Tnfsf11flox/Δ Col2a1-Cre). Erosive disease was induced using the collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA) models. Osteoclasts and cartilage degradation were assessed by histology and bone erosions were assessed by micro-CT. Results The inflammatory joint score during CAIA was equivalent in all mice regardless of cell-targeted deletion of RANKL. Significant increases in osteoclast numbers and bone erosions were observed in both the Tnfsf11flox/Δ and the Tnfsf11flox/Δ Lck-Cre groups during CAIA; however, the Tnfsf11flox/Δ Col6a1-Cre mice showed significant protection against osteoclast formation and bone erosions. Similar results on osteoclast formation and bone erosions were obtained in CIA mice. The deletion of RANKL on any cell type did not prevent articular cartilage loss in either model of arthritis used. Conclusions The expression of RANKL on synovial fibroblasts rather than T cells is predominantly responsible for the formation of osteoclasts and erosions during inflammatory arthritis. Synovial fibroblasts would be the best direct target in RANKL inhibition therapies.

    DOI: 10.1136/annrheumdis-2014-207137

  • Immune complexes regulate bone metabolism through FcRγ signalling Reviewed

    Takako Negishi-Koga, Hans Jürgen Gober, Eriko Sumiya, Noriko Komatsu, Kazuo Okamoto, Shinichiro Sawa, Ayako Suematsu, Tomomi Suda, Kojiro Sato, Toshiyuki Takai, Hiroshi Takayanagi

    Nature communications   6   2015.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Autoantibody production and immune complex (IC) formation are frequently observed in autoimmune diseases associated with bone loss. However, it has been poorly understood whether ICs regulate bone metabolism directly. Here we show that the level of osteoclastogenesis is determined by the strength of FcRγ signalling, which is dependent on the relative expression of positive and negative FcγRs (FcγRI/III/IV and IIB, respectively) as well as the availability of their ligands, ICs. Under physiological conditions, unexpectedly, FcγRIII inhibits osteoclastogenesis by depriving other osteoclastogenic Ig-like receptors of FcRγ. Fcgr2b-/-mice lose bone upon the onset of a hypergammaglobulinemia or the administration of IgG1 ICs, which act mainly through FcγRIII. The IgG2 IC activates osteoclastogenesis by binding to FcγRI and FcγRIV, which is induced under inflammatory conditions. These results demonstrate a link between the adaptive immunity and bone, suggesting a regulatory role for ICs in bone resorption in general, and not only in inflammatory diseases.

    DOI: 10.1038/ncomms7637

  • Inhibition of the TNF Family Cytokine RANKL Prevents Autoimmune Inflammation in the Central Nervous System Reviewed

    Matteo M. Guerrini, Kazuo Okamoto, Noriko Komatsu, Shinichiro Sawa, Lynett Danks, Josef M. Penninger, Tomoki Nakashima, Hiroshi Takayanagi

    Immunity   43 ( 6 )   1174 - 1185   2015.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The central nervous system (CNS) is an immunologically privileged site protected from uncontrolled access of T cells by the blood-brain barrier (BBB), which is breached upon autoimmune inflammation. Here we have shown that receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) on T cells regulates C-C type chemokine ligand 20 (CCL20) production by astrocytes and T cell localization in the CNS. Importantly, mice specifically lacking RANKL in T cells were resistant to experimental autoimmune encephalomyelitis (EAE) due to altered T cell trafficking. Pharmacological inhibition of RANKL prevented the development of EAE without affecting the peripheral immune response, indicating that RANKL is a potential therapeutic target for treating autoimmune diseases in the CNS.

    DOI: 10.1016/j.immuni.2015.10.017

  • Pathogenic conversion of Foxp3 + T cells into TH17 cells in autoimmune arthritis Reviewed

    Noriko Komatsu, Kazuo Okamoto, Shinichiro Sawa, Tomoki Nakashima, Masatsugu Ohora, Tatsuhiko Kodama, Sakae Tanaka, Jeffrey A. Bluestone, Hiroshi Takayanagi

    Nature medicine   20 ( 1 )   62 - 68   2014.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Autoimmune diseases often result from an imbalance between regulatory T (T reg) cells and interleukin-17 (IL-17)-producing T helper (T H 17) cells; the origin of the latter cells remains largely unknown. Foxp3 is indispensable for the suppressive function of T reg cells, but the stability of Foxp3 has been under debate. Here we show that T H 17 cells originating from Foxp3 + T cells have a key role in the pathogenesis of autoimmune arthritis. Under arthritic conditions, CD25 lo Foxp3 + CD4 + T cells lose Foxp3 expression (herein called exFoxp3 cells) and undergo transdifferentiation into T H 17 cells. Fate mapping analysis showed that IL-17-expressing exFoxp3 T (exFoxp3 T H 17) cells accumulated in inflamed joints. The conversion of Foxp3 + CD4 + T cells to T H 17 cells was mediated by synovial fibroblast-derived IL-6. These exFoxp3 T H 17 cells were more potent osteoclastogenic T cells than were naive CD4 + T cell-derived T H 17 cells. Notably, exFoxp3 T H 17 cells were characterized by the expression of Sox4, chemokine (C-C motif) receptor 6 (CCR6), chemokine (C-C motif) ligand 20 (CCL20), IL-23 receptor (IL-23R) and receptor activator of NF-κB ligand (RANKL, also called TNFSF11). Adoptive transfer of autoreactive, antigen-experienced CD25 lo Foxp3 + CD4 + T cells into mice followed by secondary immunization with collagen accelerated the onset and increased the severity of arthritis and was associated with the loss of Foxp3 expression in the majority of transferred T cells. We observed IL-17 + Foxp3 + T cells in the synovium of subjects with active rheumatoid arthritis (RA), which suggests that plastic Foxp3 + T cells contribute to the pathogenesis of RA. These findings establish the pathological importance of Foxp3 instability in the generation of pathogenic T H 17 cells in autoimmunity.

    DOI: 10.1038/nm.3432

  • Roles of RORγt+ innate lymphoid cells in mucosal tissues of mouse and human Reviewed

    Shinichiro Sawa

    Japanese Journal of Clinical Immunology   36 ( 1 )   11 - 16   2013.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Innate Lymphoid cells (ILCs) are recently defined lymphocytes composed of several subsets such as Natural Killer (NK), Natural Helper (NH) and RORγt+ cells, which have no antigen receptors but exhibit rapid cytokine production after stimulation. Murine RORγt+ ILCs can be classified either as CCR6+c-kithighIL-7Rahigh or CCR6-NKp46+ cells. The former ones play roles on the formation of secondary lymphoid tissues and the later ones contribute to the maintenance of intestinal epithelial integrity by producing IL-22. Human fetal intestine, tonsil and lympho nodes harbor both NKp44 positive and negative RORγt+ ILC subsets. Since human Crohn's disease patients have increased number of RORγt+ ILCs in the in‰amed intestine, roles of RORγt+ ILCs on the pathogenesis of Crohn's disease became of great interest.

    DOI: 10.2177/jsci.36.11

  • Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells Reviewed

    Marie Cherrier, Shinichiro Sawa, Gérard Eberl

    Journal of Experimental Medicine   209 ( 4 )   729 - 740   2012.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    AbstracyLymphoid tissue development is initiated during embryogenesis by the migration of lymphoid tissue inducer (LTi) cells from the fetal liver to the periphery, where they induce the formation of lymph nodes and Peyer's patches. In the fetal liver, a subset of common lymphoid progenitors (CLPs) that expresses the integrin α4β7 gives rise to LTi cells, a process strictly dependent on the expression of the transcriptional repressor Id2 and the nuclear hormone receptor retinoic acid-related orphan receptor γ t (RORγt). In this study, we show that Id2 and RORγt are sequentially up-regulated during LTi cell development, matching two waves of differentiation with opposite requirements for Notch signaling. Both the expression of Id2 and Notch are required for the generation of α4β7 + RORγt - fetal progenitors, but Notch subsequently blocks progression to the RORγt + stage and final maturation of LTi cells. Notch is therefore a necessary switch to engage the LTi developmental pathway, but needs to be turned off later to avoid diversion to the T cell fate.

    DOI: 10.1084/jem.20111594

  • Intestinal microbiota, evolution of the immune system and the bad reputation of pro-inflammatory immunity Reviewed

    Caspar Ohnmacht, Rute Marques, Laura Presley, Shinichiro Sawa, Matthias Lochner, Gérard Eberl

    Cellular Microbiology   13 ( 5 )   653 - 659   2011.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The mammalian intestine provides a unique niche for a large community of bacterial symbionts that complements the host in digestive and anabolic pathways, as well as in protection from pathogens. Only a few bacterial phyla have adapted to this predominantly anaerobic environment, but hundreds of different species create an ecosystem that affects many facets of the host's physiology. Recent data show how particular symbionts are involved in the maturation of the immune system, in the intestine and beyond, and how dysbiosis, or alteration of that community, can deregulate immunity and lead to immunopathology. The extensive and dynamic interactions between the symbionts and the immune system are key to homeostasis and health, and require all the blends of so-called regulatory and pro-inflammatory immune reactions. Unfortunately, pro-inflammatory immunity leading to the generation of Th17 cells has been mainly associated with its role in immunopathology. Here we discuss the view that the immune system in general, and type 17 immunity in particular, develop to maintain the equilibrium of the host with its symbionts.

    DOI: 10.1111/j.1462-5822.2011.01577.x

  • RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota Reviewed

    Shinichiro Sawa, Matthias Lochner, Naoko Satoh-Takayama, Sophie Dulauroy, Marion Bérard, Melanie Kleinschek, Daniel Cua, James P. Di Santo, Gérard Eberl

    Nature Immunology   12 ( 4 )   320 - 328   2011.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Lymphoid cells that express the nuclear hormone receptor RORβ 3t are involved in containment of the large intestinal microbiota and defense against pathogens through the production of interleukin 17 (IL-17) and IL-22. They include adaptive IL-17-producing helper T cells (TH 17 cells), as well as innate lymphoid cells (ILCs) such as lymphoid tissueĝ€" inducer (LTi) cells and IL-22-producing NKp46+ cells. Here we show that in contrast to TH 17 cells, both types of RORγ t + ILCs constitutively produced most of the intestinal IL-22 and that the symbiotic microbiota repressed this function through epithelial expression of IL-25. This function was greater in the absence of adaptive immunity and was fully restored and required after epithelial damage, which demonstrates a central role for RORγ t+ ILCs in intestinal homeostasis. Our data identify a finely tuned equilibrium among intestinal symbionts, adaptive immunity and RORγ t+ ILCs.

    DOI: 10.1038/ni.2002

  • Lymphotoxin-β receptor-independent development of intestinal IL-22-producing NKp46+ innate lymphoid cells Reviewed

    Naoko Satoh-Takayama, Sarah Lesjean-Pottier, Shinichiro Sawa, Christian A.J. Vosshenrich, Gérard Eberl, James P. Di Santo

    European Journal of Immunology   41 ( 3 )   780 - 786   2011.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The natural cytotoxicity receptor NKp46 is an activating receptor expressed by several distinct innate lymphoid cell (ILC) subsets, including NK cells, some γδ T cells and intestinal RORγt+IL-22+ cells (NCR22 cells, IL-22-producing NKp46+ cell). NCR22 cells may play a role in mucosal barrier function through IL-22-mediated production of anti-bacterial peptides from intestinal epithelial cells. Previous studies identified a predominant proportion of NCR22 cells in gut cryptopatches (CP), lymphoid structures that are strategically positioned to collect and integrate signals from luminal microbes; however, whether CP or other lymphoid structures condition NCR22 cell differentiation is not known. Programmed and inducible lymphoid tissue development requires cell-surface-expressed lymphotoxin (LT)α1β2 heterotrimers (provided by lymphoid tissue inducer (LTi) cells) to signal lymphotoxin-β receptor (LTR)+ stromal cells. Here, we analyzed NCR22 cells in LTβR-deficient Ncr1GFP/+ mice that lack organized secondary lymphoid tissues. We found that NCR22 cells develop in the absence of LTβR, become functionally competent and localize to the lamina propria under steady-state conditions. Following infection of LTβR-/- mice with the Gram-negative pathogen Citrobacter rodentium, IL-22 production from NCR22 cells was not affected. These results indicate that organized lymphoid tissue structures are not critical for the generation of an intact and fully functional intestinal NCR22 cell compartment.

    DOI: 10.1002/eji.201040851

  • Restricted microbiota and absence of cognate TCR antigen leads to an unbalanced generation of Th17 cells Reviewed

    Matthias Lochner, Marion Bérard, Shinichiro Sawa, Siona Hauer, Valérie Gaboriau-Routhiau, Tahia Diana Fernandez, Johannes Snel, Philippe Bousso, Nadine Cerf-Bensussan, Gérard Eberl

    Journal of Immunology   186 ( 3 )   1531 - 1537   2011.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Retinoic acid-related orphan receptor (ROR)γt+ TCRαβ+ cells expressing IL-17, termed Th17 cells, are most abundant in the intestinal lamina propria. Symbiotic microbiota are required for the generation of Th17 cells, but the requirement for microbiota-derived Ag is not documented. In this study, we show that normal numbers of Th17 cells develop in the intestine of mice that express a single TCR in the absence of cognate Ag, whereas the microbiota remains essential for their development. However, such mice, or mice monocolonized with the Th17-inducing segmented filamentous bacteria, fail to induce normal numbers of Foxp3+ RORγt+ T cells, the regulatory counterpart of IL-17 +RORγt+ T cells. These results demonstrate that a complex microbiota and cognate Ag are required to generate a properly regulated set of RORγt+ T cells and Th17 cells.

    DOI: 10.4049/jimmunol.1001723

  • Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells Reviewed

    Matthias Lochner, Caspar Ohnmacht, Laura Presley, Pierre Bruhns, Mustapha Si-Tahar, Shinichiro Sawa, Gérard Eberl

    Journal of Experimental Medicine   208 ( 1 )   125 - 134   2011.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The programmed development of lymph nodes and Peyer's patches during ontogeny requires lymphoid tissue inducer (LTi) cells that express the nuclear hormone receptor RORγt. After birth, LTi cells in the intestine cluster into cryptopatches, the precursors of isolated lymphoid follicles (ILFs), which are induced to form by symbiotic bacteria and maintain intestinal homeostasis. We show that in RORγt-deficient mice, which lack LTi cells, programmed lymphoid tissues, ILFs, and Th17 cells, bacterial containment requires the generation of large numbers of tertiary lymphoid tissues (tLTs) through the activity of B cells. However, upon epithelial damage, these mice develop severe intestinal inflammation characterized by extensive recruitment of neutrophils and IgG+ B cells, high expression of activation-induced deaminase in tLTs, and wasting disease. The pathology was prevented by antibiotic treatment or inhibition of lymphoid tissue formation and was significantly decreased by treatment with intravenous immunoglobulin G (IVIG). Our data show that intestinal immunodeficiency, such as an absence in RORγt-mediated proinflammatory immunity, can be compensated by increased lymphoid tissue genesis. However, this comes at a high cost for the host and can lead to a deregulated B cell response and aggravated inflammatory pathology.

    DOI: 10.1084/jem.20100052

  • Lineage relationship analysis of RORγt+ innate lymphoid cells Reviewed

    Shinichiro Sawa, Marie Cherrier, Matthias Lochner, Naoko Satoh-Takayama, Hans Jörg Fehling, Francina Langa, James P. Di Santo, Gérard Eberl

    Science   330 ( 6004 )   665 - 669   2010.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Lymphoid tissue - inducer (LTi) cells initiate the development of lymphoid tissues through the activation of local stromal cells in a process similar to inflammation. LTi cells express the nuclear hormone receptor RORγt, which also directs the expression of the proinflammatory cytokine interleukin-17 in T cells. We show here that LTi cells are part of a larger family of proinflammatory RORγt+ innate lymphoid cells (ILCs) that differentiate from distinct fetal liver RORγt+ precursors. The fate of RORγt+ ILCs is determined by mouse age, and after birth, favors the generation of cells involved in intestinal homeostasis and defense. Contrary to RORγt+ T cells, however, RORγt + ILCs develop in the absence of microbiota. Our study indicates that RORγt+ ILCs evolve to preempt intestinal colonization by microbial symbionts.

    DOI: 10.1126/science.1194597

  • IL-7 and IL-15 independently program the differentiation of intestinal CD3-NKp46+ cell subsets from Id2-dependent precursors Reviewed

    Naoko Satoh-Takayama, Sarah Lesjean-Pottier, Paulo Vieira, Shinichiro Sawa, Gerard Eberl, Christian A.J. Vosshenrich, James P. Di Santo

    Journal of Experimental Medicine   207 ( 2 )   273 - 280   2010.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The natural cytotoxicity receptor NKp46 (encoded by Ncr1) was recently shown to identify a subset of noncytotoxic, Rag-independent gut lymphocytes that express the transcription factor Rorc, produce interleukin (IL)-22, and provide innate immune protection at the intestinal mucosa. Intestinal CD3 -NKp46+ cells are phenotypically heterogeneous, comprising a minority subset that resembles classical mature splenic natural killer (NK) cells (NK1.1+, Ly49+) but also a large CD127 +NK1.1- subset of lymphoid tissue inducer (LTi)-like Rorc+ cells that has been proposed to include NK cell precursors. We investigated the developmental relationships between these intestinal CD3 -NKp46+ subsets. Gut CD3-NKp46+ cells were related to LTi and NK cells in requiring the transcriptional inhibitor Id2 for normal development. Overexpression of IL-15 in intestinal epithelial cells expanded NK1.1+ cells within the gut but had no effect on absolute numbers of the CD127+NK1.1-Rorc+ subset of CD3-NKp46+ cells. In contrast, IL-7 deficiency strongly reduced the overall numbers of CD3-NKp46+NK1. 1- cells that express Rorc and produce IL-22 but failed to restrict homeostasis of classical intestinal NK1.1+ cells. Finally, in vivo fate-mapping experiments demonstrated that intestinal NK1.1 +CD127- cells are not the progeny of Rorc-expressing progenitors, indicating that CD127+NK1.1-Rorc+ cells are not canonical NK cell precursors. These studies highlight the independent cytokine regulation of functionally diverse intestinal NKp46 + cell subsets.

    DOI: 10.1084/jem.20092029

  • Opening the crypt current facts and hypotheses on the function of cryptopatches Reviewed

    Gérard Eberl, Shinichiro Sawa

    Trends in Immunology   31 ( 2 )   50 - 55   2010.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Cryptopatches, small aggregates of lymphoid cells found in the intestinal lamina propria, have been assigned many functions specific to gut immunity. Populated with seemingly immature lymphoid cells and dendritic cells, it has been suggested that cryptopatches maturate intraepithelial lymphocytes, Th17 cells, IL-22-producing NKp46+ cells, and lymphoid tissues in response to the gut microbiota. Some of these issues, however, remain hotly debated. Therefore, cryptopatches are coming to the forefront of gut immunology and warrant a comprehensive discussion of their role in the development of the immune system.

    DOI: 10.1016/j.it.2009.11.004

  • Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense Reviewed

    Naoko Satoh-Takayama, Christian A.J. Vosshenrich, Sarah Lesjean-Pottier, Shinichiro Sawa, Matthias Lochner, Frederique Rattis, Jean Jacques Mention, Kader Thiam, Nadine Cerf-Bensussan, Ofer Mandelboim, Gerard Eberl, James P. Di Santo

    Immunity   29 ( 6 )   958 - 970   2008.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Natural killer (NK) cells are innate lymphocytes with spontaneous antitumor activity, and they produce interferon-γ (IFN-γ) that primes immune responses. Whereas T helper cell subsets differentiate from naive T cells via specific transcription factors, evidence for NK cell diversification is limited. In this report, we characterized intestinal lymphocytes expressing the NK cell natural cytotoxicity receptor NKp46. Gut NKp46+ cells were distinguished from classical NK cells by limited IFN-γ production and absence of perforin, whereas several subsets expressed the nuclear hormone receptor retinoic acid receptor-related orphan receptor t (RORγt) and interleukin-22 (IL-22). Intestinal NKp46+IL-22+ cells were generated via a local process that was conditioned by commensal bacteria and required RORγt. Mice lacking IL-22-producing NKp46+ cells showed heightened susceptibility to the pathogen Citrobacter rodentium, consistent with a role for intestinal NKp46+ cells in immune protection. RORγt-driven diversification of intestinal NKp46+ cells thereby specifies an innate cellular defense mechanism that operates at mucosal surfaces.

    DOI: 10.1016/j.immuni.2008.11.001

  • In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells Reviewed

    Matthias Lochner, Lucie Peduto, Marie Cherrier, Shinichiro Sawa, Francina Langa, Rosa Varona, Dieter Riethmacher, Mustapha Si-Tahar, James P. Di Santo, Gérard Eberl

    Journal of Experimental Medicine   205 ( 6 )   1381 - 1393   2008.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The nuclear hormone receptor retinoic acid receptor-related orphan receptor γt (RORγt) is required for the generation of T helper 17 cells expressing the proinflammatory cytokine interleukin (IL)-17. In vivo, however, less than half of RORγt+ T cells express IL-17. We report here that RORγt+ Tαβ cells include Foxp3+ cells that coexist with IL-17-producing RORγt+ Tαβ cells in all tissues examined. The Foxp3+ RORγt+ Tαβ express IL-10 and CCL20, and function as regulatory T cells. Furthermore, the ratio of Foxp3+ to IL-17-producing RORγt + Tαβ cells remains remarkably constant in mice enduring infection and inflammation. This equilibrium is tuned in favor of IL-10 production by Foxp3 and CCL20, and in favor of IL-17 production by IL-6 and IL-23. In the lung and skin, the largest population of RORγt+ T cells express the γδ T cell receptor and produce the highest levels of IL-17 independently of IL-6. Thus, potentially antagonistic proinflammatory IL-17-producing and regulatory Foxp3+ RORγt+ T cells coexist and are tightly controlled, suggesting that a perturbed equilibrium in RORγt+ T cells might lead to decreased immunoreactivity or, in contrast, to pathological inflammation.

    DOI: 10.1084/jem.20080034

  • Homeostatically proliferating CD4+ T cells are involved in the pathogenesis of an Omenn syndrome murine model Reviewed

    Khie Khiong, Masaaki Murakami, Chika Kitabayashi, Naoko Ueda, Shinichiro Sawa, Akemi Sakamoto, Brian L. Kotzin, Stephen J. Rozzo, Katsuhiko Ishihara, Marileila Verella-Garcia, John Kappler, Philippa Marrack, Toshio Hirano

    Journal of Clinical Investigation   117 ( 5 )   1270 - 1281   2007.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Patients with Omenn syndrome (OS) have hypomorphic RAG mutations and develop varying manifestations of severe combined immunodeficiency. It is not known which symptoms are caused directly by the RAG mutations and which depend on other polymorphic genes. Our current understanding of OS is limited by the lack of an animal model. In the present study, we identified a C57BL/10 mouse with a spontaneous mutation in, and reduced activity of, RAG1. Mice bred from this animal contained high numbers of memory-phenotype T cells and experienced hepatosplenomegaly and eosinophilia, had oligoclonal T cells, and demonstrated elevated levels of IgE, major symptoms of OS. Depletion of CD4+ T cells in the mice caused a reduction in their IgE levels. Hence these "memory mutant" mice are a model for human OS; many symptoms of their disease were direct results of the Rag hypomorphism and some were caused by malfunctions of their CD4+ T cells.

    DOI: 10.1172/JCI30513

  • CD1d-restricted NKT cell activation enhanced homeostatic proliferation of CD8+ T cells in a manner dependent on IL-4 Reviewed

    Naoko Ueda, Hiroko Kuki, Daisuke Kamimura, Shinichiro Sawa, Kenichiro Seino, Takuya Tashiro, Ken Ichi Fushuku, Masaru Taniguchi, Toshio Hirano, Masaaki Murakami

    International Immunology   18 ( 9 )   1397 - 1404   2006.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    CD1d-restricted NKT cells are activated by TCR-mediated stimulation via CD1d plus lipid antigens such as alpha-galactosylceramide (α-GalCer). These cells suppressed autoimmunity and graft rejection, but sometimes enhanced resistance to infection and tumor immunity. This double-action phenomenon of NKT cells is partly explained by cytokines produced by NKT cells. Therefore, roles of cytokines from activated NKT cells have been extensively examined; however, their roles on T cell homeostatic proliferation in lymphopenic condition have not been investigated. Here, we showed that α-GalCer enhanced homeostatic proliferation of CD8+ but not CD4+ T cells and this effect of α-GalCer was required for NKT cells. IL-4 was essential and sufficient for this NKT cell action on CD8+ T cell homeostatic proliferation. Importantly, the expression of IL-4Rα and STAT6 in CD8+ T cells was essential for the NKT activity, indicating a direct action of IL-4 on CD8+ T cells. Consistent with this, the level of IL-4Rα expression on memory phenotype CD8+ T cells was higher than that on naive phenotype one and CD4+ T cells. Thus, these results showed the 'involvement' of IL-4 that is produced from activated NKT cells for CD8+ T cell homeostatic proliferation in vivo.

    DOI: 10.1093/intimm/dxl073

  • Autoimmune arthritis associated with mutated interleukin (IL)-6 receptor gp130 is driven by STAT3/IL-7-dependent homeostatic proliferation of CD4 + T cells Reviewed

    Shinichiro Sawa, Daisuke Kamimura, Gui Hua Jin, Hideyuki Morikawa, Hokuto Kamon, Mika Nishihara, Katsuhiko Ishihara, Masaaki Murakami, Toshio Hirano

    Journal of Experimental Medicine   203 ( 6 )   1459 - 1470   2006.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Mice homozygous for the F759 mutation in the gp130 interleukin (IL)-6 receptor subunit have enhanced gp130-mediated signal transducer and activator of transcription (STAT)3 activation and spontaneously developed a lymphocyte-mediated rheumatoid arthritis-like joint disease. Here, we show that the development of the disease is dependent on both major histocompatibility complex (MHC) II-restricted CD4+ T cells and IL-6 family cytokines. In spite of the necessity for CD4+ T cells, the gp130 mutation was only required in nonhemtopoietic cells for the disease. The gp130 mutation resulted in enhanced production of IL-7. Conditional knockout of STAT3 in nonlymphoid cells showed that the enhancement of IL-7 production was dependent on STAT3 activation by IL-6 family cytokines. Homeostatic proliferation of CD4+ T cells was enhanced in gp130 mutant mice and acceleration of homeostatic proliferation enhanced the disease, whereas the inhibition of homeostatic proliferation suppressed the disease. Anti-IL-7 antibody treatment inhibited not only the enhanced homeostatic proliferation, but also the disease in gp130 mutant mice. Thus, our results show that autoimmune disease in gp130 mutant mice is caused by increased homeostatic proliferation of CD4+ T cells, which is due to elevated production of IL-7 by nonhematopoietic cells as a result of IL-6 family cytokine-gp130-STAT3 signaling. JEM

    DOI: 10.1084/jem.20052187

  • IL-6-STAT3 controls intracellular MHC class II αβ dimer level through cathepsin S activity in Dendritic Cells Reviewed

    Hidemitsu Kitamura, Hokuto Kamon, Shinichiro Sawa, Sung Joo Park, Nobuhiko Katunuma, Katsuhiko Ishihara, Masaaki Murakami, Toshio Hirano

    Immunity   23 ( 5 )   491 - 502   2005.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We found IL-6-STAT3 pathway suppresses MHC class II (MHCII) expression on dendritic cells (DCs) and attenuates T cell activation. Here, we showed that IL-6-STAT3 signaling reduced intracellular MHCII αβ dimmer, Ii, and H2-DM levels in DCs. IL-6-mediated STAT3 activation decreased cystatin C level, an endogenous inhibitor of cathepsins, and enhanced cathepsin activities. Importantly, cathepsin S inhibitors blocked reduction of MHCII αβ dimer, Ii, and H2-DM in the IL-6-treated DCs. Overexpression of cystatin C suppressed IL-6-STAT3-mediated increase of cathepsin S activity and reduction of MHCII αβ dimer, Ii, and H2-DM levels in DCs. Cathepsin S overexpression in DCs decreased intracellular MHCII αβ dimer, Ii, and H2-DM levels, LPS-mediated surface expression of MHCII and suppressed CD4 + T cell activation. IL-6-gp130-STAT3 signaling in vivo decreased cystatin C expression and MHCII αβ dimer level in DCs. Thus, IL-6-STAT3-mediated increase of cathepsin S activity reduces the MHCII αβ dimer, Ii, and H2-DM levels in DCs, and suppresses CD4+ T cell-mediated immune responses.

    DOI: 10.1016/j.immuni.2005.09.010

  • Hyperactivation of gp130-mediated STAT3 signaling induces a rheumatoid arthritis-like disease that is dependent on MHC class II restricted CD4+ T cells Reviewed

    Masaaki Murakami, Shinichiro Sawa, Daisuke Kamimura, Hokuto Kamon, Hidemitsu Kitamura, Takaya Kawabe, Park Sung-Joo, Katsuhiko Ishihara, Toshio Hirano

    International Congress Series   1285   207 - 211   2005.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Mice having a point mutation of IL-6 signal transducer, gp130, named gp130F759 induced a rheumatoid arthritis-like disease. The disease induction is totally dependent on mature lymphocytes, since no arthritis-like disease induced in a double mutant between gp130F759 and RAG2KO mice. We prepared several other double mutants including gp130F759/IgMKO, gp130F759/CD8KO, gp130F759/CIITAKO and gp130F759/CD4KO and analyzed the development of the arthritis. We found that development of the disease attenuated in gp130F759/CIITAKO and gp130F759/CD4KO, suggesting the MHC class II-restricted CD4+ T cells are important for the disease development. We showed memory/activated phenotype of CD4+ T cells increased in gp130F759 mice. Since activation of CD4+ T cells is mainly controlled by dendritic cells (DC) in vivo, we investigated this feature of DC in gp130F759 mice. We isolated DCs from superficial lymph nodes and observed that IL-6-mediated signaling suppresses maturation of DCs in vivo. However, total number of DCs in vivo significantly increased in gp130F759 mice compared with wild type controls. Thus, we hypothesize that the rheumatoid arthritis-like disease in gp130F759 mice is induced by an interaction between CD4+ T cells and DC under gp130F759 signal regulation.

    DOI: 10.1016/j.ics.2005.07.096

  • Evidence of a novel IL-2/15Rβ-targeted cytokine involved in homeostatic proliferation of memory CD8+ T cells Reviewed

    Daisuke Kamimura, Naoko Ueda, Yukihisa Sawa, Shinji Hachida, Toru Atsumi, Takayuki Nakagawa, Shinichiro Sawa, Gui Hua Jin, Haruhiko Suzuki, Katsuhiko Ishihara, Masaaki Murakami, Toshio Hirano

    Journal of Immunology   173 ( 10 )   6041 - 6049   2004.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The homeostasis of memory CD8+ T cells is regulated by cytokines. IL-15 is shown to promote the proliferation of Memory CD8+ T cells, while IL-2 suppresses their division in vivo. This inhibitory efect of IL-2 appears to occur indirectly, through other cell populations including CD25+CD4+ T cells; however, the details of this mechanism remain unclear. In this study, we show that 1) both Ag-experienced and memory phenotype CD8+ T cells divided after the depletion of IL-2 in vivo; 2) this division occurred normally and CD44highIL-2/ 15Rβhigh CD8+ T cells generated after IL-2 depletion in IL-15 knockout (KO) and in IL-7-depleted IL-15 KO mice; 3) surprisingly, the blockade of IL-2/15Rβ signaling in IL-2-depleted IL-15 KO mice completely abolished the division of memory CD8+ T cells, although the only cytokines known to act through IL-2/15Rβ are IL-2 and IL-15; and 4) the expression of IL-2/15Rβ molecules on memory CD8+ T cells was required for their division induced by IL-2 depletion. These results demonstrate that the depletion of IL-2 in vivo induced memory CD8+ T cell division by an IL-15-independent but by an IL-2/15Rβ-dependent mechanism, suggesting the existence of a novel IL-2/15Rβ-utilizing cytokine that acts directly on memory CD8+ T cells to promote cell division.

  • IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation Reviewed

    Sung Joo Park, Takayuki Nakagawa, Hidemitsu Kitamura, Toru Atsumi, Hokuto Kamon, Shinichiro Sawa, Daisuke Kamimura, Naoko Ueda, Yoichiro Iwakura, Katsuhiko Ishihara, Masaaki Murakami, Toshio Hirano

    Journal of Immunology   173 ( 6 )   3844 - 3854   2004.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Dendritic cells (DCs) orchestrate immune responses according to their state of maturation. In response to infection, DCs differentiate into mature cells that initiate immune responses, while in the absence of infection, most of them remain in an immature form that induces tolerance to self Ags. Understanding what controls these opposing effects is an important goal for vaccine development and prevention of unwanted immune responses. A crucial question is what cytokine(s) regulates DC maturation in the absence of infection. In this study, we show that IL-6 plays a major role in maintaining immature DCs. IL-6 knockout (KO) mice had increased numbers of mature DCs, indicating that IL-6 blocks DC maturation in vivo. We examined this effect further in knockin mice expressing mutant versions of the IL-6 signal transducer gp130, with defective signaling through either Src homology region 2 domain-containing phosphatase 2/GabMAPK (gp130F759/F759) or STAT3 (gp130FxxQ/FxxQ), and combined gp130 and IL-6 defects (gp130F759/F759/IL-6 KO mice). Importantly, we found STAT3 activation by IL-6 was required for the suppression of LPS-induced DC maturation. In addition, STAT3 phosphorylation in DCs was regulated by IL-6 in vivo, and STAT3 was necessary for the IL-6 suppression of bone marrow-derived DC activation/maturation. DC-mediated T cell activation was enhanced in IL-6 KO mice and suppressed in gp130F759/F759 mice. IL-6 is thus a potent regulator of DC differentiation in vivo, and IL-6-gp130-STAT3 signaling in DCs may represent a critical target for controlling T cell-mediated immune responses in vivo.

    DOI: 10.4049/jimmunol.173.6.3844

  • The point mutation of tyrosine 759 of the IL-6 family cytokine receptor gp130 synergizes with HTLV-1 pX in promoting rheumatoid arthritis-like arthritis Reviewed

    Katsuhiko Ishihara, Shinichiro Sawa, Hideto Ikushima, Seiichi Hirota, Toru Atsumi, Daisuke Kamimura, Sung Joo Park, Masaaki Murakami, Yukihiko Kitamura, Yoichiro Iwakura, Toshio Hirano

    International Immunology   16 ( 3 )   455 - 465   2004.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Rheumatoid arthritis (RA) is a polygenic autoimmune disease. The autoimmunity develops from synergistic actions of genetic and environmental factors. We generated a double-mutant mouse by crossing two murine models of RA, a gp130 mutant knock-in mouse (gp130F759/F759) and an HTLV-1 pX transgenic mouse (pX-Tg), in a C57BL/6 background, which is resistant to arthritis. The mice spontaneously developed severe arthritis with a much earlier onset than the gp130F759/F759 mice and with a much higher incidence than did the pX-Tg mice. The symptoms of gp130F759/F759 mice, including lymphoadenopathy, splenomegaly, hyper-γ-globulinemia, autoantibody production, increases in memory/activated T cells and granulocytes in the peripheral lymphoid organs, and a decrease in the class II MHCbright CD11c+ population, were augmented in the double mutants. Marked reductions in incidence, severity and immunological abnormalities were seen in the triple mutant, IL-6-/-/gp130F759/F759/pX-Tg, indicating that the arthritis in the double mutant is IL-6 dependent. gp130F759/F759/pX-Tg is a unique mouse model for RA.

    DOI: 10.1093/intimm/dxh045

▼display all

Books

  • エッセンシャル免疫学 第4版

    澤 新一郎(Role:Translator/Editor ,  Original_author:Peter Parham ,  Glossary)

    MEDSi  2023.8    ISBN:978-4-8157-3081-9

     More details

    Total pages:33   Responsible for pages:521-553   Language:Japanese   Book type:Textbook, survey, introduction

Presentations

  • Fibroblast-derived CSF1 maintains colonization of gut mucosal macrophage to resist bacterial infection Invited International coauthorship

    Shinichiro Sawa

    The 47th Annual Meeting of the Molecular Biology Society of Japan  2024.10  Molecular Biology Society of Japan

     More details

    Event date: 2027.10

    Language:English   Presentation type:Symposium, workshop panel (nominated)  

    Venue:Fukuoka   Country:Japan  

  • Early primary ossification center is a reservoir for cells that promote fetal bone marrow development International coauthorship International conference

    Shinichiro Sawa

    The 33nd Hot Spring Harbor International Symposium  2024.10  Medical Institute of Bioregulation

     More details

    Event date: 2024.10

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:Fukuoka   Country:Japan  

  • Comprehensive analysis about lung cells during viral infection Invited International coauthorship

    Shinichiro Sawa

    The 45th Annual Meeting of the Japanese Society of Inflammation and Regeneration  2024.7  Japanese Society of Inflammation and Regeneration

     More details

    Event date: 2024.7

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:Fukuoka   Country:Japan  

  • Identification of lymphotoxin-expressing cells in the thymus during embryonic stage International coauthorship International conference

    Miyuki Watanabe, Shinichiro Sawa

    5th International Cnference on Innate Lymphoid Cells  2024.7  ILC5 Organising Committee

     More details

    Event date: 2024.7

    Language:English   Presentation type:Poster presentation  

    Venue:Cambridge   Country:United Kingdom  

  • Regulatory mechanism of RORγt expression in ILC3 RUNX3/Cbfβ directly induces Rorc expression in LTi cell and ILC3 International coauthorship International conference

    Takuma Fukui, Shinichiro Sawa

    5th International Cnference on Innate Lymphoid Cells  2024.7  ILC5 Organising Committee

     More details

    Event date: 2024.7

    Language:English   Presentation type:Poster presentation  

    Venue:Cambridge   Country:United Kingdom  

  • 胸腺LTi-like細胞の分化機構の解析

    Miyuki Watanabe, Shinichiro Sawa

    第33回 Kyoto T Cell Conference (KTCC)  2024.6  Kyoto T Cell Conference

     More details

    Event date: 2024.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京都大学芝蘭会館(京都)   Country:Japan  

  • リンパ組織形成におけるRORγt発現制御機構の解明

    Takuma Fukui, Shinichiro Sawa

    第33回 Kyoto T Cell Conference (KTCC)  2024.6  Kyoto T Cell Conference

     More details

    Event date: 2024.6

    Language:Japanese   Presentation type:Poster presentation  

    Venue:京都大学芝蘭会館(京都)   Country:Japan  

  • Cytoplasmic signaling molecule CySM2 in LTi cells plays critical role on Payer’s patch formation International conference

    #Naoko Kiya, @Miho Matsuda and @Shinichiro Sawa

    KOB (Kyudai Oral Biosciences)・OBT・DDR 合同国際シンポジウム  2024.2 

     More details

    Event date: 2024.2

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • Investigation of RUNX/CBFβ role for ILC3 and GALT formation International conference

    #Reo Kobayashi, @Miyuki Watanabe, Eriko Sumiya, @Shinichiro Sawa

    第52回日本免疫学会学術集会  2024.1 

     More details

    Event date: 2024.1

    Language:Japanese  

    Venue:幕張メッセ(千葉)   Country:Japan  

  • Identification of CSF1-producing cells required for the maintenance of intestinal macrophages International conference

    #Daichi Nonaka, #Soichiro Yoshida, Eriko Sumiya, @Shinichiro Sawa

    第52回日本免疫学会学術集会  2024.1 

     More details

    Event date: 2024.1

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:幕張メッセ(千葉)   Country:Japan  

  • Regulatory mechanism of RORgt expression in innate and adaptive lymphocytes Invited International conference

    @Shinichiro Sawa

    第52回日本免疫学会学術集会  2024.1 

     More details

    Event date: 2024.1

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:幕張メッセ(千葉)   Country:Japan  

  • RANKL-expressing cells in the primary ossification center functions as an osteoclast niche during early bone marrow development International conference

    Eriko Sumiya, @Shinichiro Sawa

    第52回日本免疫学会学術集会  2024.1 

     More details

    Event date: 2024.1

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:幕張メッセ(千葉)   Country:Japan  

  • リンパ球におけるRORgt発現制御機構 Invited

    @澤 新一郎

    静岡県立大学 第312回月例薬学セミナー  2023.12 

     More details

    Event date: 2023.12

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:静岡県立大学   Country:Japan  

  • Regulatory mechanism of RORgt expression in innate and adaptive lymphocytes International conference

    @Shinichiro Sawa

    The 32nd Hot Spring Harbor International Symposium  2023.10 

     More details

    Event date: 2023.10

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン(Zoom)   Country:Japan  

  • 腸管免疫における自然リンパ球の役割 Invited

    @澤 新一郎

    第35回日本神経免疫学会学術講演会  2023.9 

     More details

    Event date: 2023.9

    Language:Japanese  

    Venue:東京国際フォーラム(東京)   Country:Japan  

  • 免疫組織の設計図を解読する Invited

    @澤 新一郎

    第2回シングルセルゲノミクス研究会  2022.8 

     More details

    Event date: 2023.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京都みやこめっせ   Country:Japan  

  • Identification of CSF1-producing cells required for the maintenance of intestinal macrophages

    #Daichi Nonaka, Eriko Sumiya, @Shinichiro Sawa

    第24回免疫サマースクール2023 in 福岡  2024.8 

     More details

    Event date: 2023.8

    Language:Japanese  

    Venue:福岡アイランドシティフォーラム(福岡)   Country:Japan  

  • 免疫応答の場を作る細胞たち Invited

    @澤 新一郎

    第24回免疫サマースクール2023 in 福岡  2023.8 

     More details

    Event date: 2023.8

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡アイランドシティフォーラム (福岡)   Country:Japan  

  • Investigation of Runx/CBfb-dependent GALT formation

    #Reo Kobayashi, @Miyuki Watanabe, Eriko Sumiya, @Shinichiro Sawa

    第24回免疫サマースクール2023 in 福岡  2024.5 

     More details

    Event date: 2023.8

    Language:Japanese  

    Venue:福岡アイランドシティフォーラム (福岡)   Country:Japan  

  • ILC3におけるRORgt発現制御機構の解明

    #福井 卓磨,香城 諭,@渡邊 美幸, 住谷 瑛里子,@澤 新一郎

    第43回阿蘇シンポジウム  2023.7 

     More details

    Event date: 2023.7

    Language:Japanese  

    Venue:熊本城ホール(熊本)   Country:Japan  

  • 胎仔期の軟骨-骨境界面に局在するセプトクラストは破骨細胞形成を促進し骨髄腔の発生に寄与する

    住谷 瑛理子,@澤 新一郎

    第41回日本骨代謝学会学術集会  2023.7 

     More details

    Event date: 2023.7

    Language:Japanese  

    Venue:都市センターホテル (東京)   Country:Japan  

  • 胸腺成熟過程におけるLymphotoxin発現細胞の探索

    @渡邊 美幸, @澤 新一郎

    第32回 Kyoto T Cell Conference (KTCC)  2023.6 

     More details

    Event date: 2023.6

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:京都大学芝蘭会館(京都)   Country:Japan  

  • インフルエンザウイルス感染により肺組織に出現するケモカイン高産生性線維芽細胞の役割を問う

    @澤新一郎, @小泉真一, @山田大翔, 野口直人, 住谷瑛理子

    JST-MS ムーンショット目標2×7技術交流会  2023.6 

     More details

    Event date: 2023.6

    Language:Japanese  

    Venue:御茶ノ水ソラシティカンファレンスセンター (東京)   Country:Japan  

  • リンパ球におけるRORt発現制御機構 Invited

    @澤 新一郎

    第21回 四国免疫フォーラム  2023.6 

     More details

    Event date: 2023.6

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:徳島大学 大塚記念講堂   Country:Japan  

  • Transcriptional regulation of RORγt in innate and adaptive lymphocytes

    @澤新一郎

    第21回四国免疫フォーラム  2023.6 

     More details

    Event date: 2023.6

    Language:Japanese  

    Venue:徳島大学 大塚記念講堂   Country:Japan  

  • Identification of CSF1-producing cells required for the maintenance of intestinal macrophages International conference

    #Daichi Nonaka, Eriko Sumiya, @Shinichiro Sawa

    The 29th International Symposium on Molecular and Cell Biology of Macrophage  2023.5 

     More details

    Event date: 2023.5 - 2024.5

    Language:English  

    Venue:和歌山   Country:Japan  

  • 自己体内に存在する細菌の役割とその活用 Invited

    @澤 新一郎

    第110回日本泌尿器科学会  2023.4 

     More details

    Event date: 2023.4

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:神戸国際会議場(神戸)   Country:Japan  

  • 腸管マクロファージニッチ細胞の検討

    @澤 新一郎

    第7回理論免疫学ワークショップ  2023.3 

     More details

    Event date: 2023.3

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:鹿児島ライカ   Country:Japan  

  • 免疫組織の形成を担う自己免疫疾患関連分子 Invited

    @澤新一郎

    第14回大阪骨関節コロキウム  2022.12 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:大阪大学   Country:Japan  

  • Cartilage-degrading cells in the primary ossification center contributes to perinatal bone marrow development International conference

    Eriko Sumiya @Shinichiro Sawa

    第51回日本免疫学会学術集会  2022.12 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • CSF1-producing cells in the intestine contributes to the maintenance of macrophages

    #Daichi Nonaka @Eriko sumiya @Shinichiro Sawa

    第51回日本免疫学会学術集会  2022.12 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:熊本城ホール   Country:Japan  

  • Regulatory mechanism of RORgt expression in ILC3

    #Takuma Fukui Satoshi Kojo @Eriko Sumiya @Shinichi Koizumi @Shinichiro Sawa

    第51回日本免疫学会学術集会  2023.6 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:熊本城ホール   Country:Japan  

  • Analysis of fibroblasts that initiate iBALT formation during influenza virus infection International conference

    @Shin-ichi Koizumi Eriko sumiya Naoto Noguchi Satoshi Kojo @Shinichiro Sawa

    第51回日本免疫学会学術集会  2022.12 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:熊本城ホール   Country:Japan  

  • Prip2 is required for the formation of gut-associated lymphoid tissue International conference

    #Naoko Kiya @Shinichiro Sawa @Miho Matsuda

    第51回日本免疫学会学術集会  2022.12 

     More details

    Event date: 2022.12

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • Regulatory mechanism of RORgt expression in ILC3

    #Takuma Fukui @Satoshi Kojo Eriko Sumiya @Miyuki Watanabe @Shinichiro Sawa

    The 31st Hot Spring Harbor International Symposium  2022.11 

     More details

    Event date: 2022.11

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • Transcriptomic landscapes of whole lung cells after influenza virus infection in mouse Invited International conference

    @Shinichiro Sawa

    The 20th Awaji International Forum on Infection and Immunity  2022.9 

     More details

    Event date: 2022.9

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:大阪大学微生物業研究所 谷口記念講堂   Country:Japan  

  • 骨と骨髄の発生に寄与する新規間葉系細胞集団の同定

    @住谷 瑛理子 佐伯亘平 @澤 新一郎

    第2回シングルセルゲノミクス研究会  2022.8 

     More details

    Event date: 2022.8

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:京都みやこめっせ   Country:Japan  

  • ILC3研究のこれまで、これから Invited

    @澤 新一郎

    日本免疫学会サマースクール  2022.8 

     More details

    Event date: 2022.8 - 2023.8

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:大阪大学会館   Country:Japan  

  • 粘膜免疫研究の最前線 Invited

    @ 澤新一郎

    第42回阿蘇シンポジウム  2022.7 

     More details

    Event date: 2022.7 - 2023.7

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:熊本城ホール/オンライン   Country:Japan  

  • 一次骨化中心に出現する胎仔RANKL陽性細胞は骨芽細胞および骨髄ストローマ細胞へ分化することで骨の発生に寄与する

    @住谷 瑛理子 @澤 新一郎

    第40回日本骨代謝学会学術集会  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:長良川国際会議場・都ホテル 岐阜長良川   Country:Japan  

  • RANKL-expressing fetal perichondrial cells promote bone and bone marrow development

    @住谷 瑛理子 @澤 新一郎

    2022年度 九州大学生体防御医学研究所 リトリート  2022.7 

     More details

    Event date: 2022.7

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • ILC3/LTi細胞におけるRORgt発現制御機構の解明

    #福井 卓磨 香城 諭 @住谷 瑛理子 @小泉 真一 @澤 新一郎

    第31回 Kyoto T cell Conference  2022.5 

     More details

    Event date: 2022.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • 腸管マクロファージの維持に寄与するCSF1産生細胞の解析

    #野中 大地 @住谷 瑛理子 @澤 新一郎

    第31回 Kyoto T cell Conference  2022.5 

     More details

    Event date: 2022.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • 病原性微生物感染動物からの細胞単離とシングルセルRNAシークエンスの実際 Invited

    @澤 新一郎

    ナノスティングス学会  2022.2 

     More details

    Event date: 2022.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:on line   Country:Japan  

  • Epigenomic and genetic approaches to identify Rorc enhancers indispensable for LTi cell development International conference

    @Satoshi Kojo #Takuma Fukui @Shinichiro Sawa

    第30回ホットスプリングハーバーシンポジウム  2022.1 

     More details

    Event date: 2022.1

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • Transcriptomic landscape of whole lung cells after influenza virus infection in mouse International conference

    @Shinichi Koizumi Naoto Noguchi @Eriko Sumiya @Shinichiro Sawa

    第30回ホットスプリングハーバーシンポジウム  2022.1 

     More details

    Event date: 2022.1

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:オンライン   Country:Japan  

  • RANKL+ cells in the primary ossification center contributes to perinatal bone marrow development

    @Eriko Sumiya and @Shinichiro Sawa

    第50回日本免疫学会学術集会  2021.12 

     More details

    Event date: 2021.12

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:奈良   Country:Japan  

  • LTi-like cell conducts maturation of intestinal immune system Invited International conference

    @Shinichiro Sawa

    第48回日本免疫学会学術集会  2020.12 

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:アクトシティ浜松   Country:Japan  

  • ILC3の発見から最新の研究まで Invited

    @澤新一郎

    Infection and Immunity Research Symposium  2020.11 

     More details

    Event date: 2020.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:ホテルオークラ 福岡   Country:Japan  

  • 胎仔破骨細胞誘導細胞の生体内における分化能の解析

    @住谷瑛理子, @澤新一郎

    第37回日本骨代謝学会学術集会  2020.10 

     More details

    Event date: 2020.10

    Language:Japanese  

    Venue:神戸国際会議場   Country:Japan  

  • Which cells initiate lymph node formation? Invited International conference

    @澤新一郎

    第58回日本生物物理学会年会  2020.9 

     More details

    Event date: 2020.9

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Web   Country:Japan  

    Lymph node (LN) is a highly organized immune tissue that initiates acquired immune response against pathogens drained from peripheral tissues. LN development is currently described as a programmed process governed through stepwise activation of three types of cells; lymphatic endothelial cell (LEC), hematopoietic lymphoid tissue inducer (LTi) cell and mesenchymal cell. However, it is still unknown which type of cells initiate complex LN formation process.
    Recently, we identified particular mesenchymal cells indispensable for LN formation. In this presentation, we would like to propose novel LN development model; particular mesenchymal cells appear prior to LTi cell colonization, eventually activate neighboring mesenchymal cells and finally build up complex stromal network in the mature LN.

  • 胎児期における免疫組織形成機構の解明 Elucidation for developmental mechanism of immune organs during fetal stage Invited

    @澤 新一郎

    第31回日本生体防御学会学術集会  2020.9 

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:熊本城ホール内シビックホール/Web   Country:Japan  

    造血幹細胞から分化発生するリンパ球や骨髄球などの免疫細胞は生体防御を担う中核的な存在である。我々は、免疫細胞が維持され免疫応答の場として機能するリンパ節や造血の場として重要な骨髄が個体発生の過程でどのように構築されるか、という観点から研究を進めてきた。
     胎児期におけるリンパ節形成は自然リンパ球系の細胞であるLymphoid Tissue inducer (LTi) 細胞と間葉系細胞の相互活性化が最初の引き金になると考えられてきた。LTi細胞が発現するLymphotoxin (LT)12はリンパ節形成に必須のサイトカインであるが、その受容体LTbRの発現には特異性がなく、何が「リンパ節を形成する場所」を決めているか不明であった。我々はLTi細胞におけるLT12発現を増強させる特殊な間葉系細胞をリンパ節原基に同定した。この間葉系細胞特異的にLTbR発現を欠損させるとリンパ節の形成は完全に阻害されたことから、この細胞こそがリンパ節形成に必須の間葉系細胞であると結論付けた。
     骨髄がどのようなメカニズムで硬い骨の中に構築され、造血を担うようになるかほとんど明らかになっていない。我々はマクロファージ系の細胞である破骨細胞を欠損するマウスで骨髄腔が形成されないことに注目し、破骨細胞が骨髄空間の形成に果たす役割について検討した。詳細な検討の結果、胎生15日に骨中央部に形成される軟骨膜付近に破骨細胞の誘導に必須の間葉系細胞が出現することを突き止めた。これらの間葉系細胞は自身が骨基質を形成するとともに骨髄ストローマ細胞へ分化する。破骨細胞が存在しない条件下では骨髄内での骨化が進み、造血に有効な骨髄空間が得られず、出生後の造血障害を引き起こすことが明らかになった。
     出生直後における外来微生物との遭遇を予見し、胎児期からリンパ節や骨髄を予め構築しておくことは生体防御の観点から大変理に適ったシステムであると考えられる。

  • If ILC3s are absent, what happens in the gut?, Shinichiro Sawa, JSPS-Crick Symposium on Gut Circuits Invited International conference

    @Shinichiro Sawa

    JSPS-Crick Symposium on Gut Circuits  2020.6 

     More details

    Event date: 2020.6

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Fransis-Crick Institute   Country:United Kingdom  

  • Transcriptomic characterization of cells involved in fetal bone development International conference

    @Eriko Sumiya, @Shinichiro Sawa

    The 29th Hot Spring Harbor International Symposium  2020.2 

     More details

    Event date: 2020.2

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • 「免疫の場」を構成する細胞群の運命追跡 Invited

    @澤新一郎

    第4回理論免疫学ワークショップ  2020.1 

     More details

    Event date: 2020.1

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  • RANKL+ mesenchymal cell is the genuine lymphoid tissue organizer cell in the developing lymph node International conference

    @Shinichiro Sawa

    第14回生命医科学研究所ネットワーク国際シンポジウム  2019.10 

     More details

    Event date: 2019.10

    Language:English   Presentation type:Oral presentation (general)  

    Venue:大阪大学 銀杏会館   Country:Japan  

  • リンパ節ストローマ細胞の起源に迫る Invited

    @澤 新一郎

    第 8 回生命科学阿波おどりシンポジウム  2019.8 

     More details

    Event date: 2019.8

    Language:English   Presentation type:Oral presentation (general)  

    Venue:徳島大学 先端酵素学研究所   Country:Japan  

  • If ILC3s are absent, what happens in the gut? Invited International conference

    @Shinichiro Sawa

    JSPS-Crick Symposium on Gut Circuits  2019.6 

     More details

    Event date: 2019.6

    Language:English   Presentation type:Oral presentation (general)  

    Venue:The Francis Crick Institute (London)   Country:United Kingdom  

    Other Link: https://www.eventbrite.co.uk/e/jsps-crick-symposium-on-gut-circuits-tickets-58644719936#

  • Investigation for the cell lineage of lymph node stroma cell

    @澤新一郎, @住谷瑛理子

    第29回 Kyoto T Cell Conference  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:京都大学芝蘭会館   Country:Japan  

  • リンパ節ストローマ細胞における細胞系譜関係の解析

    @澤新一郎、@住谷瑛理子

    Kyoto T cell Conference (KTCC) 2019  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese  

    Venue:京都大学芝蘭会館(京都市)   Country:Japan  

    【背景・目的】
    ストローマ細胞は成熟リンパ節の機能的分画化と構造維持に重要な間葉系細胞であるが、その起源や分化過程は詳細に検討されていない。昨年の本学会において、リンパ節原基中のRANKL陽性細胞がリンパ節初期発生に必須の間葉系細胞(Lymphoid Tissue organizer=LTo細胞)としてLTbRシグナルを伝達することを報告した。今回我々は、RANKL発現細胞とリンパ節ストローマ細胞の細胞系譜関係の解明を目的とした。
    【方法・結果】
    まず、Brainbawシステムを用い、リンパ節ストローマ細胞が複数のRANKL発現細胞に由来することを明らかにした。次に、Tnfsf11tTA/+ マウスを新規作成し、ドキシサイクリンを用いたRANKL 陽性細胞の時期特異的な標識・追跡系を樹立した。鼠径部リンパ節では、T細胞領域を構成するFRCが胎齢16日目以降のRANKL陽性細胞に由来すること、リンパ節辺縁部に存在するMRCは出生後にRANKLを発現した間葉系細胞に由来することを明らかにした。一方、胎齢15日目でリンパ節原基に生着したRANKL陽性間葉系を標識しても殆どのリンパ節ストローマ細胞は標識されなかった。
    【結論・考察】
    リンパ節ストローマ細胞の多くは胎仔期に存在するRANKL発現細胞に由来するが、幹細胞のように単一のLTo細胞が自己複製と成熟過程を経て全リンパ節ストローマ細胞へと分化する可能性は極めて低い。リンパ節分画をstep-by-stepに構築し、リンパ球を効率的に集簇させるためには、複数の間葉系細胞においてRANKL発現が連鎖的に誘導されるモデルがより適切と考えられる。

  • 骨と骨髄の発生におけるRANKL陽性未分化間葉系細胞の寄与の解明

    @住谷瑛理子、@澤新一郎

    Kyoto T cell Conference (KTCC) 2019  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:京都大学芝蘭会館(京都市)   Country:Japan  

  • 骨と骨髄の発生におけるRANKL陽性未分化間葉系細胞の寄与の解明

    @住谷瑛理子, @澤新一郎

    第29回 Kyoto T Cell Conference  2019.5 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:京都大学芝蘭会館(京都市)   Country:Japan  

  • The role of fetal osteoclast inducer cells in perinatal bone marrow development

    @Eriko Sumiya, @Shinichiro Sawa

    第47回日本免疫学会学術集会  2018.12 

     More details

    Event date: 2018.12

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡国際会議場(福岡市)   Country:Japan  

  • Fundamental role of LTi-like cell in the maintenance of adult intestinal homeostasis

    @Shinichiro Sawa,Kenta Nakano,Tadashi Okamura, @Eriko Sumiya

    第47回日本免疫学会学術集会  2018.12 

     More details

    Event date: 2018.12

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡国際会議場(福岡市)   Country:Japan  

  • RANKL+ mesenchymal cellis the genuine lymphoid tissue organizer cell in the developing lymph-node International conference

    @Sawa S., @Sumiya E., Nakano K., Okamura T.

    3rd International Conference on Innate Lymphoid Cells (ILC2018)  2018.11 

     More details

    Event date: 2018.11 - 2018.12

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:伊藤国際学術交流センター(東京都文京区)   Country:Japan  

  • 自然リンパ球と疾患 Invited

    @澤 新一郎

    第1回北海道移植免疫研究会  2018.9 

     More details

    Event date: 2018.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:札幌市   Country:Japan  

  • 腸管免疫の基盤、3型自然リンパ球. Invited

    @澤 新一郎

    第8回 オルソオルガノジェネシス研究会  2018.7 

     More details

    Event date: 2018.7

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:札幌市   Country:Japan  

  • 腸管免疫のゲートキーパー Invited

    @澤 新一郎

    第39回 日本炎症・再生医学会  2018.7 

     More details

    Event date: 2018.7

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:東京都新宿区   Country:Japan  

  • 3型自然リンパ球は本当に腸管バリア機能の維持に重要か?

    @澤 新一郎

    第3回 ソニー ライフサイエンス学術セミナー  2018.7 

     More details

    Event date: 2018.7

    Language:Japanese  

    Venue:東京都品川区   Country:Japan  

  • Fetal osteoclast inducer cells play a role in bone marrow cavity development.

    @Sumimya E., Nakano K., Okamura T. and @Sawa S.

    第36回日本骨代謝学会学術集会  2018.6 

     More details

    Event date: 2018.6

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:長崎市   Country:Japan  

  • Intestinal homeostasis maintained by subepithelial mesenchymal cell. Invited International conference

    @Sawa S, @Eriko Sumiya and Nagashima K

    第 22 回腸内細菌学会  2018.6 

     More details

    Event date: 2018.5 - 2018.6

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:東京都台東区   Country:Japan  

▼display all

MISC

  • ILC3 Invited

    澤 新一郎

    実験医学増刊「ヒト疾患と免疫細胞サブセット」   42 ( 12 )   2024.7   ISBN: 978-4-7581-0420-3

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (other)  

  • 腸管免疫バリア形成における3型自然リンパ球の役割

    澤 新一郎

    臨床免疫・アレルギー科   2023.6

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

Industrial property rights

Patent   Number of applications: 3   Number of registrations: 0
Utility model   Number of applications: 0   Number of registrations: 0
Design   Number of applications: 0   Number of registrations: 0
Trademark   Number of applications: 0   Number of registrations: 0

Professional Memberships

  • Japanese Society for Immunology

  • The Japanese Society of Inflammation and Regeneration

  • Japanese Pediatric Society

  • Japan Medical Association

  • The Japanese Society for Bone and Mineral Reserch

  • Kyoto T cell Conference

▼display all

Committee Memberships

  • 日本免疫学会   ダイバーシティ・キャリア支援委員会 委員長   Domestic

    2024.4 - 2026.3   

  • 日本免疫学会   Councilor   Domestic

    2023.4 - 2026.3   

  • 日本免疫学会   キャリア・ダイバーシティ委員会 副委員長   Domestic

    2023.4 - 2026.3   

  • 日本免疫学会   広報委員   Domestic

    2023.1 - 2024.12   

  • 日本免疫学会   Councilor   Domestic

    2022.6 - 2023.3   

  • 日本免疫学会   キャリアパス・男女共同参画委員   Domestic

    2022.6 - 2023.3   

  • 日本免疫学会   キャリアパス・男女共同参画委員会 委員   Domestic

    2022.4 - 2024.3   

  • 日本免疫学会   Councilor   Domestic

    2021.4 - 2025.3   

  • 日本免疫学会   広報委員   Domestic

    2021.4 - 2025.3   

  • 日本免疫学会   広報委員   Domestic

    2021.1 - 2022.12   

  • 阿蘇シンポジウム   世話人   Domestic

    2019.10 - 2030.9   

  • 日本免疫学会   Councilor   Domestic

    2019.1 - 2024.12   

  • Kyoto T cell conference (KTCC)   Steering committee member   Domestic

    2013.8 - 2030.7   

▼display all

Academic Activities

  • エッセンシャル免疫学 第4版

    2023.4 - 2023.12

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:5

  • 当番世話人

    第42回阿蘇シンポジウム  ( Japan ) 2022.7

     More details

    Type:Competition, symposium, etc. 

    Number of participants:1,000

  • Frontiers in Immunology International contribution

    Role(s): Peer review

    2022.1 - 2023.12

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:5

  • シンポジウム座長 International contribution

    第48回日本免疫学会学術集会  ( Japan ) 2019.12 - 2020.12

     More details

    Type:Competition, symposium, etc. 

    Number of participants:2,000

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:8

  • ワークショップ オーガナイザー、座長 International contribution

    第46回日本免疫学会学術集会  ( Japan ) 2018.12

     More details

    Type:Competition, symposium, etc. 

    Number of participants:3,000

  • オーガナイザー International contribution

    Innate Lymphoid Cell 2018 (ILC2018)  ( Japan ) 2018.11 - 2018.12

     More details

    Type:Competition, symposium, etc. 

    Number of participants:300

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Proceedings of International Conference Number of peer-reviewed papers:35

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Proceedings of domestic conference Number of peer-reviewed papers:15

  • ワークショップ 座長 International contribution

    第45回日本免疫学会学術集会  ( Japan ) 2016.12

     More details

    Type:Competition, symposium, etc. 

    Number of participants:2,000

▼display all

Research Projects

  • ILC3による腸管免疫記憶の形成および維持機構の解明

    Grant number:23H02737  2023 - 2026

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 3型自然リンパ球に関する研究

    2022.12 - 2024.12

    Research commissions

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • カイコ昆虫モダリティによる低価格な国産組換えワクチンに関する研究開発

    2022.10 - 2027.3

    AMED-SCARDA ワクチン・新規モダリティ研究開発事業 

      More details

    Authorship:Coinvestigator(s) 

  • 自然免疫系リンパ球に関する研究

    2022.4 - 2023.3

    Research commissions

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • カイコ昆虫モダリティによる低価格な国産組換えワクチンに関する研究開発

    2022 - 2026

    AMED SCARDA ワクチン・新規モダリティ研究開発事業

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • 自然リンパ球に関する研究

    2021.4 - 2022.3

    Research commissions

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • 3型自然リンパ球を用いた粘膜バリア増強療法への挑戦

    Grant number:21K19486  2021 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • ムーンショット型研究 「ウイルス-人体相互作用ネットワークの理解と制御」

    2020.12 - 2025.11

    国立研究開発法人科学技術振興機構(JST) 

      More details

    Authorship:Coinvestigator(s) 

    ウイルスが感染した場合における個体内での応答様式を免疫系、特に免疫支持細胞に焦点をあてて解明する。当該年度では、ウイルス非感染および感染マウスにおける血管内皮、リンパ管内皮、線維芽細胞などの免疫支持細胞を採取し、シングルセルRNAシークエンシング解析(scRNA-seq)よる遺伝子発現パタンの抽出を試みる。これらのデータは他研究班が取得した免疫細胞やマイクロバイオームデータと統合し、数理系研究者のパタン分類整理に活用される。また、ウイルス感染に対する生体応答の鍵を握る分子の遺伝子改変マウス作成を開始する。

  • 2050年までに、超早期に疾患の予測・予防をすることができる社会を実現 ウイルス-人体相互作用ネットワークの理解と制御 ウイルス感染に対する免疫支持細胞の解析

    2020 - 2025

    Fund for Promoting Science and Technology (major five fields) (Ministry of Education, Culture, Sports, Science and Technology)

      More details

    Authorship:Coinvestigator(s)  Grant type:Contract research

  • シングルセルレベルでの眼内増殖組織の活動性バイオマーカー検索

    Grant number:20K09829  2020 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 活性型自然リンパ球による腸管免疫寛容に関する研究

    2019.10 - 2023.3

    国立研究開発法人日本医療研究開発機構(日本) 

      More details

    Authorship:Principal investigator 

    本邦ではアレルギー疾患が急増しています。減感作療法は長期間のアレルギーの寛解維持が期待できる有望な治療法ですが、分子および細胞レベルの理解は進んでいません。本研究では統合エピゲノムの手法を用いて早期ライフステージにおける腸管自然リンパ球や制御性T細胞の機能的特徴を規定する分子基盤および小腸免疫寛容の誘導機構を証明し、減感作療法の科学的基盤に迫ります。

  • ILC3による液性免疫制御機構の解明

    Grant number:19H03483  2019 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 活性型自然リンパ球による腸管免疫寛容に関する研究

    2019 - 2022

    革新的先端研究開発支援事業 (AMED-PRIME)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 腸管における ILC3 生理機能の網羅的解析

    2019

    持田記念研究助成金

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 3型自然リンパ球を利用した新規食物アレルギー予防法の開発

    2019

    公益財団法人 ニッポンハム食の未来財団 個人研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 免疫組織形成および機能維持に重要な間葉系細胞の同定

    2019

    公益財団法人 武田科学振興財団 2019 年度 生命科学研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 急性GVHDを予防する骨髄球系細胞の同定および制御機構の解明

    2019

    ブリストル・マイヤーズスクイブ 研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • Group 3 innate lymphoid cells(ILC3s)の生体内動態解析,ワクチン誘導効果とアレルギー制御効果の基礎検討

    2018.3 - 2019.3

    Joint research

      More details

    Authorship:Principal investigator  Grant type:Other funds from industry-academia collaboration

  • 一細胞から紐解く新生児の腸管免疫システム

    Grant number:18K19503  2018 - 2019

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 新生児消化器疾患発症機序の分子生物学的解明に向けた解析ワークフローの確立

    Grant number:17H04235  2017 - 2019

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 間葉系細胞からみた腸管免疫系制御メカニズムの解明

    2017 - 2019

    内藤記念科学奨励金・若手ステップアップ研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • 新生児腸内細菌叢形成メカニズムの解明

    2016.10 - 2020.3

    国立研究開発法人日本医療研究開発機構(日本) 

      More details

    Authorship:Principal investigator 

    新生児期は腸内細菌叢形成と宿主免疫系の開始点を理解するうえで極めて重要な時期と考えられるが、哺乳類の腸内細菌叢形成メカニズムはこれまでほとんど明らかになっていない。また、新生児期の腸内細菌叢異常が思春期以降に発症する炎症性腸疾患等の免疫異常の発症要因になる可能性についても不明な点が多い。
     近年、申請者らを含む複数の研究グループによってヒトおよびマウス粘膜組織内に抗原受容体を持たないリンパ球群が同定され、自然リンパ球と命名された。自然リンパ球のうち、核内受容体RORgtを発現する自然リンパ球は3型自然リンパ球(ILC3)とよばれ、腸管上皮細胞の生存や抗菌ペプチド産生に重要なインターロイキン22(Interleukin=IL-22)を強力に産生する。興味深いことに、マウス新生仔腸管においては、獲得免疫系の細胞に先立ち、ILC3が腸管粘膜固有層に出現する。生直後の新生児腸管においてILC3は主要なリンパ球であり、IL-22を恒常的に産生している。
     本研究では、ILC3こそが腸管上皮機能の維持や細菌叢の選択に重要な役割を果たす細胞群であるとの仮説を立て、ILC3のみを生体内から除去可能な新規マウスモデルや、ILC3機能維持に重要と考えられるIL-23産生性樹状細胞を欠失可能なマウスを用い、ILC3やI IL-23産生樹状細胞がマウス新生仔腸内細菌叢の形成に果たす役割を明らかにし、腸内細菌叢の錯乱が免疫異常の原因となり得るか、マウスモデルを用いて検証する。

  • 新生児腸内細菌叢形成メカニズムの解明

    2016 - 2019

    AMED-PRIME「微生物叢と宿主の相互作用・共生の理解と、それに基づく疾患発症のメカニズム解明」

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • ILC3研究の展開

    2016 - 2018

    Japan Society for the Promotion of Science  卓越研究員事業

      More details

    Authorship:Principal investigator  Grant type:Joint research

  • 自然リンパ球前駆細胞の同定

    Grant number:15K15149  2015 - 2017

    Grants-in-Aid for Scientific Research  Grant-in-Aid for challenging Exploratory Research

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • RORγt陽性自然リンパ球を特異的に欠損するマウスの作成

    Grant number:25670228  2013 - 2014

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 2次リンパ組織形成におけるマスター制御因子の同定

    Grant number:25111503  2013 - 2014

    Japan Society for the Promotion of Science・Ministry of Education, Culture, Sports, Science and Technology  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 自然リンパ球に作用し、腸管恒常性維持に関与する内因性リガンドの同定

    Grant number:24117725  2012 - 2013

    Japan Society for the Promotion of Science・Ministry of Education, Culture, Sports, Science and Technology  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

▼display all

Class subject

  • 医学研究特論Ⅱ

    2022.10 - 2025.3   Second semester

  • 粘膜防御学

    2022.4 - 2025.3   Full year

  • 国際生命科学Ⅱ

    2022.4 - 2024.9   First semester

  • 免疫学

    2022.4 - 2024.9   First semester

  • 国際医学II

    2022.4 - 2024.9   First semester

  • 生命医科学入門

    2021.10 - 2025.3   Second semester

  • 遺伝学

    2021.10 - 2022.3   Second semester

  • 粘膜防御学

    2021.4 - 2022.3   Full year

  • 免疫学

    2021.4 - 2021.9   First semester

  • 遺伝学

    2020.10 - 2021.3   Second semester

  • 医学研究特論II

    2020.10 - 2021.3   Second semester

  • 粘膜防御学

    2020.4 - 2021.3   Full year

  • 免疫学

    2020.4 - 2020.9   First semester

  • 生体応答制御学

    2019.10 - 2025.3   Second semester

  • 医学研究特論Ⅱ

    2019.10 - 2025.3   Second semester

  • 生命医科学入門

    2019.10 - 2025.3   Second semester

  • 粘膜防御学

    2019.4 - 2025.3   Full year

  • 国際医学Ⅱ

    2019.4 - 2024.9   First semester

  • 免疫学

    2019.4 - 2024.9   First semester

  • 国際生命科学Ⅱ

    2019.4 - 2024.9   First semester

  • 粘膜防御学

    2019.4 - 2020.3   Full year

  • 免疫学

    2019.4 - 2019.9   First semester

▼display all

FD Participation

  • 2024.4   Role:Participation   Title:「職場における落とし穴」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.2   Role:Participation   Title:令和3年度馬出地区4部局合同男女共同参画FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.12   Role:Participation   Title:医学系学府大学院FD「学術論文の購読と投稿とこれから」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.12   Role:Participation   Title:九州大学大学院医学系学府教育FD「医学研究と倫理(2)」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.12   Role:Participation   Title:令和元年度 九州大学大学院医学系学府教育FD「医学研究と倫理」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.4   Role:Participation   Title:平成31年度 第1回全学FD(新任教員の研修)

    Organizer:University-wide

  • 2019.2   Role:Participation   Title:生体防御医学研究所FD(情報セキュリティ関連FD)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2024  新潟大学医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:5月 14日 4限目 免疫学講義

  • 2024  東京医科歯科大学 難治性疾患研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2025年3月31日まで

  • 2024  北海道大学 医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2025年 1月 9日 2限目  免疫学講義

  • 2023  北海道大学 医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2024年 1月 5日 2限目  免疫学講義

  • 2023  東京医科歯科大学 難治性疾患研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2025年3月31日まで

  • 2023  新潟大学・医学部 免疫学特別講義  Classification:Part-time lecturer 

    Semester, Day Time or Duration:1学期 4月27日 4限目

  • 2022  北海道大学医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2022年 1月4日 2時限目 免疫学講義

  • 2022  新潟大学・医学部 免疫学特別講義  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2022年5月10日1時限目

  • 2021  北海道大学・医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2022年 1月5日 1時限目 免疫学講義

  • 2021  新潟大学医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:4月28日(水)4限(14:50~16:20)

  • 2020  北海道大学・医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2021年1月6日2時限目

  • 2020  新潟大学医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2019  北海道大学医学部  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:2020年1月14日2時限目

  • 2019  新潟大学・医学部医学科  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:前期 免疫学特別講義 (2019年4月25日 3時限目)

  • 2018  北海道大学・医学部医学科  Classification:Faculty conurrently holding another post  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:後期 免疫学講義(2019年1月10日 2時限目)

▼display all

Activities contributing to policy formation, academic promotion, etc.

  • 2020.4 - 2021.3   文部科学省 科学技術・学術政策研究所 科学技術予測センター

    科学技術分野の研究動向を専門的見地から報告

Acceptance of Foreign Researchers, etc.

  • Central South University

    Acceptance period: 2022.5 - 2023.5   (Period):1 month or more

    Nationality:China

    Business entity:Foreign governments, foreign research institutes, international organizations

Travel Abroad

  • 2024.7

    Staying countory name 1:United Kingdom   Staying institution name 1:The MRC Laboratory of Molecular Biology (LMB)

  • 2019.6

    Staying countory name 1:United Kingdom   Staying institution name 1:Fransis-Crick Institute

    Staying institution name 2:Birmingham University

  • 2012.10

    Staying countory name 1:Germany   Staying institution name 1:German Cancer Research Center (DKFZ)

  • 2011.6

    Staying countory name 1:Switzerland   Staying institution name 1:École polytechnique fédérale de Lausanne

  • 2006.9 - 2011.3

    Staying countory name 1:France   Staying institution name 1:Institute Pasteur

  • 1999.8

    Staying countory name 1:United States   Staying institution name 1:Trudeau institute

    Staying institution name 2:National Institute of Health

▼display all

Year of medical license acquisition

  • 2000