九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動
SELYANCHYN ROMAN(セリャンチン ロマン) データ更新日:2024.04.04



主な研究テーマ
持続可能なエネルギーとサステイナブルな環境のためのガス分離膜の研究
キーワード:二酸化炭素、ガス分離膜、CO2選択制、ナノ界面、金属有機構造体
2014.01.
様々なエネルギー応用のため、再生可能で持続可能なナノバイオマテリアルを用いた膜の研究
キーワード:イオン交換膜、燃料電池、プロトン交換膜、ナノセルロース
2016.01.
従事しているプロジェクト研究
Development of Global CO2 Recycling Technology towards “Beyond-Zero” Emission
2020.08, 代表者:Shigenori Fujikawa, International Institute for Carbon-Neutral Energy Research (I2CNER), NEDO (Japan)
- Development of CO2 capture unit using innovative separation nano-membranes with unparalleled CO2 permeability
- Development of conversion unit that converts CO2 into carbon fuel with high efficiency
- Scalable system for use in small-sized homes and medium-sized buildings.
研究業績
主要原著論文
1. Lingcong Li, Shinta Miyazaki, Ziyang Wu, Takashi Toyao, Roman Selyanchyn, Zen Maeno, Shigenori Fujikawa, Ken-ichi Shimizu, Continuous direct air capture and methanation using combined system of membrane-based CO2 capture and Ni-Ca based dual functional materials, Applied Catalysis B: Environmental, 10.1016/j.apcatb.2023.123151, 123151, 123151, 2023.12, [URL], Direct CO2 capture from the air by membranes (membrane-based DAC, m-DAC) is a promising new technique to achieve CO2 net zero emissions. In addition, a continuous system for CO2 capture and its reduction by hydrogen using coupled reactors has scarcely been investigated. In this study, a new continuous system consisting of a m-DAC and a methanation process (m-DAC-M) was developed. For methanation, Ni nanoparticles supported on Ca-loaded Al2O3 (Ni-Ca/Al2O3; 10 wt% Ni and 6 wt% CaO) were utilized as a dual functional material (DFM). The Ni-Ca/Al2O3 exhibited high CH4 productivity and selectivity, good stability over 100 h, and high humidity resistance properties at a low reaction temperature of 350 °C. The catalytic properties of Ni-Ca/Al2O3 were elucidated using microscopic and spectroscopic techniques. The characterization results indicated that the CaO species not only served as CO2 adsorption sites to trap concentrated CO2 from the m-DAC system but also improved the reducibility of oxidized Ni species in the hydrogenation period, thereby promoting the reduction of surface carbonate species to CH4..
2. Shigenori Fujikawa, Roman Selyanchyn, Toyoki Kunitake, A new strategy for membrane-based direct air capture., Polym. J. (Tokyo, Jpn.), 10.1038/s41428-020-00440-4, 53, 1, 219, 2021.01, [URL],
ABSTRACT: Direct CO2 capture from the air, so-called direct air capture (DAC), has become inevitable to reduce the concentration of CO2 in the atmosphere. Current DAC technologies consider only sorbent-based systems. Recently, there have been reports that show ultrahigh CO2 permeances in gas separation membranes and thus membrane separation could be a potential new technology for DAC in addition to sorbent-based CO2 capture. The simulation of chemical processes has been well established and is commonly used for the development and performance assessment of industrial chemical processes. These simulations offer a credible assessment of the feasibility of membrane-based DAC (m-DAC). In this paper, we discuss the potential of m-DAC considering the state-of-the-art performance of organic polymer membranes. The multistage membrane separation process was employed in process simulation to estimate the energy requirements for m-DAC. Based on the analysis, we propose the target membrane separation performance required for m-DAC with competitive energy expenses. Finally, we discuss the direction of future membrane development for DAC..
3. Olena Selyanchyn, Roman Selyanchyn, Shigenori Fujikawa, Critical role of the molecular interface in double-layered Pebax-1657/PDMS nanomembranes on highly efficient CO2/N2 gas separation, ACS Applied Materials and Interfaces, 10.1021/acsami.0c07344, 2020.07, [URL],
ABSTRACT: In this work, we deposited a CO2-selective block copolymer, Pebax-1657, as a selective layer with a thickness of 2–20 nm on the oxygen plasma-activated surface of poly(dimethylsiloxane) (PDMS) used as a gutter layer (thickness ∼400 nm). This double-layered structure was subsequently transferred onto the polyacrylonitrile (PAN) microporous support and studied for CO2/N2 separation. The effect of interfacial molecular arrangements between the selective and gutter layers on CO2 permeance and selectivity has been investigated. We have revealed that the gas permeance and selectivity do not follow the conventional theoretical predictions for the multilayer membrane (resistance in series transport model); specifically, more selective CO2/N2 separation membranes were achieved with ultrathin selective layers. Detailed characterization of the chemical structure of the outermost membrane surface suggests that nanoscale blending of the ultrathin Pebax-1657 layer with O2 plasma-activated PDMS chains on the surface takes place. This nanoblending at the interface between the selective and gutter layers played a critical role in enhancing the CO2/N2 selectivity. CO2 permeances in the developed thin-film composite membranes (TFCM) were between 1200 and 3500 gas permeance units (GPU) and the respective CO2/N2 selectivities were between 72 and 23, providing the gas separation performance suitable for CO2 capture in postcombustion processes. This interpenetrating polymer interface enhanced the overall selectivity of the membrane significantly, exceeding the separation ability of the pristine Pebax-1657 polymer..
主要学会発表等
特許出願・取得
特許出願件数  0件
特許登録件数  1件
学会活動
所属学会名
American Chemical Society (ACS)
Materials Research Society (MRS)
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2023年度 10  10 
2022年度 10        10 
2021年度      
2020年度      
2019年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
KTH Royal Institute of Technology, Uppsala University, Linnaeus University, Sweden, 2023.03~2023.03.
外国人研究者等の受入れ状況
2023.11~2024.11, 2週間未満, Linnaeus University (Vaxjo, Sweden), China, 外国政府・外国研究機関・国際機関.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2022年度~2025年度, 基盤研究(C), 代表, Study of molecular interfaces in polymer thin-film composite membranes for the efficient gas separations.
2019年度~2021年度, 若手研究, 代表, MOF-based polycrystalline nanomembranes directly grown on microporous polymeric supports for advanced post-combustion CO2 separation.
2014年度~2016年度, 若手研究(スタートアップ), 代表, Ultra-thin metal oxide films for gas separation.
競争的資金(受託研究を含む)の採択状況
2021年度~2022年度, 岩谷科学技術研究助成, 代表, CO2分離の高効率化を目指した混合マトリックス膜中の多孔質金属有機構造体の微細化..
学内資金・基金等への採択状況
2022年度~2024年度, Q-PIT module research collaborative projects, 分担, 施設園芸農業におけるスマートCO2回収・利用の実現に向けたスタートアップ共創研究.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。