九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
江口 壽彦(えぐち としひこ) データ更新日:2020.06.02



主な研究テーマ
植物における光合成産物の転流・貯蔵に対する環境作用の解析
キーワード:植物,光合成産物,転流,貯蔵,器官形成,環境調節,生体計測,シンク/ソース関係
1989.04.
研究業績
主要原著論文
1. Toshihiko EGUCHI, Hiroyuki TANAKA, Daichi Moriuchi, Satoshi YOSHIDA and Ken MATSUOKA, Temperature Effects on the Photosynthesis by the Medicinal Plant Pinellia ternata Breit., Environmental Control in Biology, DOI: 10.2525/ecb.58.49, 58, 2, 49-50, 2020.04, We investigated the effect of air temperature on the growth of the medicinal plant Pinellia ternata Breit. collected from the four prefectures, Fukushima, Kyoto, Nagasaki, and Okinawa prefectures. Plants were grown for 15 weeks in phytotrons controlled at air temperatures of 20, 25, and 30 ̊C. In the Kyoto lines, the highest corm yield was observed at 25 ̊C, whereas the corm yields in Fukushima, Nagasaki, and Okinawa lines did not differ significantly with respect to yield among the three growth temperature conditions. Therefore, in this study, the temperature effects on the photosynthesis by P. ternata collected from the three prefectures of Kyoto, Nagasaki, and Okinawa were investigated. Obvious effects of air temperatures were not observed in the plant photosynthesis for all regions. Thus, air temperature does not affect the yield through the photosynthesis in the P. ternata..
2. Toshihiko EGUCHI, Hiroyuki TANAKA, Satoshi YOSHIDA and Ken MATSUOKA , Temperature Effects on the Yield and Quality of the Medicinal Plant Pinellia ternata Breit.
, Environmental Control in Biology, DOI: 10.2525/ecb.57.83, 57, 3, 83-85, 2019.07, The medicinal plant Pinellia ternata Breit., which is a non-domesticated plant, is widely distributed in Japan. However, the crude drug made from the plant corm is not currently produced in Japan. We investigated the influences of air temperature on the growth of P. ternata collected from 2 regions, the Kyoto and Nagasaki prefectures, for both of summer and winter seasons. The temperature effects on the effective ingredient contents in the corms were also investigated. At Kyushu University, plants were grown for 15 weeks in phytotron glass rooms controlled at air temperatures of 20, 25, or 30°C. The corm yields and effective ingredient content in the winter cultivation were poorer than those in the summer, because the cumulative solar radiation during the winter cultivation period was almost half of that in the summer. In the Kyoto lines, the highest corm yield was obtained at 25℃ in the summer cultivation, while the Nagasaki lines did not show significant differences with respect to yield among the three growth temperature conditions. The effective ingredient contents in the corm did not differ significantly among the three temperature conditions for both lines, although the amount of effective ingredient in the Kyoto lines were significantly higher than those of Nagasaki in summer cultivation..
3. Eguchi, T., Satoshi YOSHIDA, Time-course Pattern of Electrolyte Leakage from Tuberous Roots of Sweetpotato (Ipomoea batatas (L.) Lam.) after Short-term High Temperature , Environmental Control in Biology, http://doi.org/10.2525/ecb.54.183, 54, 4, 183-185, 2016.10, We investigated the time-course pattern of electrolyte leakage from the root flesh of growing tuberous roots of two sweetpotato cultivars, Koganesengan and Narutokintoki, after exposing them to high temperature for short duration. For both cultivars, the electrolyte leakage after 1 h of treatment was significantly higher than that at 24 h after treatment. This pattern was similar to the pattern observed following instantaneous flooding treatment previously reported by us. Electrolyte leakage from plant cells is an indicator of cellular responses to various stress factors. Similar stress, therefore, might be caused in heated and flooded tuberous roots..
4. Eguchi, T., Ito, Y., Satoshi YOSHIDA, Instantaneous Flooding and α-Tocopherol Content in Tuberous Roots of Sweetpotato (Ipomoea batatas (L.) Lam.), Environmental Control in Biology, 53, 1, 13-16, 2015.03, Compared to sub-irrigated sweetpotatoes (Ipomoea batatas (L.) Lam.), periodic surface-irrigated plants, i.e., twice a week on root media, showed increased α-tocopherol content in their tuberous roots with no apparent changes in both of tuberous root development and oxygen concentration around the roots. We speculated that surface irrigation might temporarily cover the tuberous root surface with water and inhibit oxygen movement into the roots, thereby increasing the antioxidant α-tocopherol content, for coping with the slight oxidative stress occurring within the roots. Therefore, we performed 1-3 times instantaneous flooding, with different intervals, which perfectly covered the whole root surface with water, of sweetpotato plants grown in a phytotron glass room (25℃, 70%RH). Electrolyte leakage from the tuberous root flesh cells showed a temporal increase for the flooding treatment, while it immediately recovered within 24 h. Instantaneous flooding did not affect the storage root development in any of the experiments. Apparent increases in the α-tocopherol content were observed during the 3-time flooding at 3-day intervals. Our results suggest that more frequent root surface wetting is necessary for increasing the α-tocopherol content, which is released because of the oxidative stress that occurs within the roots..
5. 江口 壽彦, 田中 宏幸, 吉田 敏, 松岡 健, Influence of Ground Water Level on the Growth of the Medicinal Plant Pinellia ternata Breit. in a Solid Substrate Culture System, The international conference on plant factory 2014, 2014.11, Many crude drugs used in Kampo medicines in Japan represent untapped medicinal resources. Domestication of the wild plants from which these drugs are derived and preservation of their natural habitats are necessary for establishing a stable supply of Kampo medicines. Here, we investigated the influence of the moisture condition of root medium on the growth of Pinellia ternata Breit. by using a sub-irrigation solid substrate culture system. The moisture condition was controlled by maintaining a constant ground water level (GWL). Plants were grown for 15 weeks under a GWL of either 4 cm (GWL-4) or 8 cm (GWL-8) below the corm base in a phytotron glass room at 25°C and 70% relative humidity. The water content of the root media around the corm in GWL-4 was only 1% higher than that in GWL-8. However, water content apparently affected corm enlargement and the development of new bulbils. Relative yield of the corm per plant, compared with the initial weight, was ~400% in GWL-4 and ~200% in GWL-8. The number of bulbils produced in a plant was 13.5 in GWL-4 and 4.4 in GWL-8. The effective ingredient, a kind of water-soluble polysaccharide consisting mainly of arabinose, was about 10% higher in GWL-8 corms than in GWL-4 corms. Moreover, when comparing the two conditions, the relative difference in corm yield was remarkably larger than that observed for the effective ingredient content. Overall, productivity was considered to be higher in GWL-4 than in GWL-8..
6. Toshihiko EGUCHI, Yuji ITO and Satoshi YOSHIDA, Periodical Wetting Increases α-Tocopherol Content in the Tuberous Roots of Sweetpotato (Ipomoea batatas (L.) Lam.), Environment Control in Biology, 50, 3, 297-303, 2012.09, Tuberous root growth and antioxidant contents of 2 sweetpotato (Ipomoea batatas (L.) Lam.) cultivars were examined using 2 different irrigation schemes: surface-irrigation and sub-irrigation. Coarse silica sand was used for root media, which maintained well the gas permeability and water drainage around the roots. The root surface was periodically wetted for watering in the surface-irrigated roots, while the sub-irrigated roots were not. The irrigation methods did not affect the oxygen concentration around the roots. No differences in plant growth were observed between the 2 irrigation methods. However, the content of α-tocopherol in the tuberous root was significantly higher in the ordinary-irrigated roots for both of two cultivars. Thus, the periodical wetting increased the α-tocopherol content in the tuberous root of sweetpotato cultivars without any apparent changes in tuberous root development..
7. Toshihiko EGUCHI, Takehiko SUZUKI, Satoshi YOHSIDA, Ikuo MIYAJIMA, Masaharu KITANO, Time-course Pattern of Carrot Storage Root Growth in a Solid Substrate, Sub-irrigation Culture System, Environment Control in Biology, 49, 4, 177-183, 2011.12.
8. Toshihiko EGUCHI, Satoshi YOSHIDA, Tuberous Root Thickening: A Rapid Response to Hypoxia in Sweetpotato (Ipomoea batatas (L.) Lam.), Environment Control in Biology, 49, 1, 47-50, 2011.03.
9. 江口壽彦・鈴木健彦・宮本英揮・濱古賀道男・吉田 敏・筑紫二郎・北野雅治, 固形培地耕装置における地下水位がニンジンの生育に与える影響
, 植物環境工学, 第21巻(第2号):65-71, 2009.06.
10. Toshihiko EGUCHI, Satoshi YOSHIDA , Effects of Application of Sucrose and Cytokinin to Roots on the Formation of Tuberous Roots in Sweetpotato (Ipomoea batatas (L.) Lam.), Plant Root, Volume 2, p. 7-13, 2008.03, [URL].
11. 江口壽彦・森山修志・宮島郁夫・吉田 敏・筑紫二郎, サツマイモ品種‘すいおう’の茎葉生産に適する養液栽培方式
, 植物環境工学, 第19巻(第4号):167-174, 2007.12.
12. Toshihiko EGUCHI, Satoshi YOSHIDA, Effects of gas exchange inhibition and hypoxia on tuberous root morphogenesis in sweetpotato (Ipomoea batatas (l.) Lam.)., Environment Control in Biology, Volume 45, No. 2, p. 103-111, 2007.06.
13. T. Eguchi and S. Yoshida, A Cultivation Method to Ensure Tuberous Root Formation in Sweetpotatoes (Ipomoea batatas (l.) Lam.)., Environment Control in Biology, Vol. 42(4): 259-266, 2004.12.
14. T. Eguchi, T. Araki, S. Yoshida and M. Kitano, Xylem Sap Backflow from Tomato Fruit under Water Deficit Condition, Acta Horticulturae, 618, 347-351, Vol. 618: 347-351, 2003.12.
15. 江口壽彦,北野雅治,吉田 敏,筑紫二郎, サツマイモ塊根の肥大に対する根温の影響 −直接的および間接的な温度の影響−, 生物環境調節, Vol. 41(1): 43-49, 2003.01.
16. 荒木卓哉,北野雅治,岡野邦夫,吉田 敏,江口壽彦, トマトにおける果実生長および光合成産物の転流の動態に対する環境作用(第3報)−塩ストレスの影響−, 生物環境調節, Vol. 39(1): 53-58, 2001.01.
17. T. Eguchi, A new method for on-line measurement of diurnal change in potato tuber growth under controlled environments, Journal of Experimental Botany, 10.1093/jexbot/51.346.961, 51, 346, 961-964, Vol. 51(346): 961-964, 2000.05.
18. M. Kitano, T. Araki, S. Yoshida and T. Eguchi, Dependence of calcium uptake on water absorption and respiration in roots of tomato plants (Lycopersicon esculentum Mill.), Biotronics, Vol. 28: 121-130, 1999.12.
19. 江口壽彦,北野雅治,江口弘美, サツマイモ塊根の肥大に対する塊根周囲の湿度の影響, 生物環境調節, Vol. 37(3): 197-201, 1999.09.
20. 江口壽彦,北野雅治,江口弘美, サツマイモにおける水分状態と塊根生長速度の動態, 生物環境調節, Vol. 36(2): 91-95, 1998.06.
主要総説, 論評, 解説, 書評, 報告書等
1. Toshihiko EGUCHI, Takuya ARAKI, Masaharu KITANO, Non-contact Measurements of Storage Organ Growth in Fruit and Root Crops., Environment Control in Biology, Volume 45, Number 4, p.251-258., 2007.12.
主要学会発表等
1. 井上幸祐,尾崎行生,水ノ江雄輝,田中宏幸,吉田敏,松岡健,江口壽彦, 日本産薬用植物カラスビシャクの倍数性の変異について, 平成30年日本生物環境工学会・日本農業気象学会九州支部合同都城大会(第12回), 2018.11, 日本各地で採取した薬用植物カラスビシャクの蛍光強度比の調査,花粉直径,花粉発芽率の測定を行った.得られた蛍光強度比から倍数性に変異があることが示されたが,花粉直径・花粉発芽率との相関は見られなかった..
2. 佐川茉由稀,下川響,田中宏幸,吉田敏,松岡健,江口壽彦, 薬用植物カラスビシャクの塊茎肥大と有用成分の蓄積, 平成30年日本生物環境工学会・日本農業気象学会九州支部合同都城大会(第12回), 2018.11, 本邦産薬用薬用植物カラスビシャクの多収系統を温湿度を定値制御した人工気象室で栽培し,塊茎肥大の様相と,それに伴う有用成分の含量の経時変化を調査した。栽培期間が長くなるに伴い塊茎の肥大率,収量等は増加したが,乾物率には栽培期間による有意差は認められなかった。乾燥塊茎1 mg当たりの有用成分含量には栽培期間が長くなるにつれ増加する傾向が見られたが,11週栽培したものと15 週栽培したもののには有意差は認められず,11週以降は有用成分含量の増加が頭打ちとなったと推察された..
3. 江口 壽彦, 田中 宏幸, 吉田 敏, 松岡 健, カラスビシャク種子の貯蔵期間と発芽率, 日本生物環境工学会2017年松山大会, 2017.08.
4. 江口 壽彦, 田中 宏幸, 吉田 敏, 松岡 健, 薬用植物カラスビシャクの生育に及ぼす培養液の影響, 日本生物環境工学会2017年松山大会, 2017.09.
5. 江口 壽彦, 森内大地, 日高功太, 吉田 敏, 松岡 健, カラスビシャク成葉の光合成速度に及ぼす温度の影響, 日本生物環境工学会2016年金沢大会, 2016.09.
6. 江口 壽彦, 田中 宏幸, 吉田 敏, 松岡 健, 薬用植物カラスビシャクの制御環境下での栽培と優良系統の選抜, 日本生物環境工学会2015年宮崎大会, 2015.09.
7. 森内 大地, 日高 功太, 吉田 敏, 松岡 健, 江口 壽彦, 日本産薬用植物カラスビシャクの光合成特性の解析, 日本生物環境工学会2015年宮崎大会, 2015.09.
8. Eguchi, T., Hiroyuki Tanaka, Satoshi YOSHIDA, Ken Matsuoka, Influence of Ground Water Level on the Growth of the Medicinal Plant Pinellia ternata Breit. in a Solid Substrate Culture System, The International Conference on Plant Factory 2014, 2014.11, Many crude drugs used in Kampo medicines in Japan represent untapped medicinal resources. Domestication of the wild plants from which these drugs are derived and preservation of their natural habitats are necessary for establishing a stable supply of Kampo medicines. Here, we investigated the influence of the moisture condition of root medium on the growth of Pinellia ternata Breit. by using a sub-irrigation solid substrate culture system. The moisture condition was controlled by maintaining a constant ground water level (GWL). Plants were grown for 15 weeks under a GWL of either 4 cm (GWL-4) or 8 cm (GWL-8) below the corm base in a phytotron glass room at 25°C and 70% relative humidity. The water content of the root media around the corm in GWL-4 was only 1% higher than that in GWL-8. However, water content apparently affected corm enlargement and the development of new bulbils. Relative yield of the corm per plant, compared with the initial weight, was ~400% in GWL-4 and ~200% in GWL-8. The number of bulbils produced in a plant was 13.5 in GWL-4 and 4.4 in GWL-8. The effective ingredient, a kind of water-soluble polysaccharide consisting mainly of arabinose, was about 10% higher in GWL-8 corms than in GWL-4 corms. Moreover, when comparing the two conditions, the relative difference in corm yield was remarkably larger than that observed for the effective ingredient content. Overall, productivity was considered to be higher in GWL-4 than in GWL-8..
9. 江口 壽彦, 伊藤 祐二, 吉田 敏, 一時的な冠水がサツマイモ塊根に及ぼす影響, 日本生物環境工学会2014年東京大会, 2014.09.
10. 江口 壽彦, 伊藤 祐二, 吉田 敏, 短時間の冠水処理の時期および回数がサツマイモ塊根の抗酸化物質含量に及ぼす影響, 日本生物環境工学会2013年高松大会, 2013.09.
11. 江口壽彦・伊藤祐二・吉田 敏, サツマイモ塊根α-トコフェロール含量と短時間の冠水処理, 日本生物環境工学会2012年東京大会, 2012.09.
12. 江口壽彦・伊藤祐二・吉田 敏, 灌水法の違いがサツマイモ塊根に及ぼす影響, 日本生物環境工学会2011年札幌大会, 2011.09.
13. 江口壽彦・吉田 敏, 低酸素処理によるサツマイモ塊根肥大の変化, 日本生物環境工学会2010年京都大会, 2010.09.
14. Toshihiko EGUCHI, Non-contact measurements of storage organ growth in fruit and root crops., Japanese Society of Agricultural, Biological and Enironmental Engineers and Scientists (JSABEES), 2007.06.
15. 江口壽彦,吉田 敏, サツマイモ根に施用したスクロースおよびサイトカイニンが塊根形成に及ぼす影響, 第26回根研究集会, 2007.05.
16. 江口壽彦,吉田 敏, サツマイモの塊根形成に関する環境生理学的研究(4)低酸素化での根の発達, 農業環境工学関連7学会2006年合同大会, 2006.09.
学会活動
所属学会名
日本作物学会
日本生物環境工学会
園芸学会
根研究学会
国際園芸学会
学協会役員等への就任
2019.01~2020.12, 日本生物環境工学会, 理事.
2017.01~2018.12, 日本生物環境工学会, 理事.
2015.01~2016.12, 日本生物環境工学会, 理事.
2013.01~2014.12, 日本生物環境工学会, 理事.
2011.01~2012.12, 日本生物環境工学会, 理事.
2009.01~2010.12, 日本生物環境工学会, 評議員.
2007.01~2008.12, 日本生物環境工学会, 幹事.
2007.01~2008.12, 日本生物環境工学会, 評議員.
2009.01~2010.12, 日本生物環境工学会, 理事.
2005.01~2006.12, 日本生物環境調節学会, 理事.
2000.01~2001.12, 日本生物環境調節学会, 評議員.
学会大会・会議・シンポジウム等における役割
2016.09.12~2016.09.15, 日本生物環境工学会2016年金沢大会, 座長(Chairmanship).
2015.09.08~2015.09.11, 日本生物環境工学会2015年宮崎大会, 座長(Chairmanship).
2014.11.20~2013.11.21, 平成26年日本生物環境工学会・日本農業気象学会九州支部合同大会(第8回), 座長(Chairmanship).
2013.11.23~2013.11.24, 平成25年日本生物環境工学会・日本農業気象学会九州支部合同大会(第7回), 座長(Chairmanship).
2012.09.04~2012.09.07, 日本生物環境工学会2012年東京大会, 座長(Chairmanship).
2011.09.06~2011.09.08, 日本生物環境工学会2011年札幌大会, 座長(Chairmanship).
2010.09.08~2010.09.10, 日本生物環境工学会2010年京都大会, 座長(Chairmanship).
2009.09.05~2009.09.08, 日本生物環境工学会2009年福岡大会, 座長(Chairmanship).
2008.11.21~2008.11.22, 平成20年日本生物環境工学会・日本農業気象学会九州支部合同大会(第2回), 座長(Chairmanship).
2007.11.01~2007.11.02, 平成19年日本生物環境工学会・日本農業気象学会九州支部合同大会(第1回), 座長(Chairmanship).
2006.11.01~2006.11.02, 平成18年度日本生物環境調節学会九州支部集会, 座長(Chairmanship).
2005.11.01~2005.11.02, 日本生物環境調節学会九州支部第4回集会, 座長(Chairmanship).
2004.09.01~2004.09.03, 農業環境工学関連4学会2004年合同大会, 座長(Chairmanship).
2003.11.01~2003.11.02, 日本生物環境調節学会九州支部第2回集会, 座長(Chairmanship).
2002.11.01~2002.11.02, 日本生物環境調節学会九州支部第1回集会, 座長(Chairmanship).
1999.07.01~1999.07.03, 日本生物環境調節学会1999年大会, 座長(Chairmanship).
2009.09.05~2009.09.08, 日本生物環境工学会2009年福岡大会, 実行委員.
2004.09.01~2004.09.03, 農業環境工学関連四学会2004年大会, 実行委員.
学会誌・雑誌・著書の編集への参加状況
2019.01~2020.12, Environmental Control in Biology, 国際, Vice Editor-in-Chief.
2017.01~2018.12, Environmental Control in Biology, 国際, Vice Editor-in-Chief.
2015.01~2016.12, Environmental Control in Biology, 国際, Vice Editor-in-Chief.
2011.01~2017.12, Environment Control in Biology, 国際, 編集委員.
2010.01~2019.12, 植物環境工学, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2019年度    
2018年度      
2017年度    
2016年度      
2015年度    
2014年度      
2013年度      
2012年度    
2011年度    
2010年度    
2009年度      
2008年度      
2007年度      
2004年度        
2003年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
Vietnum National University - Ho Chi Minh City, College of Aquaculture and Fisheries, Can Tho University, Vietnam, 2017.05~2017.05.
Jülich Plant Phenomics Centre, Lemna Tech, Wageningen UR, Germany, Netherlands, 2015.02~2015.02.
受賞
学術賞, 日本生物環境工学会, 2018.09.
生物環境システム科学賞, 日本生物環境工学会, 2015.09.
論文賞, 日本生物環境工学会, 2014.09.
論文賞, 日本生物環境工学会, 2012.09.
50周年記念貢献賞, 日本生物環境工学会, 2012.09.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2017年度~2019年度, 基盤研究(B), 分担, 作物生産場における局所適時環境調節の最適設計と実装.
2017年度~2019年度, 基盤研究(C), 代表, 薬用植物カラスビシャクの国産化を目指した至適栽培条件の探索と結実制御法の確立.
2013年度~2015年度, 基盤研究(C), 分担, 機能性多糖高含有カラスビシャクの選抜と高効率生産を目指した基礎研究.
2012年度~2014年度, 基盤研究(C), 代表, 酸素ストレスを応用した高機能性根菜類生産のための新規環境調節に関する研究.
2011年度~2011年度, 基盤研究(B), 分担, 乾燥地の塩類化農地における持続可能な植物生産と塩類動態制御.
2011年度~2013年度, 基盤研究(B), 分担, 気候変動下の植物生産における夜温の生理生態的評価と省エネルギー管理.
2008年度~2010年度, 基盤研究(B), 分担, 農産物の高品質化と高収益生産を目指した気象資源の探索と有効利用.
2003年度~2004年度, 基盤研究(C), 代表, 環境調節によるサツマイモ塊根形成遺伝子発現の制御.
競争的資金(受託研究を含む)の採択状況
2014年度~2015年度, 研究成果最適展開支援プログラム(A-STEP)【FS】探索タイプ, 代表, 国内生産量ゼロの漢方薬「半夏」原料カラスビシャクの栽培植物化技術の開発.
寄附金の受入状況
2011年度, サントリー酒類株式会社, 生物環境利用推進センター研究資金.
2009年度, サントリービジネスエキスパート株式会社, 生物環境調節センター研究資金.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」