2025/11/04 更新

お知らせ

 

写真a

ウシマル リイチロウ
牛丸 理一郎
USHIMARU RICHIRO
所属
高等研究院 准教授
理学部 化学科(併任)
理学府 化学専攻(併任)
職名
准教授

論文

  • Biosynthesis of the Thiofuranose Core in Albomycin Requires a Versatile Enzyme AbmG That Catalyzes Net Dehydration via Cryptic Phosphorylation

    Zheng, ZY; Ushimaru, R; Mori, T; Ruszczycky, MW; Abe, I; Liu, HW

    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY   147 ( 37 )   34143 - 34149   2025年9月   ISSN:0002-7863 eISSN:1520-5126

     詳細を見る

    記述言語:英語   出版者・発行元:Journal of the American Chemical Society  

    Albomycins are unusual sulfur-containing nucleosides from the species of Streptomyces that exhibit potent antibiotic activities against both Gram-negative and Gram-positive bacteria including clinical pathogens. Previous studies demonstrated that the twitch radical SAM enzyme AbmM catalyzes an oxidative sulfur-for-oxygen swapping reaction converting CDP to a 4'-hydroxy-4'-thiocytidine 5'-diphosphate intermediate in the initial step of albomycin biosynthesis. However, the fate of this intermediate in the biosynthetic pathway has remained elusive. Herein, the above intermediate after 5'-dephosphorylation is shown to undergo AbmG-catalyzed transformations via a cryptic double phosphorylation of its 4'-hydroxyl group followed by C-O bond cleavage to yield 5'-oxo-4'-thiocytidine. X-ray crystal structure analysis and site-directed mutagenesis of AbmG revealed Glu188 as the general base to perform C5' deprotonation. Subsequent mechanistic studies using deuterated substrates demonstrated that the deprotonation at C5' is pro-R specific and likely occurs concerted with elimination of pyrophosphate from C4'. This study not only highlights a unique nucleoside kinase with lyase activity to complete an overall dehydration reaction but also fills the gaps in the biosynthesis of the atypical thiofuranose core essential to the biological activities of albomycins.

    DOI: 10.1021/jacs.5c12827

    Web of Science

    Scopus

    PubMed

  • Radical Propagation via σ-Cleavage Mediates Radical SAM Catalyzed Sulfur-for-Oxygen Swapping Reaction during the Biosynthesis of Albomycin δ<sub>2</sub>

    Zheng, ZY; Ushimaru, R; Thomas, CM; Liu, HW

    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY   147 ( 35 )   32118 - 32123   2025年9月   ISSN:0002-7863 eISSN:1520-5126

     詳細を見る

    記述言語:英語   出版者・発行元:Journal of the American Chemical Society  

    AbmM is a radical S-adenosyl l-methionine (SAM) enzyme that catalyzes a radical initiated sulfur-for-oxygen swapping reaction, transforming the furanose ring of cytidine diphosphate (CDP) to a 4′-hydroxy-4′-thiofuranose product. While the function of AbmM has been demonstrated, the underlying mechanism regarding the formation of the radical intermediates during the reaction pathway remains to be fully established. To gain additional insight into this vital step in the biosynthesis of albomycin δ<inf>2</inf>, 2′-deoxy-2′-methylidene CDP was synthesized as a mechanistic probe. Upon incubation with AbmM and dithionite, a C1′ radical intermediate is generated from this mechanistic probe in the form of an allylic radical that can be trapped via oxidation to a sulfinate or a sulfenate versus reduction. Moreover, incubation of 2′-deoxy-2′-spirocyclopropryl CDP with AbmM also leads to a C1′ radical intermediate that triggers opening of the cyclopropane ring. In this case, however, the resulting C7′ terminal radical is not directly quenched but instead adds to the C5═C6 double bond of the cytosine base to form a new C7′–C6 bond. Taken together, these studies establish the intermediacy of a C1′ radical species and thus suggest radical propagation from the C4′ radical to the C1′ radical through cleavage of the C1′–O bond prior to the sulfur insertion step during the AbmM-catalyzed reaction.

    DOI: 10.1021/jacs.5c10855

    Web of Science

    Scopus

    PubMed

  • Biosynthesis of guanidine-containing natural products in cyanobacteria.

    Zhang W, Ushimaru R

    Journal of industrial microbiology & biotechnology   52   2025年7月   ISSN:1367-5435 eISSN:1476-5535

     詳細を見る

    記述言語:英語   出版者・発行元:Journal of Industrial Microbiology and Biotechnology  

    Cyanobacteria are prolific producers of structurally diverse and biologically potent natural products, a subset of which feature guanidino moieties. Introduction and modification of the guanidine group confer tuned basicity and enable extensive hydrogen bonding, cation–π, and electrostatic interactions, facilitating high-affinity binding to numerous biological targets. Although the enzymatic processes responsible for guanidine modifications in cyanobacterial pathways remain somewhat obscure, recent investigations have begun to clarify the biosynthetic machinery that mediates these distinctive transformations. In this review, we summarize these advances, with particular emphasis on the enzymatic steps responsible for guanidine installation and tailoring. These enzymatic transformations include N-prenylation, cyclization, and tricyclic guanidinium formation, representing rare or previously undescribed biosynthetic strategies in nature. This review provides new insights into the metabolic and enzymatic versatility of cyanobacteria and a foundation for future advances in enzyme engineering and therapeutic discovery. One-Sentence Summary: This review highlights recent advances in understanding how cyanobacteria enzymatically install and modify guanidino groups to produce bioactive natural products.

    DOI: 10.1093/jimb/kuaf024

    Web of Science

    Scopus

    PubMed

  • Radical <i>S</i>-adenosyl-<sc>l</sc>-methionine FeS cluster implicated as the sulfur donor during albomycin biosynthesis

    Ushimaru, R; Zheng, ZY; Xiong, J; Mori, T; Abe, I; Guo, YS; Liu, HW

    NATURE CATALYSIS   8 ( 8 )   760 - 770   2025年7月   ISSN:2520-1158

     詳細を見る

    記述言語:英語   出版者・発行元:Nature Catalysis  

    Carbon–sulfur bond-forming reactions in natural product biosynthesis largely involve Lewis acid/base chemistry with relatively few examples catalysed by radical S-adenosyl-l-methionine (SAM) enzymes. The latter have been limited to radical-mediated sulfur insertion into carbon–hydrogen bonds with the sulfur atom originating from a sacrificial auxiliary iron–sulfur cluster. Here we show that the radical SAM enzyme AbmM encoded in the albomycin biosynthetic gene cluster catalyses a sulfur-for-oxygen swapping reaction, transforming the furanose ring of cytidine 5′-diphosphate to a thiofuranose moiety that is essential for the antibacterial activity of albomycin δ<inf>2</inf>. Thus, in addition to its canonical function of mediating the reductive cleavage of SAM, the radical SAM catalytic cluster of AbmM appears to play a role in providing the sulfur introduced during the AbmM-catalysed reaction. These discoveries not only establish the origin of the thiofuranose core in albomycin δ<inf>2</inf> but, more importantly, also emphasize the functional diversity of radical SAM catalysis. (Figure presented.)

    DOI: 10.1038/s41929-025-01367-w

    Web of Science

    Scopus

    PubMed

  • Nitrogen-centered radicals driving unusual enzyme reactions in biosynthetic pathways

    Ushimaru, R; Abe, I

    CHEMICAL SOCIETY REVIEWS   54 ( 13 )   6385 - 6411   2025年6月   ISSN:0306-0012 eISSN:1460-4744

     詳細を見る

    記述言語:英語   出版者・発行元:Chemical Society Reviews  

    Nitrogen-centered radicals have emerged as versatile intermediates in natural product biosynthesis, playing pivotal roles in complex bond-forming and rearrangement reactions—including fragmentations, cyclizations, and dimerizations. These transformations enable the efficient construction of structurally intricate alkaloids, amino acids, cofactors, and other scaffolds that are often inaccessible via classical polar mechanisms. This review provides an overview of the enzymatic systems discovered and characterized over the past decade that harness nitrogen-centered radicals to mediate diverse biological transformations. Emphasis is placed on the enzymatic strategies for generating and precisely controlling these reactive species, with detailed discussions of their underlying mechanisms. These insights underscore the expanding role of nitrogen radical chemistry in biology and highlight its potential in the development of new biocatalytic platforms for synthetically challenging transformations.

    DOI: 10.1039/d5cs00342c

    Web of Science

    Scopus

    PubMed

  • Pyrroline Ring Assembly via N-Prenylation and Oxidative Carbocyclization during Biosynthesis of Aeruginosin Derivatives

    Zhang, WH; Ushimaru, R; Kanaida, M; Abe, I

    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY   147 ( 13 )   10853 - 10858   2025年3月   ISSN:0002-7863 eISSN:1520-5126

     詳細を見る

    記述言語:英語   出版者・発行元:Journal of the American Chemical Society  

    Aeruginosins are linear peptide natural products isolated from cyanobacteria and contain various arginine derivatives at their termini. 1-Amino-2-(N-amidino-3-Δ3-pyrrolinyl)ethane (Aeap) is a structurally unique arginine derivative, as it has an unusual pyrroline ring with two additional carbon atoms of unknown biosynthetic origin. Here, we demonstrate that Aer3, a member of a newly identified subfamily of prenyltransferases, catalyzes selective isopentenylation of the internal N atom of agmatine. Rieske oxygenase AerC then catalyzes both carbocyclization and C-C bond cleavage to construct the pyrroline ring in Aeap. This pyrroline ring formation in Aeap biosynthesis, involving two novel enzymes, represents a unique route for heterocycle formation in nature.

    DOI: 10.1021/jacs.5c01994

    Web of Science

    Scopus

    PubMed

  • Structure-function analysis of 2-sulfamoylacetic acid synthase in altemicidin biosynthesis(タイトル和訳中)

    Mori Takahiro, Sakurada Kosuke, Awakawa Takayoshi, He Haibin, Ushimaru Richiro, Abe Ikuro

    The Journal of Antibiotics   78 ( 3 )   149 - 158   2025年3月   ISSN:0021-8820

     詳細を見る

    記述言語:英語   出版者・発行元:Nature Publishing Group  

    アルテミシジンの生合成に関与する酵素SbzJは、2-スルファモイル酢酸アルデヒドを酸化して2-スルファモイル酢酸へと変換するアルデヒドデヒドロゲナーゼである。本研究では、SbzJの結晶構造解析、基質特異性試験、変異導入実験を行い、触媒機構とスルホンアミド基の認識機構を明らかにした。SbzJは多様なアルデヒド基質と補酵素(NAD+/NADP+)を受容し、触媒残基Cys273の活性化にはHis431とGlu240が重要な役割を果たしていた。Tyr148などがスルホンアミド基との水素結合に寄与していた。

▼全件表示

講演・口頭発表等

MISC

共同研究・競争的資金等の研究課題

  • 新規リン酸アミド含有天然物の生合成経路の探索と解明

    研究課題/領域番号:25K02417  2025年4月 - 2028年3月

    科学研究費助成事業  基盤研究(B)

    牛丸 理一郎

      詳細を見る

    資金種別:科研費

    リン酸含有化合物は様々な生物活性を示す重要な化合物群である。本研究では、これらのリン酸アミド天然物の生合成経路を明らかにするため、各生合成遺伝子クラスターを同定し酵素触媒機能解析を行う。さらにはリン酸アミド形成酵素群の立体構造基盤に基づき酵素機能を拡張することにより、非天然型リン酸アミド類縁体の創出、構造多様性の拡大を実現する。

    CiNii Research

  • 酵素的硫黄挿入反応による糖分子リプログラミング

    研究課題/領域番号:25H02006  2025年4月 - 2027年3月

    科学研究費助成事業  学術変革領域研究(A)

    牛丸 理一郎

      詳細を見る

    資金種別:科研費

    糖は核酸、細胞外マトリックス、多糖などさまざまな生体分子に含まれており、多様な生物活性や物理化学的性質を示すため、医薬品やバイオマテリアルとして極めて重要な分子群である。糖分子への硫黄原子の導入は、優れた生物活性や化学特性を付与する有力な手段であるにもかかわらず、短工程かつ効率的な合成手法はこれまで開発されていない。本研究では糖分子への直接的な硫黄挿入反応を触媒する構造機能解析を行い、硫黄原子挿入反応の詳細な触媒機構を解明する。さらには酵素工学的手法を用いて、既存の承認医薬品を含むさまざまなヌクレオシドやグリコシド分子における酸素-硫黄直接原子置換を可能にする改変型生体触媒の創出を目指す。

    CiNii Research

  • 炭素-硫黄結合形成酵素における鉄硫黄クラスターの硫黄供与機能と再構築機構の解明

    研究課題/領域番号:24H01309  2024年4月 - 2026年3月

    科学研究費助成事業  学術変革領域研究(A)

    牛丸 理一郎

      詳細を見る

    資金種別:科研費

    硫黄含有物質は硫黄元素特有の化学的性質により多様な構造と機能をもち、特に微生物由来の硫黄含有二次代謝物は動物や植物の硫黄代謝物と比べて格段に高い構造多様性を示す。最大の金属タンパク質スーパーファミリーであるラジカル S-アデノシルメチオニン (SAM) 酵素群に分類される一部の代謝酵素は自身に結合する鉄硫黄クラスターを硫黄源として有機硫黄代謝物を生成することが知られている。本研究では微生物二次代謝経路におけるラジカルSAM酵素の生化学的解析を行い、硫黄含有二次代謝物生産機構の解明を目指す。

    CiNii Research

  • 酵素機能発掘と合成生物学による次世代型物質生産系の構築

    研究課題/領域番号:22H05123  2022年6月 - 2027年3月

    科学研究費助成事業  学術変革領域研究(A)

    淡川 孝義, 牛丸 理一郎

      詳細を見る

    資金種別:科研費

    AI を用いたゲノム情報からの酵素探索のための情報を集積し、有用酵素探索、変異酵素創出のために重要な知見を提供する。特にαKG依存性酸化酵素、Cupin酸化酵素、PLP依存性酵素、膜結合型P450酸化酵素に注目して、その精密反応解析を行う。また、ラジカルSAM酸化酵素など、嫌気性であるため、反応解析、構造解析が進んでいない酵素群の解析も候補に入れる。それぞれの反応過程での反応中間体にリガンドや変異を加えることで新規反応性の付与を行い、新規生合成酵素反応の発掘および創出を目指す。また、これらを微生物など醗酵生産の宿主に導入することで、反応スケールの向上、産業レベルでの物質生産へとつなげる。

    CiNii Research