Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Shigenori Fujikawa Last modified date:2020.06.17

Graduate School
Administration Post

 Reseacher Profiling Tool Kyushu University Pure
Academic Degree
Country of degree conferring institution (Overseas)
Field of Specialization
Nanoscience and engineering
ORCID(Open Researcher and Contributor ID)
Total Priod of education and research career in the foreign country
Research Interests
  • Development of well-designed surface nanostructure array for the creation of exotic functions.
    keyword : nanostructure, interface, surface, surface nanostructure, array
  • Development of frees-tanding nanomembrane for precise material separation
    keyword : nanometer-thick membrane, gas separaton, separation membrane, free-standing membrane
Current and Past Project
  • The Grand Highway for a Carbon-Neutral Energy Fueled World
    The mission of the Institute is to contribute to the creation of a sustainable and environmentally friendly society by advancing fundamental science to reduce CO2 emissions and establish a non-fossil based energy carrier system.
Academic Activities
1. Saravanan, Prabakaran; Selyanchyn, Roman; Tanaka, Hiroyoshi; Fujikawa, Shigenori; Lyth, Stephen Matthew; Sugimura, Joichi., The effect of oxygen on the tribology of (PEI/GO)15 multilayer solid lubricant coatings on steel substrates, Wear, 10.1016/j.wear.2019.05.035, 432-433, 102920/1-102920/7, 2019.06.
2. Selyanchyn, Roman; Fujikawa, Shigenori; Katsuta, Naohiro; Suwa, Kazuya; Kunitake, Masashi., Study of gases permeation in necklace-shaped dimethylsiloxane polymers bearing POSS cages, Membranes, 10.3390/membranes9040054, 9, 4, 54-66, 2019.04.
3. Selyanchyn, Roman; Fujikawa, Shigenori, Molecular Hybridization of Polydimethylsiloxane with Zirconia for Highly Gas Permeable Membranes, ACS Appl. Polym. Mater., 10.1021/acsapm.9b00178, 1, 5, 1165-1174, 2019.04.
4. Ishizu, Masaki; Aizawa, Miho; Akamatsu, Norihisa; Hisano, Kyohei; Fujikawa, Shigenori; Barrett, Christopher J.; Shishido, Atsushi, Effect of surface treatment on molecular alignment behavior by scanning wave photopolymerization, Appl. Phys. Express, 10.7567/1882-0786/ab040d, 12, 4, 041004/1-041004/5, 2019.03.
5. Mersha, Anteneh; Fujikawa, Shigenori, Mechanical Reinforcement of Free-Standing Polymeric Nanomembranes via Aluminosilicate Nanotube Scaffolding, ACS Appl. Polym. Mater., 10.1021/acsapm.8b00104, 1, 2, 112-117, 2019.01.
6. Prabakaran Saravanan, Roman Selyanchyn, Motonori Watanabe, Shigenori Fujikawa, Hiroyoshi Tanaka, Stephen Matthew Lyth, Joichi Sugimura, Ultra-low friction of polyethylenimine / molybdenum disulfide (PEI/MoS2)15 thin films in dry nitrogen atmosphere and the effect of heat treatment, Tribology International, 10.1016/j.triboint.2018.06.003, 127, 255-263, 2018.11, The unique frictional behavior of polyethylenimine/molybdenum disulphide (PEI/MoS2)n thin films on steel substrates, deposited via the layer-by-layer (LbL) technique, is explored. The effects of gaseous atmosphere (i.e. air vs. dry nitrogen), and heat treatment of the coatings are investigated. The coefficients of friction (COFs) are reduced by factors of ca. 2 and 11 in air and N2 respectively, compared to an uncoated steel substrate. Ultra-low friction (COF < 0.02) is achieved in dry N2. After heat treatment of the coating at 500 °C, the COF in air and nitrogen does not change significantly, but the coating demonstrates much higher durability. Detailed characterization of the coating and wear debris are performed to understand the origin of these tribological properties..
7. Shiyan Feng, Shoichi Kondo, Takahiro Kaseyama, Taichi Nakazawa, Takamasa Kikuchi, Roman Selyanchyn, Shigenori Fujikawa, Liana Christiani, Kazunari Sasaki, Masamichi Nishihara, Characterization of polymer-polymer type charge-transfer (CT) blend membranes for fuel cell application, Data in Brief, 10.1016/j.dib.2018.02.031, 18, 22-29, 2018.06, The data presented in this article are related to polymer-polymer type charge-transfer blend membranes for fuel cell application. The visible spectra of the charge-transfer (CT) blend membranes indicated formation of CT complex in the blend membranes, and behavior of CT complex formation by polymers was clarified by Job plot of the visible spectra. The effect of fluorine for membrane property and fuel cell performance of CT blend membranes were evaluated by 19F NMR and overvoltage analysis, respectively..
8. Akamatsu, Norihisa; Fukuhara, Motoyuki; Fujikawa, Shigenori; Shishido, Atsushi., Effect of hardness on surface strain of PDMS films detected by a surface labeled grating method, J. Photopolym. Sci. Technol., 10.2494/photopolymer.31.523, 31, 4, 523-526, 2018.06.
9. Shiyan Feng, Shoichi Kondo, Takahiro Kaseyama, Taichi Nakazawa, Takamasa Kikuchi, Roman Selyanchyn, Shigenori Fujikawa, Liana Christiani, Kazunari Sasaki, Masamichi Nishihara, Development of polymer-polymer type charge-transfer blend membranes for fuel cell application, Journal of Membrane Science, 10.1016/j.memsci.2017.11.025, 548, 223-231, 2018.02, We have prepared new charge-transfer (CT) complex polymer blend membranes (CT membranes), for use as high performance polymer electrolyte membranes (PEMs); with a simple and easy preparation method for application in PEFCs. In this study, electron-accepting sulfonated polyimide (SPI) and electron-donating polyether (PE), were used to develop polymer-polymer type CT membranes. The formation of CT complex in the obtained SPI/PE membranes was confirmed by visible spectroscopy. The use of flexible spacers in the PE and heat treatment of the CT membranes, enhanced the CT complex formation. SPI/PE CT membranes showed 1.9–2.2 times higher mechanical strength than the original SPI, while SPI/PE 0.33 CT membrane with heat treatment at 130 °C for 2 h showed 4.3 times higher mechanical strength than the original SPI. Hydrogen permeability through SPI/PE CT membranes was 4.1–5.4 times lower than Nafion 212 and 1.4–1.9 times lower than the original SPI membrane. We have prepared a thin SPI/PE CT membrane (10 µm thickness), that showed comparable OCV (0.88 V), similar resistance compared to Nafion 212 and demonstrated more than 10 h of durability in a fuel cell test; suggesting that SPI/PE thin CT membrane can be applied for PEFC application..
10. Norihisa Akamatsu, Motoyuki Fukuhara, Shigenori Fujikawa, Atsushi Shishido, Effect of hardness on surface strain of PDMS films detected by a surface labeled grating method, Journal of Photopolymer Science and Technology, 10.2494/photopolymer.31.523, 31, 4, 523-526, 2018.01, In recent years, mechanical properties of flexible materials have attracted much attention for the development of stretchable electronic devices, flexible sensors and wearable biointegrated devices that would support the future ‘Internet of things’ (IoT) and ‘information technology’ (IT). For designing advanced soft devices, there is a strong demand to quantitatively analyze the deformation behavior of soft materials. Recently, a surface labeled grating method has been developed as a new tool to quantitatively measure the bending behavior of flexible films. In this study, we investigated the effect of hardness of the film to be measured on the surface strain evaluated by this method..
11. Yoshiaki Shoji, Minsu Hwang, Haruka Sugiyama, Fumitaka Ishiwari, Kumiko Takenouchi, Ryota Osuga, Junko N. Kondo, Shigenori Fujikawa, Takanori Fukushima, Highly efficient transformation of linear poly(phenylene ethynylene)s into zigzag-shaped π-conjugated microporous polymers through boron-mediated alkyne benzannulation, Materials Chemistry Frontiers, 10.1039/c7qm00582b, 2, 4, 807-814, 2018.01, Porous polymers offer great advantages compared to other microporous materials in terms of solubility and processability. However, the design of porous polymers has suffered from the limited availability of suitable building blocks. Here we propose a conceptually new strategy for the design of porous polymers, which involves the transformation of a rigid linear polymer into a rigid zigzag polymer with a large free volume around the polymer backbone. This strategy relies on a boron-mediated alkyne benzannulation reaction, which was recently developed by our group. When the benzannulation reaction was applied to poly(phenylene ethynylene) (PPE) derivatives, a linear-to-zigzag structural transformation successfully occurred to give the corresponding p-conjugated polymers with a diarylphenanthrene unit in the main chain. As revealed by N2 adsorption experiments, while the parent PPEs were non-porous, the zigzag polymers in the solid state possessed porosity with a specific surface area of up to 366 m2 g1, where the surface area largely depended on the steric bulkiness of the substituents on the polymer. Considering the fact that a wide variety of PPE derivatives have so far been synthesized, the present strategy may open a new avenue for the development of functional porous polymers..
12. Daisuke Kichise, Kazuma Mase, Shigenori Fujikawa, Nobuhiro Yanai, Nobuo Kimizuka, Specific uniaxial self-assembly of columnar perylene liquid crystals in au nanofin arrays, Chemistry Letters, 10.1246/cl.171228, 47, 3, 354-357, 2018.01, Self-assembly of liquid crystalline tetrakis(2-ethylhexyl) perylene-3,4,9,10-tetracarboxylate (C8PTC) in periodically aligned Au nanofin arrays (Au-NFs) is investigated. C8PTC forms columnar hexagonal liquid crystalline assemblies oriented parallel to the glass substrate, while the in-plane orientation of the long columnar axis is perpendicular to the surface of Au- NFs. This unique alignment reflects the interaction between the aromatic π-surface and the bare gold surface of NFs. This work provides a new perspective to design and control molecular selfassembly confined in the designed surface nanopatterns..
13. Roman Selyanchyn, Miho Ariyoshi, Shigenori Fujikawa, Thickness Effect on CO2/N2 Separation in Double Layer Pebax-1657®/PDMS Membranes, Membranes, 10.3390/membranes8040121, 8, 4, 2018.01, The effect of thickness in multilayer thin-film composite membranes on gas permeation has received little attention to date, and the gas permeances of the organic polymer membranes are believed to increase by membrane thinning. Moreover, the performance of defect-free layers with known gas permeability can be effectively described using the classical resistance in series models to predict both permeance and selectivity of the composite membrane. In this work, we have investigated the Pebax®-MH1657/PDMS double layer membrane as a selective/gutter layer combination that has the potential to achieve sufficient CO
selectivity and permeance for efficient CO
and N
separation. CO
and N
transport through membranes with different thicknesses of two layers has been investigated both experimentally and with the utilization of resistance in series models. Model prediction for permeance/selectivity corresponded perfectly with experimental data for the thicker membranes. Surprisingly, a significant decrease from model predictions was observed when the thickness of the polydimethylsiloxane (PDMS) (gutter layer) became relatively small (below 2 µm thickness). Material properties changed at low thicknesses-surface treatments and influence of porous support are discussed as possible reasons for observed deviations..
14. Roman Selyanchyn, Shigenori Fujikawa, Membrane thinning for efficient CO2 capture, Science and Technology of Advanced Materials, 10.1080/14686996.2017.1386531, 18, 1, 816-827, 2017.12, Enhancing the fluxes in gas separation membranes is required for utilizing the membranes on a mass scale for CO2 capture. Membrane thinning is one of the most promising approaches to achieve high fluxes. In addition, sophisticated molecular transport across membranes can boost gas separation performance. In this review, we attempt to summarize the current state of CO2 separation membranes, especially from the viewpoint of thinning the selective layers and the membrane itself. The gas permeation behavior of membranes with ultimate thicknesses and their future directions are discussed..
15. Mersha, Anteneh; Selyanchyn, Roman; Fujikawa, Shigenori, Preparation of large, ultra-flexible and free-standing nanomembranes of metal oxide–polymer composite and their gas permeation properties, Clean Energy, 10.1093/ce/zkx006, 1, 1, 80-89, 2017.12.
16. Prabakaran Saravanan, Roman Selyanchyn, Hiroyoshi Tanaka, Shigenori Fujikawa, Stephen Matthew Lyth, Joichi Sugimura, Ultra-low friction between polymers and graphene oxide multilayers in nitrogen atmosphere, mediated by stable transfer film formation, Carbon, 10.1016/j.carbon.2017.06.090, 122, 395-403, 2017.10, The efficiency and lifetime of mechanical devices is significantly decreased by friction and wear, significantly contributing to global energy consumption. We previously showed that multilayer polyethyleneimine/graphene oxide thin films, (PEI/GO)15, on steel display superlubricity against a steel counterface ball. Here, the coefficient of friction (COF) and wear of (PEI/GO)15 with six different counterface polymer balls is investigated in air and in nitrogen, with particular focus on the formation of tribological transfer films. The polymers polyoxymethylene (POM), polyetheretherketone (PEEK), polyethylene (PE), poly(methyl methacrylate) (PMMA), polycarbonate (PC), and polytetrafluoroethylene (PTFE) are utilized. The COF of (PEI/GO)15 vs steel is 0.35 in both air and nitrogen. In air, the COF ranges from 0.06 to 0.17 for all polymers. Significantly, in nitrogen, four polymers (POM, PEEK, PMMA and PC) display ultra-low friction (COF ∼0.02) whilst two do not (PTFE and PE). The wear tracks and transfer films are investigated using e.g. optical microscopy, electron microscopy, and Raman mapping, and the tribological behavior is correlated to the hydrophilicity and relative hardness of the polymer balls compared to GO..
17. Fujikawa, Shigenori; Ariyoshi, Miho; Shigyo, Eiko; Fukakusa, Chihoko; Roman, Selyanchyn; Kunitake, Toyoki, Preferential CO2 Separation Over Nitrogen by a Free-standing and Nanometer-thick Membrane, Energy Procedia, 10.1016/j.egypro.2017.03.1907, 114, 608-612, 2017.08.
18. Shigenori Fujikawa, Miho Ariyoshi, Eiko Shigyo, Chihoko Fukakusa, Selyanchyn Roman, Toyoki Kunitake, Preferential CO2 Separation over Nitrogen by a Free-standing and Nanometer-thick Membrane, 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016 Energy Procedia, 10.1016/j.egypro.2017.03.1907, 114, 608-612, 2017.01, Membrane thinning is important approach to enhance gas permeation properties of CO2 capture membranes. We employed cross linkable polymer materials, conventional epoxy resin containing amino groups, for the preparation of free-standing and ultrathin nanomembrane. By simple spincoating, nanometer-thick epoxy membranes were fabricated and detached as a free-standing membrane. The thickness of a membrane was readily controllable by spincoating speed and polymer concentration. Although as-prepared nanomembrane did not show CO2 selectivity over N2, wet membrane shows high CO2 selectively. Further sophistication of membrane material design and reduction of membrane thickness would be a promising approach to prepare preferential CO2 separation membrane with high gas flux. Published by Elsevier Ltd..
19. T. Bayer, R. Selyanchyn, Shigenori Fujikawa, Kazunari Sasaki, Stephen Matthew Lyth, Spray-painted graphene oxide membrane fuel cells, Journal of Membrane Science, 10.1016/j.memsci.2017.07.012, 541, 347-357, 2017.01, Graphene oxide (GO) is potentially a useful electrolyte material for polymer electrolyte membrane fuel cells due to its high strength, excellent hydrogen gas barrier properties, hydrophilicity, and proton conducting acidic functional groups. Here, GO paper is prepared from aqueous dispersion by vacuum-filtration, and the hydrogen permeability (2 × 10−2 barrer) is measured to be 3 orders of magnitude lower than Nafion (30 barrer) at 30 °C. The in-plane and through-plane conductivities are measured to be 49.9 and 0.3 mS cm−1, respectively. This significant anisotropy is attributed to the lamellar structure of GO, and the physical anisotropy between the thickness and lateral size of the GO nanoplatelets. Interestingly, the in-plane conductivity of GO is comparable to the through-plane conductivity of Nafion. GO membrane fuel cells (GOMFCs) are fabricated. To compensate for the low in-plane conductivity of GO, whilst taking advantage of the excellent hydrogen gas barrier properties, extremely thin electrode-supported GOMFCs are prepared by spray painting GO directly onto the electrocatalyst layer. The effect of membrane thickness on cell performance is investigated. Decreasing membrane thickness by spray painting improves the power density from 3.7 mW cm−2 for a 50 μm-thick membrane-supported GOMFC, to 79 mW cm−2 for a 3 µm-thick, spray-painted membrane, electrode-supported GOMFC..
20. Fujikawa, Shigenori; Koizumi, Mari; Taino, Akiko; Okamoto, Koichi., Fabrication and Unique Optical Properties of Two-Dimensional Silver Nanorod Arrays with Nanometer Gaps on a Silicon Substrate from a Self-Assembled Template of Diblock Copolymer., Langmuir, 10.1021/acs.langmuir.6b02934, 2016.01.
21. Saravanan, Prabakaran; Selyanchyn, Roman; Tanaka, Hiroyoshi; Darekar, Durgesh; Staykov, Aleksandar; Fujikawa, Shigenori; Lyth, Stephen Matthew; Sugimura, Joichi., Macroscale Superlubricity of Multilayer Polyethylenimine/Graphene Oxide Coatings in Different Gas Environments., ACS Appl. Mater. Interfaces, 10.1021/acsami.6b06779, 8, 40, 27179-27187, 2016.01.
22. Bayer, Thomas; Cunning, Benjamin V.; Selyanchyn, Roman; Nishihara, Masamichi; Fujikawa, Shigenori; Sasaki, Kazunari; Lyth, Stephen M., High Temperature Proton Conduction in Nanocellulose Membranes: Paper Fuel Cells., Chem. Mater., 10.1021/acs.chemmater.6b01990, 28, 13, 4805-4814, 2016.01.
23. Bayer, Thomas; Cunning, Benjamin V.; Selyanchyn, Roman; Daio, Takeshi; Nishihara, Masamichi; Fujikawa, Shigenori; Sasaki, Kazunari; Lyth, Stephen M., Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide., J. Membr. Sci., 10.1016/j.memsci.2016.02.017, 508, 51-61, 2016.01.
24. Kim, Byoungsu; Hillman, Febrian; Ariyoshi, Miho; Fujikawa, Shigenori; Kenis, Paul J. A., Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO., J. Power Sources, 10.1016/j.jpowsour.2016.02.043, 312, 192-198, 2016.01.
25. Roman Selyanchyn, Aleksandar Staykov, Shigenori Fujikawa, Incorporation of CO2-philic moieties into a TiO2 nanomembrane for preferential CO2 separation., RSC Advances, 10.1039/C6RA18419, 6, 91, 88664-88667, 2016.01.
26. Prabakaran Saravanan, Roman Selyanchyn, Hiroyoshi Tanaka, Shigenori Fujikawa, Joichi Sugimura, Frictional behavior of (PEI/GO)x solid lubricant coatings on steel substrates in various environments, 71st Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition 2016 Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition 2016, 543-548, 2016.01.
27. Hisamitsu, Shota; Yanai, Nobuhiro; Fujikawa, Shigenori; Kimizuka, Nobuo., Photoinduced crystallization in ionic liquids: photodimerization-induced equilibrium shift and crystal patterning., Chem. Lett., 10.1246/cl.150261, 44, 7, 908-910, 2015.01.
28. Akamatsu, Norihisa; Tashiro, Wataru; Saito, Keisuke; Mamiya, Jun-ichi; Kinoshita, Motoi; Ikeda, Tomiki; Takeya, Jun; Fujikawa, Shigenori; Priimagi, Arri; Shishido, Atsushi., Facile strain analysis of largely bending films by a surface-labelled grating method., Sci. Rep., 10.1038/srep05377, 4, 5377-5377, 2014.01.
29. Kimura, Seiichro; Honda, Kuniaki; Kitamura, Keigo; Taniguch, Ikuo; Shitashima, Kiminori; Tsuji, Takeshi; Fujikawa, Shigenori., Preliminary Feasibility Study for On-Site Hydrogen Station with Distributed CO2 Capture and Storage System., Energy Procedia, 10.1016/j.egypro.2014.11.490, 63, 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, 4575-4584, 2014.01.
30. Taniguchi, Ikuo; Fujikawa, Shigenori., CO2 Separation with Nano-thick Polymeric Membrane for Pre- combustion., Energy Procedia, 10.1016/j.egypro.2014.11.025, 63, 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, 235-242, 2014.01.
31. Taniguchi, Ikuo; Ioh, Daichi; Fujikawa, Shigenori; Watanabe, Takayuki; Matsukuma, Yosuke; Minemoto, Masaki., An alternative carbon dioxide capture by electrochemical method., Chem. Lett., 10.1246/cl.140508, 43, 10, 1601-1603, 2014.01.
32. Lee, Yaerim; Maeda, Etsuo; Ho, Ya-Lun; Fujikawa, Shigenori; Delaunay, Jean-Jacques., High sensitivity refractive index sensing with strong light confinement in high-aspect-ratio U-cavity arrays., Sens. Actuators, B, 10.1016/j.snb.2014.05.033, 202, 137-143, 2014.01.
33. Taniguchi, Ikuo; Fujikawa, Shigenori., Preferential CO2 separation over H2 with poly(amidoamine) dendrimer-containing polymeric membrane., MRS Online Proc. Libr., 10.1557/opl.2014.347, 1660, Transport Properties in Nanocomposites, Taniguchi/1-Taniguchi/6, 2014.01.
34. Shao, Huaiyu; Ma, Weigang; Kohno, Masamichi; Takata, Yasuyuki; Xin, Gongbiao; Fujikawa, Shigenori; Fujino, Sayoko; Bishop, Sean; Li, Xingguo., Hydrogen storage and thermal conductivity properties of Mg-based materials with different structures., Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2014.02.063, 39, 18, 9893-9898, 2014.01.
35. Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo., Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode., Bioelectrochemistry, 10.1016/j.bioelechem.2013.10.005, 95, 15-22, 2014.01.
36. Yamada, Yoichi M. A.; Yuyama, Yoshinari; Sato, Takuma; Fujikawa, Shigenori; Uozumi, Yasuhiro., A Palladium-Nanoparticle and Silicon-Nanowire-Array Hybrid: A Platform for Catalytic Heterogeneous Reactions., Angew. Chem., Int. Ed., 10.1002/anie.201308541, 53, 1, 127-131, 2014.01.
37. Kajitani, Takashi; Suna, Yuki; Kosaka, Atsuko; Osawa, Terutsune; Fujikawa, Shigenori; Takata, Masaki; Fukushima, Takanori; Aida, Takuzo., o-Phenylene Octamers as Surface Modifiers for Homeotropic Columnar Ordering of Discotic Liquid Crystals., J. Am. Chem. Soc., 10.1021/ja4087853, 135, 39, 14564-14567, 2013.01.
38. Koishi, Takahiro; Yasuoka, Kenji; Willow, Soohaeng Yoo; Fujikawa, Shigenori; Zeng, Xiao Cheng., Molecular Insight into Different Denaturing Efficiency of Urea, Guanidinium, and Methanol: A Comparative Simulation Study., J. Chem. Theory Comput., 10.1021/ct3010968, 9, 6, 2540-2551, 2013.01.
39. E. Maeda, Y. Lee, Y. L. Ho, Shigenori Fujikawa, J. J. Delaunay, A 3D metallic structure array for refractive index sensing with optical vortex, IEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013, 10.1109/MEMSYS.2013.6474409, 973-976, 2013.01, A simple and large-scale fabrication technique for three dimensional structure arrays using a photolithography process was applied to realize an array of high-aspect-ratio metallic fins. The fin array enables light confinement between the high-aspect-ratio fins, thus generating optical vortices. The light confinement between the fins produces sharp dips in the reflection spectrum of the array. We show that the position of the dip wavelength is sensitive to change in the refractive index of the surrounding medium. Sensitivity to change in the refractive index was quantified by optical simulation and experimental measurements..
40. Bhushan Patil, Shigenori Fujikawa, Takeyoshi Okajima, Takeo Ohsaka, Enzymatic direct electron transfer at ascorbate oxidase-modified gold electrode prepared by one-step galvanostatic method, International Journal of Electrochemical Science, 7, 6, 5012-5019, 2012.06, A one-step enzyme immobilization by galvanostatic method at gold electrode was applied to achieve direct electron transfer (DET) of ascorbate oxidase from Acremonium sp. (ASOM). The enzyme immobilization was optimized and ASOM was successfully deposited on the gold electrode surface, typically by flowing the oxidation current of 6 μA corresponding to oxygen evolution for 4 min, which results in a decrease in the local pH in the vicinity of the electrode surface and the precipitation of ASOM on the electrode surface due to the neutralization of its surface charge. A well-defined redox wave with a formal potential of 242 mV (vs. Ag|AgCl|KCl (sat)) was observed in 5.0 mM phosphate buffer solution (pH 7.0), confirming DET between ASOM and gold electrode surface..
41. Maeda, Etsuo; Lee, Yaerim; Kobayashi, Youjiro; Taino, Akiko; Koizumi, Mari; Fujikawa, Shigenori; Delaunay, Jean-Jacques., Sensitivity to refractive index of high-aspect-ratio nanofins with optical vortex., Nanotechnology, 10.1088/0957-4484/23/50/505502, 23, 50, 505502/1-505502/6, 2012.01.
42. Patil, Bhushan; Fujikawa, Shigenori; Okajima, Takeyoshi; Ohsaka, Takeo., Enzymatic direct electron transfer at ascorbate oxidase-modified gold electrode prepared by one-step galvanostatic method., Int. J. Electrochem. Sci., 7, 6, 5012-5019, 2012.01.
43. Kuwahara, Rempei; Fujikawa, Shigenori; Kuroiwa, Keita; Kimizuka, Nobuo., Controlled Polymerization and Self-Assembly of Halogen-Bridged Diruthenium Complexes in Organic Media and Their Dielectrophoretic Alignment., J. Am. Chem. Soc., 10.1021/ja208958t, 134, 2, 1192-1199, 2012.01.
44. Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng., Measurement of Contact-Angle Hysteresis for Droplets on Nanopillared Surface and in the Cassie and Wenzel States: A Molecular Dynamics Simulation Study., ACS Nano, 10.1021/nn2005393, 5, 9, 6834-6842, 2011.01.
45. Kubo, Wakana; Hayakawa, Harumi; Miyoshi, Kentaro; Fujikawa, Shigenori., Size-controlled simple fabrication of Free-standing, ultralong metal nanobelt array., J. Nanosci. Nanotechnol., 10.1166/jnn.2011.3123, 11, 1, 131-137, 2011.01.
46. Kubo, Wakana; Fujikawa, Shigenori., Au double nanopillars with nanogap for plasmonic sensor., Nano Lett., 10.1021/nl100787b, 11, 1, 8-15, 2011.01.
47. T. Koishi, Shigenori Fujikawa, Static and dynamic properties of ionic liquids, Molecular Simulation, 10.1080/08927020903536358, 36, 15, 1237-1242, 2010.12, We performed molecular dynamics (MD) simulations of ionic liquids composed of 1-butyl-3-methylimidazolium ([bmim]) cation with PF6, NO 3 and Cl anions to determine their static and dynamic properties. Large-scale simulation of 4096 ion pairs (131,072 particles in [bmim]PF 6) was performed to estimate the system-size dependence of the static and dynamic properties. The diffusion constant, which is 100 times smaller than that of a normal liquid such as water, was estimated from long-time simulations. We also performed non-equilibrium MD simulations to determine the electrical conductivity. We obtained a nonlinear relationship between the electrical current and external electric field strength..
48. Koishi, Takahiro; Yasuoka, Kenji; Zeng, Xiao-Cheng; Fujikawa, Shigenori., Molecular dynamics simulations of urea-water binary droplets on flat and pillared hydrophobic surfaces., Faraday Discuss., 10.1039/b926919c, 146, Wetting Dynamics of Hydrophobic and Structured Surfaces, 185-193, 2010.01.
49. Kubo, Wakana; Fujikawa, Shigenori., Manipulation of a one dimensional molecular assembly of helical superstructures by dielectrophoresis., Appl. Phys. Lett., 10.1063/1.3253708, 95, 16, 163110/1-163110/3, 2009.01.
50. Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng., Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface., Proc. Natl. Acad. Sci. U. S. A., 10.1073/pnas.0902027106, 106, 21, 8435-8440, 2009.01.
51. Fujikawa, Shigenori; Muto, Emi; Kunitake, Toyoki., Nanochannel Design by Molecular Imprinting on a Free-Standing Ultrathin Titania Membrane., Langmuir, 10.1021/la9014916, 25, 19, 11563-11568, 2009.01.
52. Kubo, Wakana; Fujikawa, Shigenori., Embedding of a gold nanofin array in a polymer film to create transparent, flexible and anisotropic electrodes., J. Mater. Chem., 10.1039/b819290a, 19, 15, 2154-2158, 2009.01.
53. Miyoshi, Kentaro; Fujikawa, Shigenori; Kunitake, Toyoki., Fabrication of nanoline arrays of noble metals by electroless plating and selective etching process., Colloids Surf., A, 10.1016/j.colsurfa.2007.11.041, 321, 1-3, 238-243, 2008.01.
54. Takaki, Rie; Takemoto, Hiromi; Fujikawa, Shigenori; Toyoki, Kunitake., Fabrication of nanofins of TiO2 and other metal oxides via the surface sol-gel process and selective dry etching., Colloids Surf., A, 10.1016/j.colsurfa.2007.11.040, 321, 1-3, 227-232, 2008.01.
55. Miyoshi, Kentaro; Aoki, Yoshitaka; Kunitake, Toyoki; Fujikawa, Shigenori., Facile Fabrication of Silver Nanofin Array via Electroless Plating., Langmuir, 10.1021/la703512w, 24, 8, 4205-4208, 2008.01.
56. Li, Yuanzhi; Kunitake, Toyoki; Fujikawa, Shigenori; Ozasa, Kazunari., Photoluminescence Modification in 3D-Ordered Films of Fluorescent Microspheres., Langmuir, 10.1021/la700610p, 23, 17, 9109-9113, 2007.01.
57. Matsushita, Sachiko; Fujikawa, Shigenori; Onoue, Shinya; Kunitake, Toyoki; Shimomura, Masatsugu., Rapid fabrication of a smooth hollow-spheres array., Bull. Chem. Soc. Jpn., 10.1246/bcsj.80.1226, 80, 6, 1226-1228, 2007.01.
58. Fujikawa, Shigenori; Muto, Emi; Kunitake, Toyoki., Embedding of Individual Ferritin Molecules in Large, Self-Supporting Silica Nanofilms., Langmuir, 10.1021/la0635247, 23, 8, 4629-4633, 2007.01.
59. Tetsu Narumi, Yousuke Ohno, Noriaki Okimoto, Takahiro Koishi, Atsushi Suenaga, Noriyuki Futatsugi, Ryoko Yanai, Ryutaro Himeno, Shigenori Fujikawa, Makoto Taiji, Mitsuru Ikei, A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3, Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC'06, 10.1145/1188455.1188506, 2006.12, We have achieved a sustained performance of 55 TFLOPS for molecular dynamics simulations of the amyloid fibril formation of peptides from the yeast Sup35 in an aqueous solution. For performing the calculations, we used the MDGRAPE-3 system - -a special-purpose computer system for molecular dynamics simulations. Its nominal peak performance was 415 TFLOPS for Coulomb force calculations; this is the highest-ever performance reported for classical molecular dynamics simulations. Amyloid fibril formation is known to be related to the occurrence of severe diseases such as Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases. The Sup35 protein is a "yeast prion protein," which forms mini-crystals due to aggregation; it forms an effective platform for studying the formation process of amyloid fibrils. In these simulations, we first elucidate that the amyloid-forming peptides GNNQQNY aggregate at a higher frequency than non-amyloid-forming peptides SQNGNQQRG; further, the GNNQQNY peptides tend to form parallel two-stranded -sheets that would grow into a cross- amyloid nucleus. The results are consistent with those obtained experimentally. Furthermore, we could observe an early elongation of the amyloid nucleus. This result is expected to contribute toward a deeper understanding of the amyloid growth mechanism..
60. Fujikawa, Shigenori; Takaki, Rie; Kunitake, Toyoki., Fabrication of Arrays of Sub-20-nm Silica Walls via Photolithography and Solution-Based Molecular Coating., Langmuir, 10.1021/la061830e, 22, 21, 9057-9061, 2006.01.
61. Li, Yuanzhi; Kunitake, Toyoki; Fujikawa, Shigenori., Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres., J. Phys. Chem. B, 10.1021/jp061979z, 110, 26, 13000-13004, 2006.01.
62. Li, Yuanzhi; Kunitake, Toyoki; Fujikawa, Shigenori., Efficient fabrication of large, robust films of 3D-ordered polystyrene latex., Colloids Surf., A, 10.1016/j.colsurfa.2005.09.045, 275, 1-3, 209-217, 2006.01.
63. Fujikawa, Shigenori; Kunitake, Toyoki., 3D nanoarchitecture from ultrathin titania film via surface sol-gel process and photolithography., Chem. Lett., 10.1246/cl.2005.1414, 34, 10, 1414-1415, 2005.01.
64. Fujikawa, Shigenori; Takaki, Rie; Kunitake, Toyoki., Nanocopying of Individual DNA Strands and Formation of the Corresponding Surface Pattern of Titania Nanotube., Langmuir, 10.1021/la051554o, 21, 19, 8899-8904, 2005.01.
65. Kunitake, Toyoki; Fujikawa, Shigenori., Nanocopying as a Means of 3D Nanofabrication: Scope and Prospects., Aust. J. Chem., 10.1071/CH03129, 56, 10, 1001-1003, 2003.01.
66. He, Junhui; Fujikawa, Shigenori; Kunitake, Toyoki; Nakao, Aiko., Preparation of Porous and Nonporous Silica Nanofilms from Aqueous Sodium Silicate., Chem. Mater., 10.1021/cm034253d, 15, 17, 3308-3313, 2003.01.
67. Fujikawa, Shigenori; Kunitake, Toyoki., Surface Fabrication of Hollow Nanoarchitectures of Ultrathin Titania Layers from Assembled Latex Particles and Tobacco Mosaic Viruses as Templates., Langmuir, 10.1021/la026979e, 19, 16, 6545-6552, 2003.01.
68. Fujikawa, Shigenori; Kunitake, Toyoki., Preparation of hollow structures composed of titania nanocrystal assembly., Int. J. Nanosci., 1, 5 & 6, 617-620, 2002.01.
69. He, Junhui; Ichinose, Izumi; Fujikawa, Shigenori; Kunitake, Toyoki., Synthesis of metal and metal oxide nanoparticles in the nanospace of ultrathin TiO2-gel films: role of the ion-exchange site., Int. J. Nanosci., 1, 5 & 6, 507-513, 2002.01.
70. Fujikawa, Shigenori; Kunitake, Toyoki., Surface fabrication of interconnected hollow spheres of nm-thick titania shell., Chem. Lett., 10.1246/cl.2002.1134, 11, 1134-1135, 2002.01.
71. He, Junhui; Ichinose, Izumi; Fujikawa, Shigenori; Kunitake, Toyoki; Nakao, Aiko., Reversible conversion of nanoparticles of metallic silver and silver oxide in ultrathin TiO2 films: a chemical transformation in nano-space., Chem. Commun., 10.1039/b204227b, 17, 1910-1911, 2002.01.
72. He, Junhui; Ichinose, Izumi; Fujikawa, Shigenori; Kunitake, Toyoki; Nakao, Aiko., A General, Efficient Method of Incorporation of Metal Ions into Ultrathin TiO2 Films., Chem. Mater., 10.1021/cm010880w, 14, 8, 3493-3500, 2002.01.
73. Ichinose, Izumi; He, Junhui; Fujikawa, Shigenori; Hashizume, Mineo; Huang, Jianguo; Kunitake, Toyoki., Ultrathin composite films: An indispensable resource for nanotechnology., RIKEN Rev., 37, 34-37, 2001.01.
74. Kimizuka, Nobuo; Fujikawa, Shigenori; Kunitake, Toyoki., Organization of hydrophilic nanoparticles on a hydrogel surface and their gel-assisted transfer to solid substrates., Adv. Mater., 10.1002/(SICI)1521-4095(199811)10:16<1373::AID-ADMA1373>3.0.CO;2-T, 10, 16, 1373-1376, 1998.01.
75. Kimizuka, Nobuo; Shimizu, Masafumi; Fujikawa, Shigenori; Fujimura, Kotaro; Sano, Masahito; Kunitake, Toyoki., AFM observation of organogel nanostructures on graphite in the gel-assisted transfer technique., Chem. Lett., 10.1246/cl.1998.967, 10, 967-968, 1998.01.
76. Kimizuka, Nobuo; Fujikawa, Shigenori; Kunitake, Toyoki., Protein assembly on solid surfaces by gel-assisted transfer (GAT) technique., Chem. Lett., 10.1246/cl.1998.821, 8, 821-822, 1998.01.
77. Kimizuka, Nobuo; Fujikawa, Shigenori; Kuwahara, Hiroaki; Kunitake, Toyoki; Marsh, Andrew; Lehn, Jean-Marie., Mesoscopic supramolecular assembly of a 'Janus' molecule and a melamine derivative via complementary hydrogen bonds., J. Chem. Soc., Chem. Commun., 10.1039/C39950002103, 20, 2103-2104, 1995.01.
Works, Software and Database
1. .
1. Shigenori Fuijkawa, Efficient CO2 capture by free-standing nanomembranes, NanoMat2019, 2019.06.
2. Shigenori Fujikawa, Large and free-standing nanomembrane for molecular separations, Hanyang University, Seminar, 2019.05.
Membership in Academic Society
  • The surface science society of Japan
  • Material Research Society
  • American Chemical Society
  • Japan Society of Applied Physics
  • The Society of Polymer Science, Japan
  • The Chemical Society of Japan
Educational Activities
(1)Graduate cource class: "Molecular Organization Chemistry"(Japanese)
(2)Undergraduate cource class: "Fundamentals of Organic Chemistry"(G30. English)
(3)Graduate cource class: "Design of Surface nanostructures"(English)
Professional and Outreach Activities
– Strengthen collaboration between Japanese and Swedish universities.
– Provide researchers at an early stage of their career with knowledge, contacts, and networks to become future leaders of joint Swedish and Japanese research and education activities.
– Identify areas of common interest between Swedish and Japanese universities for long-term research and education collaboration activities.
– Encourage joint research activities in relevant fields using Swedish and Japanese large-scale research facilities.
– Initiate a dialogue between Swedish and Japanese funding agencies for future joint funding opportunities.
– Understand how innovation systems work in Japan and Sweden.
– Increase the understanding of each other’s culture and societal conditions as the basis for future cooperation activities.
– Promote Sweden and Japan as destinations for research and higher education..