Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
YASUI HIDESHI Last modified date:2019.01.08

Professor / Agricultural Bioresource Sciences
Department of Bioresource Sciences
Faculty of Agriculture


Graduate School
Undergraduate School
Other Organization


E-Mail
Homepage
http://www.agr.kyushu-u.ac.jp/lab/plantbreed/
Phone
092-802-4552
Fax
092-802-4551
Academic Degree
Degree of Agriculture
Country of degree conferring institution (Overseas)
No
Field of Specialization
Plant Breeding
Total Priod of education and research career in the foreign country
00years00months
Research
Research Interests
  • Genetic study of monosomic aliean addtion lines derived from a cross between Oryza sativa and distantly related species in Genus Oryza
    keyword : Oryza, alien chromosome addition lines, rice
    1986.04.
  • Genetics of host plant resistance to the planthoppers and the leafhoppers in rice
    keyword : rice, host plant resistance to insects, genetics and breeding
    1992.04.
  • Cytological and cytogenetical study of anueploids in rice
    keyword : rice, aneuploids, cytogenetics
    1986.04.
  • Development of experimental materials and their utilization for genetics and plant breeding
    keyword : rice, Bioresource
    2018.04~2022.03.
  • Studies on genetics and plant breeding in several traits such as morphological and physiological traits in rice
    keyword : rice, QTL, marker-assisted breeding
    1998.04.
Current and Past Project
  • To mitigate food depletion and poverty problems in North Vietnam, the project challenge to divide North Vietnam into irrigated areas and rain-fed areas, and to promote the development of new varieties of rice as well as the improvement and diffusion of cultivation methods to match diverse environmental conditions, and promote rice-farming based environment-friendly agriculture and the establishment of rural development models.
    1. To develop next-generation varieties of rice adapted to the diverse ecosystems of North Vietnam.
    2. To improve the seed production system of hybrid rice, facilitate the introduction of domestically produced hybrid varieties of rice, and maintain food security in North Vietnam.
    3. To accumulate know-how of environment-friendly agriculture, establish a rice-farming based agricultural production system that meets the demands of the region, and establish a path to rural development.
    4. To create special model agricultural communities that have achieved the above goals.
Academic Activities
Books
1. HIDESHI YASUI, The genetics of host-plant resistance to rice planthopper and leafhopper. In Planthoppers: new threats to the sustainability of intensive rice production systems in Asia., International Rice Research Institute, pp389-400. 2010, 2010.03.
Papers
1. Win, K. T., Y. Yamagata, K. Doi, K. Uyama, Y. Nagai, Y. Toda, T. Tani, M. Ashikari, H. Yasui, and A. Yoshimura, A single base change explains the independent origin of and selection for the nonshattering gene in African rice domestication., New Phytologist, 10.1111/nph.14290, 213, 4, 1925-1935, 2017.03.
2. Mai, T. V., A. Yoshimura and H. Yasui, Characterization of resistance to the green rice leafhopper (Nephotettix cincticeps Uhler) in a core collection of landraces in rice (Oryza sativa L.), American Journal of Plant Sci., 10.4236/ajps.2017.82018, 8, 2, 2017.01.
3. Kurokawa, Y., T. Noda, Y. Yamagata, R. Angeles-Shim, H. Sunohara, K. Uehara, T. Furuta, K. Nagai, K.K. Jena, H. Yasui, A. Yoshimura, M. Ashikari, and K. Doi, Construction of a versatile SNP array for pyramiding useful genes of rice., Plant Sci., Plant Sci., 242, 131-139, 2016.06.
4. Mai, T. V., D. Fujita, M. Matsumura, A. Yoshimura and H. Yasui, Genetic basis of multiple resistance to the brown planthopper (Nilaparvata lugens Stal) and the green rice leafhopper (Nephotettix cincticeps Uhler) in the rice cultivar ‘ASD7’ (Oryza sativa L. ssp. indica), Breed. Sci., 65, 420-429., 2015.12.
5. Tamura, Y. M. Hattori, H. Yoshioka, M. Yoshioka, A. Takahashi, J. Wu, N. Sentoku and H. Yasui., Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52., Sci. Rep., 10.1038/srep05872, 4, 5872, 2014.07.
6. HIDESHI YASUI, Responses and adaptation by Nephotettix virescens to monogenic and pyramided rice lines with Grh-resistance genes. , Entomologia Experimentalis et Applicata 150: 179–190. , DOI: 10.1111/eea.12149, 150, 179-190, 2014.02.
7. JIRAPONG Jairin, TETSUYA Kobayashi, HIDESHI YASUI, A Simple Sequence Repeat- and Single-Nucleotide Polymorphism-Based Genetic Linkage Map of the Brown Planthopper, Nilaparvata lugens 
 , DNA Research 20(1): 17-30 , doi:10.1093/dnares/dss030, 20, 17-30, 2013.02, In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential re- source and a useful framework for future genetic analyses in BPH.
Key words: Nilaparvata lugens; brown planthopper; genetic linkage map; SSR; SNP.
8. HIDESHI YASUI, Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens Sta ̊l) in the rice cultivar ADR52, Theor Appl Genet, DOI 10.1007/s00122-011-1723-4, 124, 3, 494-504, 2012.02, The brown planthopper (BPH), Nilaparvata 11 lugens(Sta ̊l),isoneofthemostseriousanddestructive 12 pests of rice, and can be found throughout the rice-growing 13 areas of Asia. To date, more than 24 major BPH-resistance 14 genes have been reported in several Oryza sativa ssp. 15 indica cultivars and wild relatives. Here, we report the 16 genetic basis of the high level of BPH resistance derived 17 from an Indian rice cultivar, ADR52, which was previously 18 identified as resistant to the whitebacked planthopper 19 (Sogatella furcifera [Horva ́th]). An F2 population derived 20 from a cross between ADR52 and a susceptible cultivar, 21 Taichung 65 (T65), was used for quantitative trait locus 22 (QTL) analysis. Antibiosis testing showed that multiple 23 loci controlled the high level of BPH resistance in this F2 24 population. Further linkage analysis using backcross pop- 25 ulations resulted in the identification of BPH-resistance 26 (antibiosis) gene loci from ADR52. BPH25 co-segregated 27 with marker S00310 on the distal end of the short arm of
A1 Communicated by T. Tai.
A2 K. K. M. Myint and D. Fujita contributed equally to this work.
A3 K. K. M. Myint .
9. Daisuke Fujita, Atsushi Yoshimura and Hideshi Yasui, Development of near-isogenic lines and pyramided lines carrying resistance genes to green rice leafhopper (Nephotettix cincticeps Uhler) using the Taichung 65 genetic background in rice (Oryza sativa L.), Breed. Sci., 60, 1, 18-27, 60(1): 18-27, 2010.03.
10. Myint, K. K. M., Matsumura M, Takagi M and Yasui H , Demographic parameters of long-term laboratory strains of the brown planthopper, Nilaparvata lugens Stål, (Hompptera: Delphacidae) on resistance genes, bph20(t) and Bph21(t) in rice. , J. Fac. Agr. Kyushu Univ. , 54(1): 159-164, 2009.03.
11. Myint, K. K. M., H. Yasui, M. Takagi and M. Matsumura , Virulence of long-term laboratory populations of the brown planthopper, Nilaparvata lugens (Stål), and whitebacked planthopper, Sogatella furcifera (Horváth) (Homoptera: Delphacidae), on rice differential varieties. , Appl. Entomol. Zool., 44: 149-153, 44: 149-153, 2009.01.
12. Fujita, D., K. Doi, A. Yoshimura and H. Yasui, Molecular mapping of a novel gene, Grh5, conferring resistance to green rice leafhopper (Nephotettix cincticeps Uhler) in rice, Oryza sativa L., Theor Appl Genet., 113(4):567-73, 2006.08.
13. Yamasaki, M., A. Yoshimura and H. Yasui, Genetic Basis of Ovicidal Response to Whitebacked Planthopper (Sogatella furcifera Horv?h) in Rice (Oryza sativa L.), Molecular Breeding, 10.1023/A:1026018821472, 12, 2, 133-143, 12:133-143, 2003.01.
Presentations
1. Host plant resistance of near isogenic lines carrying resistance gene(s) for brown planthopper against the Asian brown planthopper strains in rice..
2. , [URL].
3. , [URL].
4. , [URL].
5. , [URL].
6. Host plant resistance of nearly-isogenic lines carrying green rice leafhopper resistance gene(s) against the brown planthopper, Nilaparvata lugens Stål. in rice. Yasui, H., D. Fujita and A. Yoshimura (Fac. Agr., Grad. Sch., Kyushu Univ.) .
7. Genetics of host plant resistance to planthoppers and leafhoppers in rice.
8. Molecular cloning of the genes conferring resistance to green rice leafhopper, Nephotettix cincticeps Uhler, in rice, Hideshi Yasui, Plant Breeding Laboratory, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
17th Intl. Plant Resistance to Insects Workshop, West Lafayette, IN, April 9th-12th, 2006.
Membership in Academic Society
  • Japanese Society of Breeding