Updated on 2025/04/30

写真a

 
YAMAUCHI MIHO
 
Organization
Institute for Materials Chemistry and Engineering Department of Applied Molecular Chemistry Professor
Graduate School of Sciences Department of Chemistry(Concurrent)
Title
Professor
Contact information
メールアドレス
Tel
0928026454
Profile
We are developing novel nanometer-sized materials for highly efficient material/energy conversions.
Homepage
External link

Research Areas

  • Nanotechnology/Materials / Energy chemistry

Degree

  • Ph. D

Research Interests・Research Keywords

  • Research theme: Development of highly selective nanoalloy catalysts for realization of carbon neutral energy cycles

    Keyword: carbon neutral, catalysis, nanoalloys, hydrogen, ethylene glycol, ammonia

    Research period: 2012.1

Papers

  • Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction Reviewed

    Mingxu Sun, Jiamin Cheng, Miho Yamauchi

    Nature Communications   15 ( 1 )   491-1 - 491-9   2024.1   eISSN:2041-1723

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    Abstract

    Carbon dioxide (CO<sub>2</sub>) electroreduction reaction (CO<sub>2</sub>RR) offers a promising strategy for the conversion of CO<sub>2</sub> into valuable chemicals and fuels. CO<sub>2</sub>RR in acidic electrolytes would have various advantages due to the suppression of carbonate formation. However, its reaction rate is severely limited by the slow CO<sub>2</sub> diffusion due to the absence of hydroxide that facilitates the CO<sub>2</sub> diffusion in an acidic environment. Here, we design an optimal architecture of a gas diffusion electrode (GDE) employing a copper-based ultrathin superhydrophobic macroporous layer, in which the CO<sub>2</sub> diffusion is highly enhanced. This GDE retains its applicability even under mechanical deformation conditions. The CO<sub>2</sub>RR in acidic electrolytes exhibits a Faradaic efficiency of 87% with a partial current density $$( {j}_{ { { { \rm{C } } } }_{2+ } })$$ of −1.6 A cm<sup>−2</sup> for multicarbon products (C<sub>2+</sub>), and $$ {j}_{ { { { { { \rm{C } } } } } }_{2+ } }$$ of −0.34 A cm<sup>−2</sup> when applying dilute 25% CO<sub>2</sub>. In a highly acidic environment, C<sub>2+</sub> formation occurs via a second order reaction which is controlled by both the catalyst and its hydroxide.

    File: s41467-024-44722-4.pdf

    DOI: 10.1038/s41467-024-44722-4

    Web of Science

    Scopus

    PubMed

    researchmap

    Other Link: https://www.nature.com/articles/s41467-024-44722-4

  • Enhanced Hydrogen Supply to Atomically Dispersed Copper Sites through Close Cooperation with Oxygen Vacancies in Black TiO<sub>2</sub> to Promote CH<sub>4</sub> Production in CO<sub>2</sub> Electrolysis Reviewed

    Akihiko Anzai, Masato Fukushima, David S. Rivera Rocabado, Takayoshi Ishimoto, Takeharu Sugiyama, Bunsho Ohtani, Hirokazu Kobayashi, Ming-Han Liu, Masaki Donoshita, Tomohiro Goroh Noguchi, Shailendra K. Maurya, Kenichi Kato, Chun Yat Sit, Paul J. A. Kenis, Miho Yamauchi

    ACS Applied Materials &amp; Interfaces   17 ( 15 )   22665 - 22676   2025.4   ISSN:1944-8244 eISSN:1944-8252

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Chemical Society (ACS)  

    CO2 electroreduction (eCO2R) holds promise as an environmentally friendly approach to reducing greenhouse gas emissions. Cu is a representative catalyst with high eCO2R activity. However, its selectivity for CH4 synthesis is still insufficient due to the slow eight-electron transfer to a single carbon, the predominance of C-C coupling reactions toward C2+ products on Cu, as well as occurrence of the hydrogen evolution reaction. Here, for high CH4 selectivity, we demonstrate a genuine hydrogen supply to atomically dispersed Cu sites (AD-Cu) via the cooperative function of oxygen vacancy (VO) formed on defective black anatase TiO2 (Cu-TiO2-H2), that is prepared by exposing Cu-doped TiO2 (Cu-TiO2) to hydrogen gas. Cu-TiO2-H2 exhibited a remarkable Faradaic efficiency for CH4 production of 63% and a partial current density of −120 mA cm-2. The catalytic mechanism for the high CH4 selectivity was elucidated using a variety of spectroscopies, such as electron spin resonance, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and in situ Raman measurements, with the support of quantum chemical calculations. In situ Raman measurements revealed that Cu-TiO2-H2 greatly accelerates proton consumption for the hydrogenation of *CO intermediates and that the surface pH on Cu-TiO2-H2 is sufficiently high to stabilize *CHO intermediates, key species for CH4 formation. DFT calculations support the stability of the intermediates during the process of forming *CHO. All our results suggest that VO contiguous to AD-Cu on Cu-TiO2-H2 promotes water dissociation and smoothly supplies hydrogen to AD-Cu on Cu-TiO2-H2, thus facilitating CH4 formation in eCO2R.

    File: anzai-et-al-2025-enhanced-hydrogen-supply-to-atomically-dispersed-copper-sites-through-close-cooperation-with-oxygen.pdf

    DOI: 10.1021/acsami.5c00484

    Web of Science

    Scopus

    PubMed

    researchmap

  • Modulating Electronic States of Cu in Metal‐Organic Frameworks for Emerging Controllable CH<sub>4</sub>/C<sub>2</sub>H<sub>4</sub> Selectivity in CO<sub>2</sub> Electroreduction Reviewed

    Mingxu Sun, Jiamin Cheng, Akihiko Anzai, Hirokazu Kobayashi, Miho Yamauchi

    Advanced Science   11 ( 34 )   e2404931 - 2404931   2024.7   ISSN:2198-3844 eISSN:2198-3844

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Abstract

    The intensive study of electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) has resulted in numerous highly selective catalysts, however, most of these still exhibit uncontrollable selectivity. Here, it is reported for the first time the controllable CH<sub>4</sub>/C<sub>2</sub>H<sub>4</sub> selectivity by modulating the electronic states of Cu incorporated in metal‐organic frameworks with different functional ligands, achieving a Faradaic efficiency of 58% for CH<sub>4</sub> on Cu‐incorporated UiO‐66‐H (Ce) composite catalysts, Cu/UiO‐66‐H (Ce) and that of 44% for C<sub>2</sub>H<sub>4</sub> on Cu/UiO‐66‐F (Ce). In situ measurements of Raman and X‐ray absorption spectra revealed that the electron‐withdrawing ability of the ligand side group controls the product selectivity on MOFs through the modulation of the electronic states of Cu. This work opens new prospects for the development of MOFs as a platform for the tailored tuning of selectivity in CO<sub>2</sub>RR.

    File: Advanced Science - 2024 - Sun - Modulating Electronic States of Cu in Metal%E2%80%90Organic Frameworks for Emerging Controllable.pdf

    DOI: 10.1002/advs.202404931

    Web of Science

    Scopus

    PubMed

    researchmap

  • Defect-Driven Optimization of TiO2-Based Electrodes for High-Efficiency Electrochemical 1,4-NADH Generation Reviewed

    Nada H. A. Besisa, Ki-Seok Yoon, Tomohiro Goroh Noguchi, Hirokazu Kobayashi, Miho Yamauchi

    ACS Sustainable Chemistry and Engineering   12 ( 26 )   9874 - 9881   2024.6   ISSN:2168-0485 eISSN:2168-0485

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Chemical Society (ACS)  

    The electrochemical reduction of nicotinamide adenine dinucleotide (NAD) using water as a hydrogen source is a promising strategy for the efficient and environmentally friendly production of the active enzymatic cofactor 1,4-NADH, which is a key for the further application of enzymatic systems in various industrial fields. However, the efficient regeneration of 1,4-NADH (NADH-reg) remains a major challenge. The rate-limiting step in the electrochemical conversion of the oxidized NAD is the second electron transfer to an NAD radical, which is formed by the reduction of NAD+, at a large overpotential, whereas the other side reactions proceed readily. To surmount this obstacle and promote NADH-reg, we used Ni nanoparticle-loaded TiO2 on a Ti electrode (Ni-TOT) containing a sufficient number of defects as active sites, which are formed at 300 °C in the H2 atmosphere. Ni-TOT facilitated the formation of enzymatically active 1,4-NADH with a superior yield and significantly reduced overpotential compared to those on untreated TOT. We found that hydrogen spillover promotes the formation of active sites on Ni-TOT. This study highlights the potential of engineered defect-enriched electrodes as a means to advance NADH-reg.

    File: besisa-et-al-2024-defect-driven-optimization-of-tio2-based-electrodes-for-high-efficiency-electrochemical-1-4-nadh.pdf

    DOI: 10.1021/acssuschemeng.4c02313

    Web of Science

    Scopus

    researchmap

  • Membrane electrode assembly type cell designed for selective CO production from bicarbonate electrolyte and air containing CO<sub>2</sub> mixed gas Invited Reviewed

    Akina Yoshizawa, Manabu Higashi, Akihiko Anzai, Miho Yamauchi

    Energy Advances   3 ( 4 )   778 - 783   2024.4   eISSN:2753-1457

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Royal Society of Chemistry (RSC)  

    Electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) combined with direct air capture (DAC) based CO<sub>2</sub> is a promising method for carbon cycling on the earth. In this study, we have designed an...

    File: D4YA00038B.pdf

    DOI: 10.1039/d4ya00038b

    Web of Science

    Scopus

    researchmap

▼display all

Books

  • メタンと二酸化炭素~その触媒的化学変換技術の現状と展望~, 第2節, 第5項

    山内 美穂

    シーエムシー・リサーチ  2023 

     More details

    Total pages:7  

    CiNii Research

  • SDGs無機化学の基礎

    山内 美穂

    培風館  2023 

     More details

    Total pages:27  

    CiNii Research

Industrial property rights

Patent   Number of applications: 1   Number of registrations: 0
Utility model   Number of applications: 0   Number of registrations: 0
Design   Number of applications: 0   Number of registrations: 0
Trademark   Number of applications: 0   Number of registrations: 0

Professional Memberships

▼display all

Research Projects

  • イオン渋滞現象の解明に向けた高度計測技術の統合利用

    Grant number:24H02205  2024.4 - 2029.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Transformative Research Areas (A)

    中村 崇司, 桑田 直明, 吉田 秀人, 阿部 仁, 杉本 敏樹, 山内 美穂, 梅垣 いづみ, 石黒 志, 森 一広, 白澤 徹郎

      More details

    Grant type:Scientific research funding

    本学術変革領域研究では、イオン伝導体、触媒、蓄電池材料などにおけるイオンの集団運動効果を数理科学により解き明かすことを領域目標としている。この実現に向けて、計画研究A03は高度な計測技術を複合的に活用することで、イオンの集団運動を捉えることを目的とする。A02より提供される高品質なモデル材料に対して、イオンが実際に流れる状態を創り出し、複数のプローブ・計測技術を組み合わせることでイオンダイナミクスを多角的に評価する(オペランドマルチモーダル計測)。
    以上の取り組みにより、これまで未解明であったイオン流を計測により明らかにし、さらに、理論家と材料合成研究者を巻き込んだ新たな研究の進め方を構築する。

    CiNii Research

  • 電気化学的二酸化炭素還元のための高機能電極の開拓

    Grant number:23KF0061  2023.4 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for JSPS Fellows

    山内 美穂, RABIEE HESAMODDIN

      More details

    Grant type:Scientific research funding

    CiNii Research

  • 電気化学的二酸化炭素還元のための高機能電極の開拓

    Grant number:22F22736  2022.11 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for JSPS Fellows

    山内 美穂, RABIEE HESAMODDIN

      More details

    Grant type:Scientific research funding

    CiNii Research

  • Pt族金属ナノ粒子の水素吸蔵

    Grant number:15915009  2003

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Encouragement of Scientists

      More details

    Grant type:Scientific research funding

  • Mg合金ナノ粒子の水素吸蔵特性

    Grant number:14915007  2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Encouragement of Scientists

      More details

    Grant type:Scientific research funding

Class subject

  • 無機化学特論ⅢB

    2023.12 - 2024.2   Winter quarter

  • 無機化学特論ⅢA

    2023.10 - 2023.12   Fall quarter

  • 身の回りの化学

    2023.6 - 2023.8   Summer quarter

  • 身の回りの化学

    2023.6 - 2023.8   Summer quarter

  • 身の回りの化学

    2023.4 - 2023.6   Spring quarter

▼display all

FD Participation

  • 2021.2   Role:Speech   Title:カーボンニュートラルに関する研究発表

    Organizer:[Undergraduate school/graduate school/graduate faculty]

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2024  東北大学材料科学高等研究所  Classification:Part-time faculty 

    Semester, Day Time or Duration:通年

Media Coverage

  • シュウ酸からグリコール酸、『世界初』連続合成装置開発、九大が成果、次世代燃料実用化期待 Newspaper, magazine

    2018.1

     More details

    シュウ酸からグリコール酸、『世界初』連続合成装置開発、九大が成果、次世代燃料実用化期待

  • 九大、電力のみを使ってシュウ酸からグリコール酸を連続的に合成する装置の開発に成功 Newspaper, magazine

    2017.12

     More details

    九大、電力のみを使ってシュウ酸からグリコール酸を連続的に合成する装置の開発に成功

  • グリコール酸の連続合成ー次世代燃料に期待ー Newspaper, magazine

    2017.12

     More details

    グリコール酸の連続合成ー次世代燃料に期待ー

  • 九大、再エネの電力をアルコール燃料として貯蔵、装置開発-電力のみでシュウ酸からグリコール酸を合成する固体高分子型合成装置- Newspaper, magazine

    2017.2

     More details

    九大、再エネの電力をアルコール燃料として貯蔵、装置開発-電力のみでシュウ酸からグリコール酸を合成する固体高分子型合成装置-