九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動 病院臨床活動
吾郷 哲朗(あごう てつろう) データ更新日:2023.06.27

准教授 /  医学研究院 臨床医学部門 医学研究院・病態機能内科学


主な研究テーマ
脳血管障害発症後の修復・再生機構の解明
キーワード:脳梗塞,神経機能再生,内皮細胞,ペリサイト,間葉系幹細胞,グリア, マクロファージ
2008.04.
レドックスによる心血管疾患発症および修復機構の解明
キーワード:レドックス,NADPHオキシダーゼ,抗酸化タンパク質,動脈硬化
2001.04.
脳卒中データベースの確立と脳卒中の病態解明に関する研究

キーワード:脳卒中データベース、多施設共同研究
2008.04.
脳血管障害の遺伝的要因・バイオマーカーの探索
キーワード:脳梗塞,バイオマーカー,遺伝子,タンパク質
2008.04.
食細胞NADPH oxidaseの活性化機構の解明 とくにp47phoxの立場から
キーワード:食細胞NADPH oxidase
1996.04~2002.03.
従事しているプロジェクト研究
脳梗塞・修復機構の解明と再生治療の探索
2008.04, 代表者:吾郷哲朗.
Fukuoka Stroke Registry
2007.04, 代表者:北園孝成, 鴨打正浩, 九州大学大学院医学研究院病態機能内科学.
脳・心疾患におけるNox4の役割解明
2008.04, 代表者:Junichi Sadoshima, UMDNJ-New Jersey Medical School
心血管疾患におけるNox4の役割解明.
レドックスによる血管内皮細胞の機能および病態の制御
2009.04~2013.03, 代表者:吾郷哲朗.
レドックスナビ研究拠点 若手育成事業
2010.04~2017.03, 代表者:吾郷哲朗
脳梗塞におけるペリサイトの役割解明.
研究業績
主要著書
主要原著論文
1. Shibahara T, Nakamura K, Wakisaka Y, Tachibana M, Makihara N, Kitazono T, Ago T, PDGFRβ-positive cell-mediated post-stroke remodeling of fibronectin and laminin α 2 for tissue repair and functional recovery., J Cereb Blood Flow Metab, 43, 4, 518-530, 2023.04.
2. Yamanaka K, Nakamura K, Shibahara T, Takashima M, Takaki H, Hidaka M, Komori M, Yoshikawa Y, Wakisaka Y, Ago T, Kitazono T, Deletion of Nox4 enhances remyelination following cuprizone-induced demyelination by increasing phagocytic capacity of microglia and macrophages in mice, Glia, 2023.03.
3. Kiyohara T, Matsuo R, Hata J, Nakamura K, Wakisaka Y, Kamouchi M, Kitazono T, Ago T, beta-Cell Function and Clinical Outcome in Nondiabetic Patients With Acute Ischemic Stroke, STROKE, 10.1161/STROKEAHA.120.031392, 52, 8, 2621-2628, 2021.08.
4. Shibahara T, Ago T, et al. , Reciprocal Interaction Between Pericytes and Macrophage in Poststroke Tissue Repair and Functional Recovery, STROKE, 10.1161/STROKEAHA.120.029827, 51, 10, 3095-3106, 2020.10, BACKGROUND AND PURPOSE: Poststroke tissue repair, comprised of macrophage-mediated clearance of myelin debris and pericyte-mediated fibrotic response within the infarct area, is an important process for functional recovery. Herein, we investigated the reciprocal interaction between pericytes and macrophages during poststroke repair and functional recovery. METHODS: We performed a permanent middle cerebral artery occlusion in both wild-type and pericyte-deficient PDGFRbeta (platelet-derived growth factor receptor beta) heterozygous knockout (Pdgfrb(+/-)) mice and compared histological changes and neurological functions between the 2 groups. We also examined the effects of conditioned medium harvested from cultured pericytes, or bone marrow-derived macrophages, on the functions of other cell types. RESULTS: Localization of PDGFRbeta-positive pericytes and F4/80-positive macrophages was temporally and spatially very similar following permanent middle cerebral artery occlusion. Intrainfarct accumulation of macrophages was significantly attenuated in Pdgfrb(+/-) mice. Intrainfarct pericytes expressed CCL2 (C-C motif ligand 2) and CSF1 (colony stimulating factor 1), both of which were significantly lower in Pdgfrb(+/-) mice. Cultured pericytes expressed Ccl2 and Csf1, both of which were significantly increased by PDGF-BB and suppressed by a PDGFRbeta inhibitor. Pericyte conditioned medium significantly enhanced migration and proliferation of bone marrow-derived macrophages. Poststroke clearance of myelin debris was significantly attenuated in Pdgfrb(+/-) mice. Pericyte conditioned medium promoted phagocytic activity in bone marrow-derived macrophages, also enhancing both STAT3 (signal transducer and activator of transcription 3) phosphorylation and expression of scavenger receptors, Msr1 and Lrp1. Macrophages processing myelin debris produced trophic factors, enhancing PDGFRbeta signaling in pericytes leading to the production of ECM (extracellular matrix) proteins and oligodendrogenesis. Functional recovery was significantly attenuated in Pdgfrb(+/-) mice, parallel with the extent of tissue repair. CONCLUSIONS: A reciprocal interaction between pericytes and macrophages is important for poststroke tissue repair and functional recovery..
5. Shibahara T, Ago T, et al., Pericyte-Mediated Tissue Repair through PDGFRbeta Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke, eNeuro, 10.1523/ENEURO.0474-19.2020, 2020.03.
6. Matsuo R, Ago T, et al. , Smoking Status and Functional Outcomes After Acute Ischemic Stroke, STROKE, 10.1161/STROKEAHA.119.027230, 51, 3, 846-852, 2020.03, Background and Purpose- Smoking is an established risk factor for stroke; however, it is uncertain whether prestroke smoking status affects clinical outcomes of acute ischemic stroke. This study aimed to elucidate the association between smoking status and functional outcomes after acute ischemic stroke. Methods- Using a multicenter hospital-based stroke registry in Japan, we investigated 10 825 patients with acute ischemic stroke hospitalized between July 2007 and December 2017 who had been independent before stroke onset. Smoking status was categorized into those who had never smoked (nonsmokers), former smokers, and current smokers. Clinical outcomes included poor functional outcome (modified Rankin Scale score >/=2) and functional dependence (modified Rankin Scale score 2-5) at 3 months. We adjusted for potential confounding factors using a logistic regression analysis. Results- The mean age of patients was 70.2+/-12.2 years, and 37.0% were women. There were 4396 (42.7%) nonsmokers, 3328 (32.4%) former smokers, and 2561 (24.9%) current smokers. The odds ratio (95% CI) for poor functional outcome after adjusting for confounders increased in current smokers (1.29 [1.11-1.49] versus nonsmokers) but not in former smokers (1.05 [0.92-1.21] versus nonsmokers). However, among the former smokers, the odds ratio of poor functional outcome was higher in those who quit smoking within 2 years of stroke onset (1.75 [1.15-2.66] versus nonsmokers). The risk of poor functional outcome tended to increase as the number of daily cigarettes increased in current smokers (P for trend=0.002). All these associations were maintained for functional dependence. Conclusions- Current and recent smoking is associated with an increased risk of unfavorable functional outcomes at 3 months after acute ischemic stroke. Registration- URL: http://www.fukuoka-stroke.net/english/index.html. Unique identifier: 000000800..
7. Kuniyuki Nakamura, Tomoko Ikeuchi, Kazuki Nara, Craig S. Rhodes, Peipei Zhang, Yuta Chiba, Saiko Kazuno, Yoshiki Miura, Tetsuro Ago, Eri Arikawa-Hirasawa, Yoh Suke Mukouyama, Yoshihiko Yamada, Perlecan regulates pericyte dynamics in the maintenance and repair of the blood-brain barrier, The Journal of cell biology, 10.1083/jcb.201807178, 218, 10, 3506-3525, 2019.10, [URL], Ischemic stroke causes blood-brain barrier (BBB) breakdown due to significant damage to the integrity of BBB components. Recent studies have highlighted the importance of pericytes in the repair process of BBB functions triggered by PDGFRβ up-regulation. Here, we show that perlecan, a major heparan sulfate proteoglycan of basement membranes, aids in BBB maintenance and repair through pericyte interactions. Using a transient middle cerebral artery occlusion model, we found larger infarct volumes and more BBB leakage in conditional perlecan (Hspg2)-deficient (Hspg2-/--TG) mice than in control mice. Control mice showed increased numbers of pericytes in the ischemic lesion, whereas Hspg2-/--TG mice did not. At the mechanistic level, pericytes attached to recombinant perlecan C-terminal domain V (perlecan DV, endorepellin). Perlecan DV enhanced the PDGF-BB-induced phosphorylation of PDGFRβ, SHP-2, and FAK partially through integrin α5β1 and promoted pericyte migration. Perlecan therefore appears to regulate pericyte recruitment through the cooperative functioning of PDGFRβ and integrin α5β1 to support BBB maintenance and repair following ischemic stroke..
8. Yoji Yoshikawa, Tetsuro Ago, Junya Kuroda, Yoshinobu Wakisaka, Masaki Tachibana, Motohiro Komori, Tomoya Shibahara, Hideyuki Nakashima, Kinichi Nakashima, Takanari Kitazono, Nox4 Promotes Neural Stem/Precursor Cell Proliferation and Neurogenesis in the Hippocampus and Restores Memory Function Following Trimethyltin-Induced Injury, Neuroscience, 10.1016/j.neuroscience.2018.11.046, 398, 193-205, 2019.02, [URL], Reactive oxygen species (ROS) modulate the growth of neural stem/precursor cells (NS/PCs) and participate in hippocampus-associated learning and memory. However, the origin of these regulatory ROS in NS/PCs is not fully understood. In the present study, we found that Nox4, a ROS-producing NADPH oxidase family protein, is expressed in primary cultured NS/PCs and in those of the adult mouse brain. Nox inhibitors VAS 2870 and GKT137831 or Nox4 deletion attenuated bFGF-induced proliferation of cultured NS/PCs, while lentivirus-mediated Nox4 overexpression increased the production of H 2 O 2 , the phosphorylation of Akt, and the proliferation of cultured NS/PCs. Nox4 did not significantly affect the potential of cultured NS/PCs to differentiate into neurons or astrocytes. The histological and functional development of the hippocampus appeared normal in Nox4 / mice. Although pathological and functional damages in the hippocampus induced by the neurotoxin trimethyltin were not significantly different between wild-type and Nox4 / mice, the post-injury reactive proliferation of NS/PCs and neurogenesis in the subgranular zone (SGZ) of the dentate gyrus were significantly impaired in Nox4 / animals. Restoration from the trimethyltin-induced impairment in recognition and spatial working memory was also significantly attenuated in Nox4 / mice. Collectively, our findings suggest that Nox4 participates in NS/PC proliferation and neurogenesis in the hippocampus following injury, thereby helping to restore memory function..
9. Motohiro Komori, Tetsuro Ago, Yoshinobu Wakisaka, Kuniyuki Nakamura, Masaki Tachibana, Yoji Yoshikawa, Tomoya Shibahara, Kei Yamanaka, Junya Kuroda, Takanari Kitazono, Early initiation of a factor Xa inhibitor can attenuate tissue repair and neurorestoration after middle cerebral artery occlusion, Brain Research, 10.1016/j.brainres.2019.05.020, 1718, 201-211, 2019.09, [URL], The timing of anti-coagulation therapy initiation after acute cardioembolic stroke remains controversial. We investigated the effects of post-stroke administration of a factor Xa inhibitor in mice, focusing on tissue repair and functional restoration outcomes. We initiated administration of rivaroxaban, a Xa inhibitor, immediately after permanent distal middle cerebral artery occlusion (pMCAO)in CB-17 mice harboring few leptomeningeal anastomoses at baseline. Rivaroxaban initiated immediately after pMCAO hindered the recovery of blood flow in ischemic areas by inhibiting leptomeningeal anastomosis development, and led to impaired restoration of neurologic functions with less extensive peri-infarct astrogliosis. Within infarct areas, angiogenesis and fibrotic responses were attenuated in rivaroxaban-fed mice. Furthermore, inflammatory responses, including the accumulation of neutrophils and monocytes/macrophages, local secretion of pro-inflammatory cytokines, and breakdown of the blood–brain barrier, were enhanced in infarct areas in mice treated immediately with rivaroxaban following pMCAO. The detrimental effects were not found when rivaroxaban was initiated after transient MCAO or on day 7 after pMCAO. Collectively, early post-stroke initiation of a factor Xa inhibitor may suppress leptomeningeal anastomosis development and blood flow recovery in ischemic areas, thereby resulting in attenuated tissue repair and functional restoration unless occluded large arteries are successfully recanalized..
10. Tetsuro Ago, ペリサイトは脳機能にとってなぜ重要なのか?, Clinical Neurology, 10.5692/clinicalneurol.cn-001357, 59, 11, 707-715, 2019.01, [URL], Pericytes are mural cells embedded in the basal membrane surrounding endothelial cells in capillary and small vessels (from precapillary arterioles to postcapillary venules). They exist with a high coverage ratio to endothelial cells in the brain and play crucial roles in the formation and maintenance of the blood-brain barrier and the control of blood flow through a close interaction with endothelial cells. Thus, intactness of pericyte is absolutely needed for neuronal/ brain functions. Ageing, life-style diseases, hypoperfusion/ischemia, drugs, and genetic factors can primarily cause pericyte dysfunctions, thereby leading to the development or progression of various brain disorders, including cerebrovascular diseases. Because pericytes also play an important role in tissue repair after brain injuries, they have received much attention as a therapeutic target even from the standpoint of functional recovery..
11. Ago T, Matsuo R, Hata J, Wakisaka Y, Kuroda J, Kitazono T, Kamouchi M. Insulin resistance and clinical outcomes after ischemic stroke., Insulin resistance and clinical outcomes after ischemic stroke., Neurology, 90, 17, 1470-1477, 2018.05, インスリン抵抗性と脳梗塞発症後機能転帰の関連について検討した.本検討では4,655名の急性期脳梗塞患者(平均年齢70.3歳,男性63,5%,入院前自立,発症7日以内,入院前-中にインスリン治療を受けていない患者)について解析している.
入院後,空腹時血糖およびインスリン値によって計算されたHOMA-IRをインスリン抵抗性の指標として用いた.入院後の神経増悪の有無,3ヶ月後の転帰不良(mRS 3以上),及び 3ヶ月後再発・死亡との関連について解析した.
HOMA-IRを値の低い方から5群(Q1-Q5)にわけ,Q1を基準とすると,Q5では入院中の神経症候改善率が低く(オッズ比 0.68 [95% confidence interval, 0.56–0.83],転帰不良となるオッズ比が高値であった(2.02 [1.52–2.68]).
3ヶ月後の再発や死亡との関連は認められなかった.非糖尿病・非肥満の患者群でもこの関連は維持された.年齢,性,脳梗塞病型・重症度別に層別解析を行ったが異質性は認められなかった..
12. Rainer Malik, Ganesh Chauhan, Matthew Traylor, Muralidharan Sargurupremraj, Yukinori Okada, Aniket Mishra, Loes Rutten-Jacobs, Anne Katrin Giese, Sander W. Van Der Laan, Solveig Gretarsdottir, Christopher D. Anderson, Michael Chong, Hieab H.H. Adams, Tetsuro Ago, Peter Almgren, Philippe Amouyel, Hakan Ay, Traci M. Bartz, Oscar R. Benavente, Steve Bevan, Giorgio B. Boncoraglio, Robert D. Brown, Adam S. Butterworth, Caty Carrera, Cara L. Carty, Daniel I. Chasman, Wei Min Chen, John W. Cole, Adolfo Correa, Ioana Cotlarciuc, Carlos Cruchaga, John Danesh, Paul I.W. De Bakker, Anita L. Destefano, Marcel Den Hoed, Qing Duan, Stefan T. Engelter, Guido J. Falcone, Rebecca F. Gottesman, Raji P. Grewal, Vilmundur Gudnason, Stefan Gustafsson, Jeffrey Haessler, Tamara B. Harris, Ahamad Hassan, Aki S. Havulinna, Susan R. Heckbert, Elizabeth G. Holliday, George Howard, Fang Chi Hsu, Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes, Nature genetics, 10.1038/s41588-018-0058-3, 50, 4, 524-537, 2018.04, [URL], Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy..
13. Tachibana M, Ago T, Wakisaka Y, Kuroda J, Kitazono T, Early reperfusion after brain ischemia has beneficial effects beyond rescuing neurons, Stroke, 2017.08.
14. Nishimura A, Ago T, Kuroda J, et al., Detrimental role of pericyte Nox4 in the acute phase of brain ischemia., J Cereb Blood Flow Metab, 36, 6, 1143-1154, 2016.06.
15. Nakamura K, Arimura K, Ago T, et al., Possible involvement of basic FGF in the upregulation of PDGFR beta in pericytes after ischemic stroke, BRAIN RESEARCH, 10.1016/j.brainres.2015.11.003, 1630, 98-108, 2016.01.
16. Makihara N, Ago T, et al., Involvement of platelet-derived growth factor receptor β in fibrosis through extracellular matrix protein production after ischemic stroke, Exp Neurol, 2015.02.
17. Ago T, Kitazono T, Brain pericyte in health and cerebrovascular diseases., 福岡医学雑誌, 2014.06.
18. Ishitsuka K, Ago T(Corresponding author), Arimura K, Nakamura K, Tokami H, Makihara N, Kuroda J, Kamouchi M, Kitazono T., Neurotrophin production in brain pericytes during hypoxia: a role of pericytes for neuroprotection, Microvascular Research, 83, 3, 352-9, 2012.05.
19. Arimura K, Ago T(Corresponding author), Kamouchi M, Nakamura K, Ishitsuka K, Kuroda J, Sugimori H, Ooboshi H, Sasaki T, Kitazono T., PDGF receptor β signaling in pericytes following ischemic brain injury, Current Neurovascular Research, 9, 1, 1-9, 2012.02.
20. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J, NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart., PNAS, 107, 35, 15565-70, 2010.08.
21. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J., Upregulation of Nox4 by Hypertrophic Stimuli Promotes Apoptosis and Mitochondrial Dysfunction in Cardiac Myocytes., Circulation Research, 2010.04.
22. Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, Vatner SF, Sadoshima J., A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy., Cell, 133 (6), 978-993, 2008.06.
23. Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M, NAD(P)H oxidases in rat basilar arterial endothelial cells, Stroke, 10.1161/01.STR.0000163111.05825.0b, 36, 5, 1040-1046, 36(5): 1040-1046 , 2005.05.
24. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M. , Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase., Circulation, 10.1161/01.CIR.0000105680.92873.70, 109, 2, 227-233, 109(2): 227-233., 2004.01.
25. Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D, Sumimoto H. , Phosphorylation of p47phox directs PX domain from SH3 domain towards phosphoinositides, leading to phagocyte NADPH oxidase activation. , PNAS, 10.1073/pnas.0735712100, 100, 8, 4474-4479, 100(8): 4474-9., 2003.04.
26. Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D. , Solution structure of the PX domain, a target of the SH3 domain. , Nature Structural Biology, 10.1038/88591, 8, 6, 526-530, 8, 526-30 , 2001.08.
27. Ago T, Nunoi H, Ito T, Sumimoto H., Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47phox, thereby activating the oxidase. , J Biol Chem , 10.1074/jbc.274.47.33644, 274, 47, 33644-33653, 274(47): 33644-33653., 1999.11.
主要総説, 論評, 解説, 書評, 報告書等
1. 吾郷哲朗, 「発展する脳卒中診療の最前線」Neurovascular unit - 脳梗塞発症から機能回復まで., 医学のあゆみ, 2022.03.
2. 吾郷哲朗, 脳血管障害のリスクコントロール, 診断と治療, 2021.05.
3. 吾郷哲朗, ペリサイトは脳機能にとってなぜ重要なのか?, 臨床神経, 2019.11.
4. 吾郷哲朗, ペリサイトを標的とした脳血管障害治療の可能性., 日本臨床, 2019.06.
5. 吾郷 哲朗, The neurovascular unit in health and ischemic stroke, 日本臨床, 2016.04.
6. 吾郷 哲朗, なぜ周皮細胞か?—脳梗塞病対における周皮細胞の挙動とその重要性—, 脳循環代謝, 2016.02.
7. 吾郷 哲朗, 虚血性脳卒中治療の基礎的研究の進歩, 動脈硬化予防, 2016.01.
8. 吾郷 哲朗, 脳梗塞のバイオマーカー, Heart View, 2015.12.
9. 吾郷 哲朗, 血液脳関門/Neurovascular unitの 形成・維持における脳ペリサイトの重要性, 2013.09.
10. Kamouchi M, Ago T, Kuroda J, Kitazono T. , The possible roles of brain pericytes in brain ischemia and stroke, Cell Mol Neurobiol, 2012.03.
11. Ago T, Kuroda J, Kamouchi M, Sadoshima J, Kitazono T. , Pathophysiological Roles of NADPH Oxidase/Nox Family Proteins in the Vascular System – Review and Perspective – , Circulation Journal , 2011.07.
12. Kamouchi M, Ago T, Kitazono T., Brain pericytes: emerging concepts and functional roles in brain homeostasis., Cell Mol Neurobiol. , 2011.03.
13. Ago T, Matsushima S, Kuroda J, Zablocki D, Kitazono T, Sadoshima J., The NADPH oxidase Nox4 and aging in the heart, Aging, 2010.12.
14. Ago T, Sadoshima J. , Thioredoxin1 as a negative regulator of cardiac hypertrophy. , 2007.06.
15. 立花 正輝, 吾郷 哲朗, 脳梗塞と血液検査, 日本臨床.
16. 中村 晋之, 吾郷 哲朗, 脳微小循環とneurovascular unit. 内皮細胞・周皮細胞の立場から, 日本臨床.
主要学会発表等
1. Tetsuro Ago, Roles of Pericyte in brain health and cerebrovascular diseases (Pericytes -Functional diversity and commonality in health and disease), 第100回日本生理学会大会, 2023.03.
2. 吾郷哲朗, 意外と知らない脳梗塞の基本病態〜基礎研究から学ぶ. , 第5回 日本神経学会特別教育研修会:脳卒中コース, 2022.07.
3. Ago T, Reciprocal interaction between pericytes and macrophage in post-stroke tissue repair and functional recovery. “High Impact Articles in Post-stroke Outcomes 2020, International Stroke Conference 2021, 2021.03.
4. 吾郷 哲朗, 脳虚血病態におけるペリサイトの役割, 第56回日本神経学会学術大会, 2015.05.
5. 吾郷 哲朗, 活性酸素種産生酵素Nox4による内皮・周皮細胞の分子制御とその意義, 脳心血管抗加齢研究会, 2014.12.
6. Ago T, Role of pericytes in neuroprotection during brain ischemia, BRI International Symposium 2012, 2012.03.
7. Arimura K, Ago T, et al., Neuroprotective Roles of Brain Pericytes through PDGFRβ-Akt Signaling in Ischemic Stroke
, International Stroke Conference 2012, 2012.02.
8. Arimura K, Ago T, Role of NADPH oxidase 4 in Brain Endothelial Cells after Ischemic Stroke
, International Stroke Conference 2012, 2012.02.
9. Arimura K, Ago T, et al, Roles of PDGF–PDGF-Rβ Signaling in Brain Pericytes in Ischemic Stroke, International Stroke Conference 2011, 2011.02.
10. Ago T, Nox4 is a major source of ROS in the failing heart, Gordon Research Conference on Nox family NADPH oxidases 2010, 2010.06, [URL].
11. Ago T, Liu T, Li H, Molkentin J, Sadoshima J, Redox-mediated regulation of HDAC4, a class II HDAC, by Thioredoxin1 through interaction with DnaJb5, a Heat Shock Protein 40., AHA Scientific Session 2007, 2007.11, [URL].
特許出願・取得
特許出願件数  0件
特許登録件数  3件
学会活動
所属学会名
日本内科学会
日本脳卒中学会
日本脳循環代謝学会
日本心血管脳卒中学会
日本認知症学会
日本再生医療学会
日本神経学会
日本老年学会
American Heart Association, Stroke council & Basic CardioVascular Science council
International Society of Cerebral Blood Flow & Metabolism
学協会役員等への就任
2021.06~2023.05, 日本神経学会, 学術大会学術委員.
2015.04~2021.05, 日本脳卒中学会, 評議員.
2017.06, 日本心血管脳卒中学会, 評議員.
2017.11~2021.05, 日本脳循環代謝学会, 幹事.
2012.07~2021.05, Stroke (AHA), 運営委員.
2016.04, International Society of Cerebral Blood Flow and Metabolism, Membership.
2019.08, The Mt. Fuji Workshop on CVD , 幹事.
学会大会・会議・シンポジウム等における役割
2023.05.31~2022.06.03, 第64回日本神経学会学術大会, 座長.
2022.06.01~2023.06.03, 第64回日本神経学会学術大会 , 年次学術委員.
2023.03.16~2023.03.18, 第48回日本脳卒中学会学術集会, 座長・講演.
2022.05.18~2022.05.21, 第63回日本神経学会学術大会, 座長.
2021.06.01~2022.06.03, 第63回日本神経学会学術大会, 年次学術委員.
2022.10.30~2022.10.30, 第65回日本脳循環代謝学会総会, 座長.
2022.08.27~2022.08.27, 第40回 The Mt. Fuji Workshop on CVD, 座長.
2022.02.19~2022.02.19, 第32回日本老年医学会九州地方会, 座長.
2022.03.17~2022.03.17, 第47回日本脳卒中学会学術集会, 講演.
2022.01.24~2022.01.24, 第47回日本脳卒中学会学術集会, 座長.
2021.11.26~2021.11.26, 第37回日本脳神経血管内治療学会, 講演.
2021.10.24~2021.10.24, 第74回日本自律神経学会総会, シンポジスト.
2021.10.15~2021.10.15, 第43回日本高血圧学会総会, シンポジスト.
2021.10.09~2021.10.09, 第65回日本内科学会信越支部主催生涯教育講演会, 講演.
2021.03.17~2021.03.17, International Stroke Conference 2021, シンポジスト.
2021.03.12~2021.03.12, 第46回日本脳卒中学会学術集会, シンポジスト.
2021.03.16~2021.03.16, 第46回日本脳卒中学会学術集会, 座長.
2019.11.14~2019.11.14, 9th Japan Korea Joint Stroke Conference, シンポジスト, 座長.
2019.10.30~2019.10.30, 第62回日本脳循環代謝学会総会, 座長.
2019.03.16~2019.03.16, 第44回日本脳卒中学会学術集会, 座長.
2018.03.09~2018.03.09, 第29回日本老年医学会九州地方会, 座長(Chairmanship).
2018.03.30~2018.03.30, 第95回日本生理学会大会, シンポジスト.
2017.03.30~2017.03.30, 第94回日本生理学会大会, シンポジスト.
2017.03.16~2017.03.16, 第42回日本脳卒中学会学術集会, シンポジスト.
2016.08.20~2016.08.20, 第20回眼創傷治癒研究会, 特別公演.
2016.08.06~2016.08.06, Vas-Cog Japan 2016, シンポジスト.
2015.12.02~2015.12.02, BMB2015, シンポジスト.
2015.10.30~2015.10.30, 第27回日本脳循環代謝学会総会, シンポジウム.
2015.10.14~2015.10.14, 第74回日本脳神経外科学会学術総会, シンポジスト.
2015.07.31~2015.07.31, CVIT2015, 教育講演.
2015.07.03~2015.07.03, 第31回日本DDS学会学術集会, シンポジスト.
2015.05.21~2015.05.21, 第56回日本神経学会学術大会, 教育講演.
2015.03.27~2015.03.27, 日本脳卒中学会総会2015, 教育講演.
2015.03.07~2015.03.07, 第25回日本老年学会九州地方会, 座長(Chairmanship).
2015.01.10~2015.01.10, 第308回日本内科学会九州地方会, 座長(Chairmanship).
2014.12.05~2014.12.05, 脳心血管抗加齢研究会, シンポジスト.
2014.11.21~2014.11.22, 第26回日本脳循環代謝学会総会, シンポジスト.
2014.09.13~2014.09.13, 第24回脳血管シンポジウム, シンポジスト.
2014.05.18~2014.05.18, 第34回脳神経外科コングレス総会, シンポジスト.
2014.03.14~2014.03.14, 日本脳卒中学会総会2014, シンポジスト.
2014.03.14~2014.03.14, 第39回日本脳卒中学会総会 Stroke2014, 座長(Chairmanship).
2014.01.19~2014.01.19, 第304回日本内科学会九州地方会, 座長(Chairmanship).
2013.11.02~2014.11.02, 第25回日本脳循環代謝学会総会, 座長(Chairmanship).
2013.05.29~2013.06.01, 第54回日本神経学会学術大会, 座長(Chairmanship).
2013.03.09~2013.03.09, 第23回日本老年医学会九州地方会, 座長(Chairmanship).
2012.07.19~2012.07.21, 第44回日本動脈硬化学会総会: 脳動脈硬化から脳虚血へ~その分子メカニズムを探る~, シンポジスト.
2012.04.26~2012.04.28, 第37回日本脳卒中学会総会 Stroke2012, 座長(Chairmanship).
2012.04.25~2012.04.27, 日本脳卒中学会総会2012(福岡) 脳卒中最先端の基礎研究から, シンポジスト.
2012.03.02~2012.03.03, 第2回新潟大学脳研究所共同研究拠点国際シンポジウム, シンポジスト.
2009.11.01~2009.11.03, 第21回日本脳循環代謝学会総会, 座長(Chairmanship).
学会誌・雑誌・著書の編集への参加状況
2020.07, Stroke (AHA), 国際, 編集委員.
2011.01~2019.12, American Journal of Physiology - Heart and Circulatory Physiology, 国際, 査読委員.
2015.04~2020.03, Journal of Stroke and Cerebrovascular Disease, 国際, 査読委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2022年度 23    30  60  113 
2021年度 20    20  56  96 
2020年度 29      48  77 
2019年度 20        20 
2018年度 24        24 
2017年度 24    20    44 
2016年度 15        15 
2015年度 19        19 
2014年度 16        16 
2013年度 24        24 
2012年度 36      40 
2011年度 24        24 
2010年度      
2009年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
UMDNJ-New Jersey Medical School, UnitedStatesofAmerica, 2005.04~2008.03.
受賞
日本脳循環代謝学会・学会賞, 日本脳循環代謝学会, 2018.11.
The Louis N. and Arnold M. Katz Basic Science Research Prize for Young Investigators, American Heart Association, 2007.11.
AHA postdoctoral fellowship, AHA, 2006.10.
Oxygen Club of Greater Washington DC Young Investigator Award, Oxygen Club of Greater Washington DC, 2006.10.
上原記念生命科学財団・海外留学リサーチフェローシップ, 上原記念生命科学財団, 2007.03.
上原記念生命科学財団・海外留学リサーチフェローシップ, 上原記念生命科学財団, 2005.03.
貝原守一医学振興財団・研究助成賞, 貝原守一医学振興財団, 2005.03.
動脈硬化update・研究奨励賞, 日本心臓財団「動脈硬化update2004」, 2004.10.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2020年度~2023年度, 基盤研究(B), 分担, 脳梗塞巣におけるペリサイトを介した創傷治癒と内因性機能回復機構の解明.
2020年度~2022年度, 基盤研究(C), 代表, 脳虚血病態におけるペリサイトの細胞死にフェロトーシスは関与するか?.
2016年度~2019年度, 基盤研究(B), 分担, ペリサイト機能に基づく脳梗塞後組織修復と神経機能回復誘導メカニズムの解明.
2014年度~2016年度, 基盤研究(B), 分担, pH強調MR画像の開発と急性期脳梗塞における組織予後推定への応用.
2014年度~2016年度, 基盤研究(C), 代表, 内皮細胞におけるNox4による低酸素応答増強メカニズムの解明.
2009年度~2012年度, 基盤研究(B), 代表, レドックスによる血管内皮細胞機能制御に関する研究.
競争的資金(受託研究を含む)の採択状況
2019年度~2019年度, ブリストル・マイヤーズスクイブ研究助成, 代表, 脳梗塞組織修復ならびに組織修復による神経機能回復誘導に関する分子細胞機構の解明
.
2018年度~2018年度, 先進医薬研究振興財団 循環医学分野 一般研究者助成, 代表, 脳梗塞後の修復応答により誘導される梗塞周囲再髄鞘化および機能回復の分子細胞機構についての研究
.
2017年度~2021年度, 喫煙科学財団 特定研究 , 代表, 喫煙が虚血性脳卒中の発症と転帰に及ぼす影響についての基礎ならびに臨床疫学研究.
2015年度~2016年度, バイエル薬品受託研究, 代表, Can rivaroxaban, an inhibitor of Xa, attenuate pericyte-mediated inflammation and fibrosis after ischemic stroke?.
2014年度~2016年度, 研究開発施設共用等促進費補助金(橋渡し研究加速ネットワークプログラム), 分担, アルツハイマー病・脳血管性認知症に対する脳機能改善薬の開発.
2014年度~2015年度, 先進医薬研究振興財団 循環医学分野, 代表, 脳梗塞後に生じる線維化応答の是非に関する検討.
2012年度~2012年度, 第20回(2012年度)バイエル循環器病研究助成, 代表, 脳梗塞病態における酸化ストレスによる血液凝固反応亢進機構の
解明.
2009年度~2011年度, 武田科学振興財団 医学系研究奨励(生活習慣病), 代表, 動脈硬化発症における血管内皮細胞レドックスの役割..
2005年度~2007年度, 上原記念生命科学財団 リサーチフェローシップ, 代表, 活性酸素種による心血管疾患発症機構の解明 .
共同研究、受託研究(競争的資金を除く)の受入状況
2018.04~2022.03, 連携, 脳血管障害におけるSGLT2の役割.
学内資金・基金等への採択状況
2010年度~2016年度, レドックスナビ若手育成事業, 代表, 脳梗塞機能回復過程におけるペリサイトの役割とレドックスによる制御.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」