


Yu Hoshino | Last modified date:2020.07.26 |

Associate Professor /
Molecular System and Biosystem Engineering,
Department of Chemical Engineering
Faculty of Engineering
Department of Chemical Engineering
Faculty of Engineering
Graduate School
Undergraduate School
E-Mail *Since the e-mail address is not displayed in Internet Explorer, please use another web browser:Google Chrome, safari.
Homepage
https://kyushu-u.pure.elsevier.com/en/persons/yu-hoshino
Reseacher Profiling Tool Kyushu University Pure
http://hyoka.ofc.kyushu-u.ac.jp/search/details/K003810/research.html
Phone
092-802-2759
Fax
092-802-2769
Academic Degree
Ph. D
Field of Specialization
Biomolecular Engineering, Protein Science, Polymer Science, Molecular Recognition, Colloid & Surface Chemistry
Total Priod of education and research career in the foreign country
04years06months
Outline Activities
We have been developing general procedures to create synthetic nano materials, that function as antibody and enzymes, from inexpensive and stable acrylic monomers.
1, Development of Plastic Antibodies
General procedures for the creation of synthetic nanoparticles with biomacromolecular recognition sites are of significant interest as a route to stable, robust, and mass-produced substitutes for antibodies. Ideally, recognition of complex biological targets, including proteins, peptides, and carbohydrates, requires multiple functional groups that contact target molecules by a combination of electrostatic, hydrogen-bonding, van der Waals, and/or hydrophobic interactions. We have shown that copolymerization of optimized combination and ratio of functional acrylic-monomers creates synthetic polymer materials with molecular recognition sites for peptides and proteins. In addition to optimizing functional complementarity, the affinity sites can be further enhanced by molecular imprinting and/or affinity purification process. Those particles are capable of recognizing, neutralizing, and clearing toxic peptide and proteins even in the bloodstream of living animals. However, in contrast to antibodies whose exact sequence can be determined and cloned, polymerized materials result in heterogeneous structures with a distribution of recognition sites. Our goal is to achieve general strategy to create plastic antibodies with uniform molecular structure as "monoclonal plastic antibodies".
2, Development of Plastic Enzymes
Life is a dissipate structure appears in the non-equilibrium open system. To maintain the structure, enzymes mediates most reactions in the body including molecular transportation, energy conversion and molecular conversion that are necessarily for the life. To keep the life alive, it is important for the each enzyme to recognize and bind to specific molecules and ions and catalyze specific reaction just in time. It is also very important to control binding and dissociating kinetics to keep the dissipate structure.
One of the challenges for us is to construct synthetic molecular system like living life. So far, we found that target binding and dissociation kinetics of nanoparticles can be tuned by conformation change and polymer density of the particles. Binding constant to target proteins and ions can be reversibly switched on/off by temperature-induced phase transition of the polymer chains. By applying the fundamental findings, we are trying to develop inexpensive and scalable chemical process for the conversion of low temperature waste heat in to reusable chemical potential.
(References)
(1) PNAS 109 (1), 33-38, 2012
(2) JACS 134, 15765-15772, 2012
(3) JACS 130, 15242-15243, 2008
(4) JACS 132, 13648-13650, 2010
(5) JACS 136, 1194-1197, 2014
(6) JACS 132, 6644-6645, 2010
(7) JACS 137, 10878-10881, 2015
(8) Angew. Chem. Intl Ed. 51, 2405-2408, 2012
(9) JACS 134, 15209-15212, 2012
(10) Biomacromolecules 15, 541–547, 2014
(11) JACS 138, 4282-4285, 2016
(12) Biomacromolecules,16, 411–421, 2015
(13) Advanced Materials 26, 2449–2606, 2014
(14) JACS 134, 18177-18180, 2012
(15) Chem. Sci. 6, 6112, 2015
(16) Angew. Chem. Intl Ed. 53, 2654–2657, 2014
1, Development of Plastic Antibodies
General procedures for the creation of synthetic nanoparticles with biomacromolecular recognition sites are of significant interest as a route to stable, robust, and mass-produced substitutes for antibodies. Ideally, recognition of complex biological targets, including proteins, peptides, and carbohydrates, requires multiple functional groups that contact target molecules by a combination of electrostatic, hydrogen-bonding, van der Waals, and/or hydrophobic interactions. We have shown that copolymerization of optimized combination and ratio of functional acrylic-monomers creates synthetic polymer materials with molecular recognition sites for peptides and proteins. In addition to optimizing functional complementarity, the affinity sites can be further enhanced by molecular imprinting and/or affinity purification process. Those particles are capable of recognizing, neutralizing, and clearing toxic peptide and proteins even in the bloodstream of living animals. However, in contrast to antibodies whose exact sequence can be determined and cloned, polymerized materials result in heterogeneous structures with a distribution of recognition sites. Our goal is to achieve general strategy to create plastic antibodies with uniform molecular structure as "monoclonal plastic antibodies".
2, Development of Plastic Enzymes
Life is a dissipate structure appears in the non-equilibrium open system. To maintain the structure, enzymes mediates most reactions in the body including molecular transportation, energy conversion and molecular conversion that are necessarily for the life. To keep the life alive, it is important for the each enzyme to recognize and bind to specific molecules and ions and catalyze specific reaction just in time. It is also very important to control binding and dissociating kinetics to keep the dissipate structure.
One of the challenges for us is to construct synthetic molecular system like living life. So far, we found that target binding and dissociation kinetics of nanoparticles can be tuned by conformation change and polymer density of the particles. Binding constant to target proteins and ions can be reversibly switched on/off by temperature-induced phase transition of the polymer chains. By applying the fundamental findings, we are trying to develop inexpensive and scalable chemical process for the conversion of low temperature waste heat in to reusable chemical potential.
(References)
(1) PNAS 109 (1), 33-38, 2012
(2) JACS 134, 15765-15772, 2012
(3) JACS 130, 15242-15243, 2008
(4) JACS 132, 13648-13650, 2010
(5) JACS 136, 1194-1197, 2014
(6) JACS 132, 6644-6645, 2010
(7) JACS 137, 10878-10881, 2015
(8) Angew. Chem. Intl Ed. 51, 2405-2408, 2012
(9) JACS 134, 15209-15212, 2012
(10) Biomacromolecules 15, 541–547, 2014
(11) JACS 138, 4282-4285, 2016
(12) Biomacromolecules,16, 411–421, 2015
(13) Advanced Materials 26, 2449–2606, 2014
(14) JACS 134, 18177-18180, 2012
(15) Chem. Sci. 6, 6112, 2015
(16) Angew. Chem. Intl Ed. 53, 2654–2657, 2014
Research
Research Interests
Membership in Academic Society
- Preparation of homogeneous oligomer library and development of their bio-application
keyword : homogeneous oligomer
2019.04. - Development of CO2 Separation Membranes
keyword : CO2
2014.04. - Development of protein separation media
keyword : Synthetic Polymer, Moleculr Recognition, Antibody
2006.06. - Development of Materials for Heat Energy Transduction
keyword : Heat Energy Transduction
2011.04. - Development of Energy Efficient CO2 Adsorbent
keyword : CO2
2011.04. - Development of Plastic Antibodies
keyword : Synthetic Polymer, Moleculr Recognition, Antibody
2006.06.
Papers
1. | Yu Hoshino, Shohei Taniguchi,Hinata Takimoto, Sotaro Akashi, Sho Katakami, Yusuke Yonamine, Yoshiko Miura, Homogeneous Oligomeric Ligands Prepared via Radical Polymerization thatRecognize and Neutralize a Target Peptide, Angew. Chem. Int. Ed, doi.org/10.1002/anie.201910558, 132, 689-693, 2020.02, Abiotic ligands that bind to specific biomolecules have attracted attention as substitutes for biomolecular ligands, such as antibodies and aptamers. Radical polymerization enables the production of robust polymeric ligands from inexpensive functional monomers. However, little has been reported about the production of monodispersed polymeric ligands. Herein, we present homogeneous ligands prepared via radical polymerization that recognize epitope sequences on a target peptide and neutralize the toxicity of the peptide. Taking advantage of controlled radical polymerization and separation, a library of multifunctional oligomers with discrete numbers of functional groups was prepared. Affinity screening revealed that the sequence specificity of the oligomer ligands strongly depended on the number of functional groups. The process reported here will become a general step for the development of abiotic ligands that recognize specific peptide sequences.. |
2. | Yu Hoshino,Mitsunori Moribe, Naoki Gondo, Toshiki Jibiki, Masahiko Nakamoto, BenshuaiGuo, Rinoka Adachi, Yoshiko Miura, Combining Acid- and Base-Imprinted Nanoparticles in a Hydrogel Film forTemperature-Responsive Quick and Reversible Capture of Salt, ACS Appl. Polym. Mater, doi.org/10.1021/acsapm.9b00940, 2, 505-514, 2020.02. |
3. | Yida Liu, Takashi Kodama, Taisuke Kojima, Ikuo Taniguchi, Hirokazu Seto, Yoshiko Miura, Yu Hoshino, Fine-tuning of the surface porosity of micropatterned polyethersulfonemembranes prepared by phase separation micromolding, Polymer J, doi.org/10.1038/s41428-019-0298-9, 52, 397-403, 2020.01. |
4. | Jubao Gao, Yu Hoshino, Gen Inoue, Honeycomb-carbon-fiber-supported amine-containing nanogel particles forCO2 capture using a rotating column TVSA, Chemical Engineering Journal, doi.org/10.1016/j.cej.2019.123123, 383, 123, 2019.06. |
5. | Nagao,M., Matsubara, T., Hoshino, Y., Sato, T., Miura, Y., Synthesis of Various Glycopolymers Bearing Sialyllactose and the Effectof Their Molecular Mobility on Interaction with the Influenza Virus., Biomacromolecules, doi.org/10.1021/acs.biomac.9b00515, 20, 2763-2769, 2019.06. |
6. | Oh, T. Jono, K. Kimoto, Y. Hoshino, Y. Miura, Y. , Preparation of multifunctional glycopolymers using double orthogonal reactionsand the effect of electrostatic groups on the glycopolymer–lectin interaction, Polymer Journal, doi.org/10.1038/s41428-019-0244-x, 51, 1299-1308, 2019.03. |
7. | Nagao, M. Hoshino,Y. Miura, Y., Quantitative preparation of multiblock glycopolymers bearing glycounitsat the terminal segments by aqueous reversible addition–fragmentation chaintransfer polymerization of acrylamide monomers, Journal of Polymer Science, Doi:10.1002/pola.29344, 57, 857-861, 2019.03, [URL]. |
8. | Koide, H. Yoshimatsu, K. Hoshino, Y. Ariizumi, S. Okishima,A. Ide, T. Egami, H. Hamashima, Y. Nishimura, Y. Kanazawa, H. Miura, Y.Asai, T. Oku, N. Shea, K.J., Sequestering and inhibiting a vascular endothelial growth factorin vivo by systemic administration of a synthetic polymer nanoparticle , Journal of Controlled Release, Doi: 10.1016/j.jconrel.2018.12.033, 295, 13-20, 2019.02, [URL]. |
9. | Masanori Nagao, Teruhiko Matsubara,Yu Hoshino, Toshinori Sato, and Yoshiko Miura, Topological Design of Star Glycopolymers for Controlling the Interactionwith the Influenza Virus, Bioconjugate Chemistry, 10.1021/acs.bioconjchem.9b00134, 30, 1192-1198, 2019.03. |
10. | Anna Okishima, Hiroyuki Koide, Yu Hoshino, Hiromichi Egami, Yoshitaka Hamashima, Naoto Oku, Tomohiro Asai, Design of Synthetic Polymer Nanoparticles Specifically Capturing Indole, a Small Toxic Molecule, Biomacromolecules, 10.1021/acs.biomac.8b01820, 20, 4, 1644-1654, 2019.04. |
11. | Hiroyuki Koide, Keiichi Yoshimatsu, Yu Hoshino, Saki Ariizumi, Anna Okishima, Takafumi Ide, Hiromichi Egami, Yoshitaka Hamashima, Yuri Nishimura, Hiroaki Kanazawa, Yoshiko Miura, Tomohiro Asai, Naoto Oku, Kenneth J. Shea, Sequestering and inhibiting a vascular endothelial growth factor in vivo by systemic administration of a synthetic polymer nanoparticle, Journal of Controlled Release, 10.1016/j.jconrel.2018.12.033, 295, 13-20, 2019.02. |
12. | Kotaro Hiramatsu, Takuro Ideguchi, Yusuke Yonamine, Sang Wook Lee, Yizhi Luo, Kazuki Hashimoto, Takuro Ito, Misa Hase, Jee Woong Park, Yusuke Kasai, Shinya Sakuma, Takeshi Hayakawa, Fumihito Arai, Yu Hoshino, Keisuke Goda, High-throughput label-free molecular fingerprinting flow cytometry, Science Advances, 10.1126/sciadv.aau0241, 5, 1, 2019.01. |
13. | Nao Nitta, Takeaki Sugimura, Akihiro Isozaki, Hideharu Mikami, Kei Hiraki, Shinya Sakuma, Takanori Iino, Fumihito Arai, Taichiro Endo, Yasuhiro Fujiwaki, Hideya Fukuzawa, Misa Hase, Takeshi Hayakawa, Kotaro Hiramatsu, Yu Hoshino, Mary Inaba, Takuro Ito, Hiroshi Karakawa, Yusuke Kasai, Kenichi Koizumi, Sang Wook Lee, Cheng Lei, Ming Li, Takanori Maeno, Satoshi Matsusaka, Daichi Murakami, Atsuhiro Nakagawa, Yusuke Oguchi, Minoru Oikawa, Tadataka Ota, Kiyotaka Shiba, Hirofumi Shintaku, Yoshitaka Shirasaki, Kanako Suga, Yuta Suzuki, Nobutake Suzuki, Yo Tanaka, Hiroshi Tezuka, Chihana Toyokawa, Yaxiaer Yalikun, Makoto Yamada, Mai Yamagishi, Takashi Yamano, Atsushi Yasumoto, Yutaka Yatomi, Masayuki Yazawa, Dino Di Carlo, Yoichiroh Hosokawa, Sotaro Uemura, Yasuyuki Ozeki, Keisuke Goda, Intelligent Image-Activated Cell Sorting, Cell, 10.1016/j.cell.2018.08.028, 175, 1, 266-276.e13, 2018.09, A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machinebased scientific discovery in biological, pharmaceutical, and medical sciences.. |
14. | Yu Hoshino, Toshiki Jibiki, Masahiko Nakamoto, Yoshiko Miura, Reversible p Ka Modulation of Carboxylic Acids in Temperature-Responsive Nanoparticles through Imprinted Electrostatic Interactions, ACS Applied Materials and Interfaces, 10.1021/acsami.8b11397, 10, 37, 31096-31105, 2018.09. |
15. | Xinnan Cui, Tatsuya Murakami, Yukihiko Tamura, Kazuhiro Aoki, Yu Hoshino, Yoshiko Miura, Bacterial Inhibition and Osteoblast Adhesion on Ti Alloy Surfaces Modified by Poly(PEGMA- r-Phosmer) Coating, ACS Applied Materials and Interfaces, 10.1021/acsami.8b07757, 10, 28, 23674-23681, 2018.07. |
16. | Masanori Nagao, Yurina Fujiwara, Teruhiko Matsubara, Yu Hoshino, Toshinori Sato, Yoshiko Miura, Design of Glycopolymers Carrying Sialyl Oligosaccharides for Controlling the Interaction with the Influenza Virus, Biomacromolecules, 10.1021/acs.biomac.7b01426, 18, 12, 4385-4392, 2017.12. |
17. | Hiroyuki Koide, Hiroki Tsuchida, Masahiko Nakamoto, Anna Okishima, Saki Ariizumi, Chiaki Kiyokawa, Tomohiro Asai, Yu Hoshino, Naoto Oku, Rational designing of an antidote nanoparticle decorated with abiotic polymer ligands for capturing and neutralizing target toxins, Journal of Controlled Release, 10.1016/j.jconrel.2017.10.028, 268, 335-342, 2017.12. |
18. | Yusuke Yonamine, Yuta Suzuki, Takuro Ito, Yoshiko Miura, Keisuke Goda, Yasuyuki Ozeki, Yu Hoshino, Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe, ChemBioChem, 10.1002/cbic.201700314, 18, 20, 2063-2068, 2017.10. |
19. | H. Koide, K. Yoshimatsu, Y. Hoshino, S.-H. Lee, A. Okajima, S. Ariizumi, Y. Narita, Y. Yonamine, A. C. Weisman, Y. Nishimura, N. Oku, Y. Miura, K. J. Shea, A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165), Nat. Chem., 10.1038/nchem.2749, 2017.03. |
20. | M. Yue, K. Imai, C. Yamashita, Y. Miura, Y. Hoshino, Effects of Hydrophobic Modifications and Phase Transitions of Polyvinylamine Hydrogel Films on Reversible CO2 Capture Behavior: Comparison between Copolymer Films and Blend Films for Temperature‐Responsive CO2 Absorption, Macromol. Chem. and Phys., 10.1002/macp.201600570, 218, 1600570, 2017.02. |
21. | Yu Hoshino, Takaaki Miyoshi, Masahiko Nakamoto, Yoshiko Miura, Wide-range p K a tuning of proton imprinted nanoparticles for reversible protonation of target molecules via thermal stimuli, Journal of Materials Chemistry B, 10.1039/c7tb02107k, 5, 46, 9204-9210, 2017.01. |
22. | Masahiko Nakamoto, Tadashi Nonaka, Yoshiko Miura, Kenneth J. Shea, Yu Hoshino*, Design of Synthetic Polymer Nanoparticles that Facilitate Resolubilization and Refolding of Aggregated Positively Charged Lysozyme, J. Am. Chem. Soc., 10.1021/jacs.5b12600, 138, 2016.02, [URL]. |
23. | Lee Haejoo, Yu Hoshino*, Yusuke Wada, Yuka Arata, Atsushi Maruyama, Yoshiko Miura, Minimization of synthetic polymer ligands for specific recognition and neutralization of a toxic peptide, J. Am. Chem. Soc., 10.1021/jacs.5b05259, 137, 10878-10881, 2015.09, [URL]. |
24. | Mengchen Yue, Yu Hoshino*, Yoshiko Miura, Design Rationale of Thermally Responsive Microgel Particle Films That Reversibly Absorb Large Amounts of CO2: Fine Tuning the pKa of Ammonium Ions in the Particles, Chem. Sci., 10.1039/C5SC01978H, ASAP, 2015.08, [URL]. |
25. | Keiichi Yoshimatsu, Hiroyuki Koide, Yu Hoshino, Kenneth J. Shea, Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin, Nature protocols, 10.1038/nprot.2015.032, 10, 595–604, 2015.04, [URL]. |
26. | Yu Hoshino*, Yuka Arata, Haejoo Lee, Yusuke Yonamine, Shih-Hui Lee, Aki Yamasaki, Ryousuke Tsuhara, Katsuhiko Yano, Kenneth J Shea, Yoshiko Miura, Preparation of nanogel-immobilized porous gel beads for affinity separation of proteins: fusion of nano and micro gel materials, Polymer Journal, 10.1038/pj.2014.101, 47, 220–225, 2015.01, [URL]. |
27. | Yusuke Wada, Haejoo Lee, Yu Hoshino*, Shunsuke Kotani, Kenneth J. Shea, Yoshiko Miura, Design of multi-functional linear polymers that capture and neutralize a toxic peptide: a comparison with cross-linked nanoparticles, Journal of Materials Chemistry B, 10.1039/C4TB01967A, 3, 1706-1711, 2015.01, [URL]. |
28. | Yoke-Ming Wong, Yu Hoshino*, Kumar Sudesh, Yoshiko Miura, Keiji Numata*, Optimization of poly (N-isopropylacrylamide) as an artificial amidase, Biomacromolecules, 10.1021/bm501671r, 16, 411–421, 2015.01, [URL]. |
29. | Adam Weisman, Yingyao Allie Chen, Yu Hoshino, Huiting Zhang, Kenneth J. Shea, Engineering Nanoparticle Antitoxins Utilizing Aromatic Interactions, Biomacromolecules, 10.1021/bm500666j, 15, 3290–3295, 2014.06, [URL]. |
30. | Yu Hoshino*, Ryohei C. Ohashi, Yoshiko Miura, Rational Design of Synthetic Nanoparticles with a Large Reversible Shift of Acid Dissociation Constants: Proton Imprinting in Stimuli Responsive Nanogel Particles, Advanced Mater, 10.1002/adma.201305957, 26, 2449–2606, 2014.03, [URL]. |
31. | K. Yoshimatsu, T. Yamazaki, Yu Hoshino, L. F. Epstein, L. P. Miranda, P. Tagari, J. M. Beierle, Y. Ynamine, K. J. Shea, Epitope Discovery for a Synthetic Polymer Nanoparticle: A New Strategy for Developing a Peptide Tag, J. Am. Chem. Soc., 10.1021/ja410817p, 136, 1194–1197, 2014.01, [URL]. |
32. | Mengchen Yue, Yu Hoshino*, Yukinori Ohshiro, Kazushi Imamura, Yoshiko Miura, Temperature-Responsive Microgel Films as Reversible Carbon Dioxide Absorbents in Wet Environment, Angew. Chem. Int. Ed., 10.1002/ange.201309758, 126, 2692–2695, 2014.01, [URL]. |
33. | Masahiko Nakamoto, Yu Hoshino*, Yoshiko Miura*, Effect of Physical Properties of Nanogel Particles on the Kinetic Constants of Multipoint Protein Recognition Process, Biomacromolecules, 10.1021/bm401536v, 15, 541–547, 2013.12, [URL]. |
34. | Yonamine, Yusuke, Yoshimatsu, Keiichi, Lee, Shih-Hui, Yu Hoshino, Okahata, Yoshio, Shea, Kenneth J, Polymer Nanoparticle-Protein Interface. Evaluation of the Contribution of Positively Charged Functional Groups to Protein Affinity, ACS APPLIED MATERIALS & INTERFACES, 10.1021/am302404q, 5, 2, 374-379, 2013.01. |
35. | Y. Hoshino*, K. Imamura , M. Yue , G. Inoue , Y. Miura*, Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nano-gel particles, J. Am. Chem. Soc., 10.1021/ja3080192, 134, 18177-18180, 2012.10, [URL]. |
36. | Y. Hoshino*, M. Nakamoto, and Y. Miura*, Control of protein-binding kinetics on synthetic polymer nanoparticles by tuning flexibility and inducing conformation changes of polymer chains, J. Am. Chem. Soc., 10.1021/ja306053s, 134, 15209−15212, 2012.09, [URL]. |
37. | S.-H. Lee, Y. Hoshino, A. Randall, Z. Zeng, P. Baldi, R.-a. Doong and K. J. Shea, Engineered Synthetic Polymer Nanoparticles as IgG Affinity Ligands, J. Am. Chem. Soc., 10.1021/ja303612d, 134, 15765−15772, 2012.09, [URL]. |
38. | Y. Yonamine, Y. Hoshino, and K. J. Shea, An ELISA-mimic screen for synthetic polymer nanoparticles with high affinity to target proteins, Biomacromolecules, 10.1021/bm300986j, 13, 2952–2957, 2012.07, [URL]. |
39. | K. Yoshimatsu, B. K. Lesel, Y. Yonamine, J. M. Beierle, Y. Hoshino, and K. J. Shea, Temperature-Responsive “Catch and Release” of Proteins by using Multifunctional Polymer-Based Nanoparticles, Angew. Chem. Int. Ed., 10.1002/anie.201107797, 51, 2405–2408, 2012.03, [URL]. |
40. | Y. Hoshino*, H. Koide, K. Furuya, W. W. Haberaecker III, S. Lee, T. Kodama, H. Kanazawa, N. Oku, and K. J. Shea*, The Rational Design of a Synthetic Polymer Nanoparticles that Neutralizes a Toxic Peptide in Vivo, Proc. Natl. Acad. Sci. USA, 10.1073/pnas.1112828109, 109, 33-38, 2012.01, [URL]. |
41. | Y. Hoshino, and K. J. Shea*, Evolution of Plastic Antibodies, J. Mat. Chem., 2010.10, [URL]. |
42. | Y. Hoshino*, W. W. Haberaecker III, T. Kodama, Z. Zeng, Y. Okahata, and K. J. Shea*, Affinity Purification of Multifunctional Polymer Nanoparticles, J. Am. Chem. Soc., 10.1021/ja1058982, 132, 13648-13650, 2010.09, [URL]. |
43. | Y. Hoshino*, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku, and K. J. Shea*, Recognition, Neutralization, and Clearance of Target Peptides in the Bloodstream of Living Mice by Molecularly Imprinted Polymer Nanoparticles: A Plastic Antibody, J. Am. Chem. Soc., 10.1021/ja102148f, 132, 6644–6645, 2010.04, [URL]. |
44. | Z. Zeng, Y. Hoshino, A. Rodoriguez, H. Yoo, and K. J. Shea, Synthetic Polymer Nanoparticles with Antibody-Like Affinity for a Hydrophilic Peptide, ACS nano, 10.1021/nn901256s, 4, 199–204, 2009.12, [URL]. |
45. | Y. Hoshino*, T. Urakami, T. Kodama, H. Koide, N. Oku, Y. Okahata, and K. J. Shea*, Design of Synthetic Polymer Nanoparticles that Capture and Neutralize Toxic Peptide, Small, 10.1002/smll.200900186, 5, 1562–1568, 2009.03. |
46. | Y. Hoshino, T. Kodama, Y. Okahata, and K. J. Shea, Peptide Imprinted Polymer nanoparticles “Plastic Antibodies”, J. Am. Chem. Soc., 10.1021/ja8062875, 130, 15242-15243, 2008.10, [URL]. |
47. | Y. Hoshino, T. Kawasaki, and Y. Okahata, Effect of Ultrasound on DNA Polymerase Reactions: Monitoring on a 27-MHz Quartz Crystal Microbalance, Biomacromolecules, 10.1021/bm050738e, 7, 682–685, 2006.02, [URL]. |
48. | Y. Hoshino, S. Tajima, H. Nakayama, and Y. Okahata, A RNA-aligned Film Prepared from a RNA-Lipid Complex, Macromol. Rapid Commun., 10.1002/1521-3927(20020301)23:4, 23, 253-255, 2002.03, [URL]. |
Presentations
- Materials Research Society
- American Chemical Society
- The Chemical Society of Japan
- The Electrochemical Society of Japan
- The Society of Chemical Engineers
- The Society of Polymer Science, Japan
- for the work of "Preparation of Temperature Responsive Nanogels with Carboxylic Acids which Undergo Large and Reversible pKa Shift"


Unauthorized reprint of the contents of this database is prohibited.
