Updated on 2025/05/07

Information

 

写真a

 
HAMADA NORIYUKI
 
Organization
Institute of Mathematics for Industry Division of Fundamental mathematics Assistant Professor
Title
Assistant Professor
Contact information
メールアドレス
Profile
曲面の写像類群を用いて、4次元多様体のトポロジーを研究しています。4次元の空間を直接取り扱うことは難しいですが、シンプレクティック4次元多様体などの良いクラスは「曲面の族」として理解できることが知られています。さらに、こうした族は曲面の写像類群の言葉で簡潔に表現できます。このように、4次元多様体という抽象的な空間を、曲面という我々の直感が働く空間を通して研究しています。初等的な議論で様々な4次元多様体を構成できるため、位相不変量などに何か制限を与えたときにそれを満たすような4次元多様体が存在するかといった問題に主に取り組んでいます。
Homepage
External link

Research Areas

  • Natural Science / Geometry

Degree

  • PhD (Mathematical Science) (Kyushu University)

Research History

  • Kyushu University Institute of Mathematics for Industry Project Assistant Professor 

    2023.8 - Present

      More details

  • Keio University Faculty of Science and Technology Department of Mathematics Project Assistant Professor 

    2022.10 - 2023.7

      More details

    Country:Japan

    researchmap

  • University of Massachusetts Amherst Department of Mathematics and Statistics Visiting Assistant Professor 

    2017.9 - 2022.8

      More details

    Country:United States

    researchmap

  • Hokkaido University Global Institution for Collaborative Research and Education (GI-CoRE), Collaborative Center for Big data and IoT (CCB) Assistant Professor 

    2021.4 - 2022.8

      More details

    Country:Japan

    researchmap

  • 九州大学:2012年4月~2013年9月 東京大学:2013年10月~2017年8月 University of Massachusetts Amherst:2017年9月~2022年8月 慶應義塾大学:2022年10月~2023年7月   

Research Interests・Research Keywords

  • Research theme: 4-manifolds

    Keyword: 4-manifolds

    Research period: 2024

  • Research theme: Symplectic topology

    Keyword: Symplectic topology

    Research period: 2024

  • Research theme: Low-dimensional topology

    Keyword: Low-dimensional topology

    Research period: 2024

  • Research theme: Mapping class groups of surfaces

    Keyword: Mapping class groups of surfaces

    Research period: 2024

  • Research theme: Study of Lefschetz pencils on symplectic Calabi-Yau 4-manifolds

    Keyword: Lefschetz Pencils, Mapping Class Groups, Symplectic Topology

    Research period: 2023.8 - 2024.3

  • Research theme: Construction of exotic 4-manifolds via Lefschetz fibrations and pencils

    Keyword: Lefschetz Fibrations, Lefschetz Pencils, Mapping Class Groups, Symplectic Topology, Exotic 4-manifolds

    Research period: 2023.8 - 2024.3

  • Research theme: Study of sections of Lefschetz fibrations over the sphere

    Keyword: Lefschetz Fibrations, Lefschetz Pencils, Mapping Class Groups, Symplectic Topology

    Research period: 2023.8 - 2024.3

  • Research theme: Realization problem of signatures of Lefschetz fibrations over the sphere

    Keyword: Lefschetz Fibrations, Mapping Class Groups, Symplectic Topology, 4-manifolds, Signature

    Research period: 2023.8 - 2024.3

  • Research theme: Topological construction of Lefschetz pencils on the complex projective plane

    Keyword: Lefschetz Pencils, Mapping Class Groups, Symplectic Topology, Algebraic Surfaces

    Research period: 2023.8 - 2024.3

Papers

  • Lefschetz fibrations with arbitrary signature Reviewed International coauthorship International journal

    R. İnanç Baykur, Noriyuki Hamada

    Journal of the European Mathematical Society   26 ( 8 )   2837 - 2895   2024.6   ISSN:1435-9855 eISSN:1435-9863

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:European Mathematical Society - EMS - Publishing House GmbH  

    4次元トポロジーにおいて,レフシェッツファイブレーション構造をもつ4次元多様体の符号数は任意の値をとりうることを示した.応用として符号数0のエキゾチック4次元多様体の新たな例を体系的に構成した.

    DOI: 10.4171/jems/1326

    researchmap

    Repository Public URL: https://hdl.handle.net/2324/7183034

  • Classification of genus-1 holomorphic Lefschetz pencils Reviewed International journal

    Noriyuki HAMADA, Kenta HAYANO

    TURKISH JOURNAL OF MATHEMATICS   45 ( 3 )   1079 - 1119   2021.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3906/mat-2008-88

    Repository Public URL: https://hdl.handle.net/2324/7183031

  • Topology of holomorphic Lefschetz pencils on the four-torus Reviewed

    Noriyuki Hamada, Kenta Hayano

    Algebraic and Geometric Topology   18 ( 3 )   1515 - 1572   2018.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    © 2018, Mathematical Sciences Publishers. All rights reserved. We discuss topological properties of holomorphic Lefschetz pencils on the four-torus. Relying on the theory of moduli spaces of polarized abelian surfaces, we first prove that, under some mild assumptions, the (smooth) isomorphism class of a holomorphic Lefschetz pencil on the four-torus is uniquely determined by its genus and divisibility. We then explicitly give a system of vanishing cycles of the genus-3 holomorphic Lefschetz pencil on the four-torus due to Smith, and obtain those of holomorphic pencils with higher genera by taking finite unbranched coverings. One can also obtain the monodromy factorization associated with Smith’s pencil in a combinatorial way. This construction allows us to generalize Smith’s pencil to higher genera, which is a good source of pencils on the (topological) four-torus. As another application of the combinatorial construction, for any torus bundle over the torus with a section we construct a genus-3 Lefschetz pencil whose total space is homeomorphic to that of the given bundle.

    DOI: 10.2140/agt.2018.18.1515

    Repository Public URL: https://hdl.handle.net/2324/7183035

  • Nonholomorphic Lefschetz fibrations with (-1)-sections Reviewed International journal

    Noriyuki Hamada, Ryoma Kobayashi, Naoyuki Monden

    Pacific Journal of Mathematics   298 ( 2 )   375 - 398   2019.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    © 2019 Mathematical Sciences Publishers. We construct two types of nonholomorphic Lefschetz fibrations over S 2 with (-1)-sections-hence, they are fiber sum indecomposable-by giving the corresponding positive relators. One type of the two does not satisfy the slope inequality (a necessary condition for a fibration to be holomorphic) and has a simply connected total space, and the other has a total space that cannot admit any complex structure in the first place. These give an alternative existence proof for nonholomorphic Lefschetz pencils without Donaldson's theorem.

    DOI: 10.2140/pjm.2019.298.375

    Repository Public URL: https://hdl.handle.net/2324/7183029

  • Upper bounds for the minimal number of singular fibers in a Lefschetz fibration over the torus Reviewed International journal

    Noriyuki Hamada

    Michigan Mathematical Journal   63 ( 2 )   275 - 291   2014.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In this paper, we give some relations i. The mapping class groups of oriented closed surfaces i. The form that a product of a small number of right-hand Dehn twists is equal to a single commutator. Consequently, we find upper bounds fo. The minimal number of singular fibers in a Lefschetz fibration ove. The torus.

    DOI: 10.1307/mmj/1401973051

    Repository Public URL: https://hdl.handle.net/2324/7183027

Presentations

  • Exotic 4-manifolds with signature zero via mapping class group relations Invited

    Noriyuki Hamada

    Conference on “Topology related to Riemann surfaces”  2024.9  河澄響矢(東大数理), 田所勇樹(木更津高専), 久野雄介(津田塾大学), 佐藤正寿(東京電機大学)

     More details

    Event date: 2024.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:東京大学大学院数理科学研究科 大講義室   Country:Japan  

    researchmap

  • Exotic 4-manifolds with signature zero International conference

    Noriyuki Hamada

    The 19th East Asian Conference on Geometric Topology  2024.2 

     More details

    Event date: 2024.2

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:RIMS, Kyoto University, Japan   Country:Japan  

    researchmap

  • Signatures of Lefschetz fibrations and symplectic geography Invited International conference

    Noriyuki Hamada

    BOSTON UNIVERSITY/KEIO UNIVERSITY/TSINGHUA UNIVERSITY WORKSHOP 2022 Geometry and Mathematical Physics  2022.6 

     More details

    Event date: 2022.6 - 2022.7

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Boston University (Hybrid)   Country:United States  

    researchmap

  • 符号数0のシンプレクティック4次元多様体

    浜田 法行

    さくらセミナー2025  2025.3 

     More details

    Event date: 2025.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:鹿児島大学理学部1号館101   Country:Japan  

    researchmap

  • TBA Invited

    浜田 法行

    研究集会「接触構造、特異点、微分方程式及びその周辺」  2025.1  世話人:大場 貴裕 (大阪大学)、小川 竜 (東海大学)、門上 晃久 (金沢大学)、森 淳秀 (大阪歯科大学)

     More details

    Event date: 2025.1

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:金沢大学駅前サテライト 3階   Country:Japan  

    researchmap

  • Exotic 4-manifolds via fibration structures Invited

    Noriyuki Hamada

    Geometry and Topology 2024  2024.10  組織委員 池 祐一, 笹平 裕史(九州大学)

     More details

    Event date: 2024.10

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:九州大学 数理学研究院 W1-D-413 (ウエスト1号館D棟4階)   Country:Japan  

    researchmap

  • Exotic 4-manifolds with signature zero Invited

    浜田 法行

    Algebraic Geometry, Topology, Combinatorics and Related Topics 2024  2024.3 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大阪大学 理学部   Country:Japan  

  • Exotic 4-manifolds with signature zero Invited

    Noriyuki Hamada

    Algebraic Geometry, Topology, Combinatorics and Related Topics 2024  2024.3  協力(Scientific Committee): 石川昌治(慶応大学),佐伯修(九州大学),作間誠(広島大学), 島田伊知朗(広島大学),徳永浩雄(都立大学) 世話人: 白根竹人(徳島大学),坂内真三(岡山理科大学),吉永正彦(大阪大学)

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:大阪大学 理学部 E棟 404(豊中キャンパス)   Country:Japan  

    researchmap

  • Exotic 4-manifolds with signature zero International conference

    Noriyuki Hamada

    The 19th East Asian Conference on Geometric Topology  2024.2 

     More details

    Event date: 2024.2

    Language:English   Presentation type:Oral presentation (general)  

    Venue:RIMS, Kyoto University   Country:Japan  

  • Exotic 4-manifolds with signature zero via Lefschetz fibrations

    浜田 法行

    研究集会「4次元トポロジー」  2023.11 

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大阪大学 理学研究科   Country:Japan  

  • Exotic 4-manifolds with signature zero via Lefschetz fibrations

    Noriyuki Hamada

    Four Dimensional Topology  2023.11  世話人:鎌田聖一、安井弘一、大場貴裕 組織委員:上正明、鎌田聖一、河内明夫、古田幹雄、松本幸夫

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大阪大学理学研究科 E棟4階 E404教室   Country:Japan  

    researchmap

  • Lefschetz fibrations and exotic 4-manifolds with signature zero

    浜田 法行

    九州大学トポロジー金曜セミナー  2023.10 

     More details

    Event date: 2023.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:九州大学   Country:Japan  

  • Lefschetz fibrations and pencils with signature zero

    Noriyuki Hamada

    Manifolds and Singularities  2022.5  世話人: 奥田喬之(工学院大学), 浜田法行(マサチューセッツ大学アマースト校), 溝田裕介(九州産業大学), 山本稔(弘前大学)

     More details

    Event date: 2022.5

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Zoomでのオンライン配信   Country:Japan  

    researchmap

  • Lefschetz fibrations and exotic 4-manifolds with signature zero Invited

    Noriyuki Hamada

    Topology Friday Seminar, Kyushu University  2023.10 

     More details

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:九州大学 数理学研究院   Country:Japan  

    researchmap

  • Signatures of Lefschetz fibrations and symplectic geography Invited

    Noriyuki Hamada

    Geometry Colloquium, Hokkaido University  2022.10 

     More details

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:北海道大学理学部   Country:Japan  

    researchmap

  • Exotic 4-manifolds with signature zero Invited

    Noriyuki Hamada

    Tuesday Seminar on Topology, University of Tokyo  2024.5  河澄響矢, 北山貴裕, 逆井卓也, 葉廣 和夫

     More details

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:東京大学数理科学研究科(オンライン開催)   Country:Japan  

    researchmap

▼display all

MISC

  • Exotic 4-manifolds with signature zero

    R. Inanc Baykur, Noriyuki Hamada

    2023.5

     More details

    We produce infinitely many distinct irreducible smooth 4-manifolds
    homeomorphic to #(2m+1)(CP^2 # -CP^2) and #(2n+1)(S^2 x S^2), respectively, for
    each m>3 and n>4. These provide the smallest exotic closed simply-connected
    4-manifolds with signature zero known to date, and in each one of these
    homeomorphism classes, we get minimal symplectic 4-manifolds. Our novel exotic
    4-manifolds are derived from fairly special small Lefschetz fibrations we build
    via positive factorizations in the mapping class group, with spin and non-spin
    monodromies, and we explain how such models can be employed effectively in
    general to construct symplectic 4-manifolds with trivial or cyclic fundamental
    groups.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2305.10908v1

  • Exotic 4-manifolds with signature zero via mapping class group relations Invited

    Noriyuki Hamada

    リーマン面に関連する位相幾何学 2024 予稿集   100 - 105   2024.9

     More details

    Language:Japanese   Publishing type:Lecture material (seminar, tutorial, course, lecture, etc.)  

    researchmap

Professional Memberships

  • The Mathematical Society of Japan

    2013.4 - Present

      More details

Committee Memberships

  • Topology Friday Seminar, Kyushu University   Organizer  

    2023.11 - Present   

      More details

  • 17th International Workshop on Real and Complex Singularities   Organizing Committee  

    2021.10 - 2022.7   

      More details

  • Geometry and Topology Seminar, University of Massachusetts Amherst   Organizer  

    2018.9 - 2022.8   

      More details

  • Manifolds and Singularities   Organizing Committee  

    2021.10 - 2022.5   

      More details

Academic Activities

  • 17th International Workshop on Real and Complex Singularities

    Role(s): Planning, management, etc.

    ( Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Campus São Carlos ) 2022.7

     More details

    Type:Academic society, research group, etc. 

    Served as a member of the Organizing Committee.

    researchmap

  • Manifolds and Singularities

    Role(s): Planning, management, etc.

    奥田喬之, 浜田法行, 溝田裕介, 山本稔  2022.5

     More details

    Type:Academic society, research group, etc. 

    researchmap

  • The Journal of the London Mathematical Society International contribution

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    researchmap

  • Contemporary Mathematics International contribution

    Role(s): Peer review

    2015

     More details

    Type:Peer review 

    researchmap

Research Projects

Class subject

  • フーリエ解析と偏微分方程式

    2023.10 - 2024.3   Second semester

  • フーリエ・ラプラス変換と偏微分方程式

    2023.10 - 2024.3   Second semester

  • 複素関数論

    2023.10 - 2024.3   Second semester

  • 複素関数論(機械Bクラス・航空宇宙)

    2023.10 - 2024.3   Second semester

FD Participation

  • 2024.7   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2024.4   Role:Participation   Title:令和6年度 第1回全学FD(新任教員の研修)The 1st All-University FD (training for new faculty members) in FY2024

    Organizer:University-wide

  • 2024.4   Role:Participation   Title:数理学府FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2024.4   Role:Participation   Title:令和6年度 第1回全学FD(新任教員の研修)The 1st All-University FD (training for new faculty members) in FY2024

    Organizer:University-wide

  • 2024.3   Role:Participation   Title:【オンデマンド開催】大学教職員職能開発FD 「⽣成AIを大学の教育・学習・業務にどのように組み込むか?-第一弾 生成AIを使った授業デザイン支援のアイデア-」

Travel Abroad

  • 2017.9 - 2022.8

    Staying countory name 1:United States   Staying institution name 1:University of Massachusetts Amherst

  • 2012.7 - 2012.12

    Staying countory name 1:United States   Staying institution name 1:Michigan State University