九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
今福 泰浩(いまふく やすひろ) データ更新日:2024.04.05

助教 /  理学研究院 生物科学部門 統合生物学


主な研究テーマ
短期シナプス可塑性の研究
キーワード:神経生物学
2014.04.
タンパク質分子モーターの作動原理の解明を目指す生物物理学的研究
キーワード:タンパク質分子モーター
1998.09.
海馬スライスを用いた神経細胞の長期増強・抑圧に関する研究
キーワード:神経生物学
2011.04.
従事しているプロジェクト研究
タンパク質分子モーターの動作機構に関する理論的研究
1996.04~2013.03, 代表者:ニール・トーマス, バーミンガム大学.
研究業績
主要原著論文
1. Toshio Ichikawa, Yasuhiro Imafuku & Katsuhisa Tawada, Synchronous firing patterns of a set of insect neurosecretory cells, NEUROSCI LETT 264 (1-3): 85-88 APR 2 1999, 10.1016/S0304-3940(99)00164-0, 264, 1-3, 85-88, 1999.04.
2. Yasuhiro Imafuku, Yumiko Emoto & Katsuhisa Tawada, A protein friction model of the actin sliding movement generated by myosin in mixtures of MgATP and MgGTP in vitro, J THEOR BIOL 199 (4): 359-370, 10.1006/jtbi.1999.0963, 199, 4, 359-370, 1999.08.
3. 太和田勝久、今福泰浩, 分子モータの滑り速度とタンパク質分子摩擦, トライボロジスト 45 (2) : 138-144, 2000.01.
4. Neil Thomas, Yasuhiro Imafuku & Katsuhisa Tawada, Molecular motors: thermodynamics and the random walk, P ROY SOC LOND B BIO 268 (1481): 2113-2122, 268, 1481, 2113-2122, 2001.10.
5. Neil Thomas, Yasuhiro Imafuku & Katsuhisa Tawada, Kinesin: a molecular motor with a spring in its step, P ROY SOC LOND B BIO 269 (1507): 2363-2371, 10.1098/rspb.2002.2117, 269, 1507, 2363-2371, 2002.11.
6. Naoki Noda, Yasuhiro Imafuku, Akira Yamada and Katsuhisa Tawada, Fluctuation of actin sliding over myosin thick filaments in vitro, Biophysics Vol.1, pp45-53 (2005)., 2005.01.
7. N. Noda, Y. Imafuku, A. Yamada & K. Tawada, Fluctuation of actin sliding over myosin thick filaments in vitro, IEEE MHS2006 & Micro-Nano COE Vol.1, pp460-465 (2006). , 2006.11.
8. Y. Imafuku, N. Mitarai, K. Tawada, and H. Nakanishi , Fluctuations in sliding motion of cytoskeltal filament driven by molecular motors
, IEEE MHS2007 & Micro-Nano COE Vol.1, pp193-198 (2006)., 2007.11.
9. Yasuhiro Imafuku, Namiko Mitarai, Katsuhisa Tawada, Hiizu Nakanishi, Anomalous fluctuations in sliding motion of cytoskeletal filaments driven by molecular motors
Model simulations, Journal of Physical Chemistry B Materials, 10.1021/jp074838l, 112, 5, 1487-1493, 2008.02, [URL], It has been found in in vitro experiments that cytoskeletal filaments driven by molecular motors show finite diffusion in sliding motion even in the long filament limit [Imafuku, Y. et al. Biophys. J. 1996, 70, 878-886. Noda, N. et al. Biophysics 2005, 1, 45-53]. This anomalous fluctuation can be evidence for cooperativity among the motors in action because fluctuation should be averaged out for a long filament if the action of each motor is independent. In order to understand the nature of the fluctuation in molecular motors, we perform numerical simulations and analyze velocity correlation in three existing models that are known to show some kind of cooperativity and/or large diffusion coefficient, i.e., the Sekimoto-Tawada model [Sekimoto, K.; Tawada, K. Phys. Rev. Lett. 1995, 75, 180], the Prost model [Prost, J. et al. Phys. Rev. Lett. 1994, 72, 2652], and the Duke model [Duke, T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2770]. It is shown that the Prost model and the Duke model do not give a finite diffusion in the long filament limit, in spite of the collective action of motors. On the other hand, the Sekimoto-Tawada model has been shown to give a diffusion coefficient that is independent of filament length, but it comes from the long time correlation whose time scale is proportional to filament length, and our simulations show that such a long correlation time conflicts with the experimental time scales. We conclude that none of the three models represent experimental findings. In order to explain the observed anomalous diffusion, we have to search for a mechanism that will allow both the amplitude and the time scale of the velocity correlation to be independent of the filament length..
10. Toshiki Taba, Masaki Edamatsu, Shiori Toba, Keitaro Shibata, Yasuhiro Imafuku, Yoko Yano Toyoshima, Katsuhisa Tawada, Akira Yamada, Direction and speed of microtubule movements driven by kinesin motors arranged on catchin thick filaments, Cytoskeleton, 10.1002/cm.20303, 65, 10, 816-826, 2008.10, [URL], Conventional kinesin (Kinesin-1) is a microtubule-based molecular motor that supports intracellular vesicle/organelle transport in various eukaryotic cells. To arrange kinesin motors similarly to myosin motors on thick filaments in muscles, the motor domain of rat conventional kinesin (amino acid residues 1-430) fused to the C-terminal 829 amino acid residues of catchin (KHC430Cat) was bacterially expressed and attached to catchin filaments that can attach to and arrange myosin molecules in a bipolar manner on their surface. Unlike the case of myosin where actin filaments move toward the center much faster than in the opposite direction along the catchin filaments, microtubules moved at the same speed in both directions. In addition, many microtubules moved across the filaments at the same speed with various angles between the axes of the microtubule and catchin filament. Kinesin/catchin chimera proteins with a shorter kinesin neck domain were also prepared. Those without the whole hinge 1 domain and the C-terminal part of the neck helix moved microtubules toward the center of the catchin filaments significantly, but only slightly, faster than in the opposite direction, although the movements in both directions were slower than those of the KHC430Cat construct. The results suggest that kinesin has substantial mechanical flexibility within the motor domain, possibly within the neck linker, enabling its interaction with microtubules having any orientation..
11. Yasuhiro Imafuku, Neil Thomas, Katsuhisa Tawada, Hopping and stalling of processive molecular motors, Journal of Theoretical Biology, 10.1016/j.jtbi.2009.07.011, 261, 1, 43-49, 2009.11, [URL], When a two-headed molecular motor such as kinesin is attached to its track by just a single head in the presence of an applied load, thermally activated head detachment followed by rapid re-attachment at another binding site can cause the motor to 'hop' backwards. Such hopping, on its own, would produce a linear force-velocity relation. However, for kinesin, we must incorporate hopping into the motor's alternating-head scheme, where we expect it to be most important for the state prior to neck-linker docking. We show that hopping can account for the backward steps, run length and stalling of conventional kinesin. In particular, although hopping does not hydrolyse ATP, we find that the hopping rate obeys the same Michaelis-Menten relation as the ATP hydrolysis rate. Hopping can also account for the reduced processivity observed in kinesins with mutations in their tubulin-binding loop. Indeed, it may provide a general mechanism for the breakdown of perfect processivity in two-headed molecular motors..
12. Neil Thomas, Yasuhiro Imafuku, Effect of elastic energy on the folding of an RNA hairpin, Journal of Theoretical Biology, 10.1016/j.jtbi.2012.07.021, 312, 96-104, 2012.11, [URL], We analyse the folding and unfolding of an RNA hairpin using a conventional zipping model that includes both the free energy for RNA binding and the elastic free energy of the system. Unfolding under isotonic conditions (where we control the applied load) is known to occur at a well-defined critical load. In marked contrast, we find that unfolding under isometric conditions (where we control the extension of the hairpin) produces a series of sharp peaks in the average load as the stem of the hairpin starts to unzip base by base. A peak occurs when the elastic energy stored in the unzipped arms of the hairpin becomes so large that it is energetically favourable for the next base pair to unzip: the consequent increase in the contour length of the unzipped arms reduces their elastic energy and causes the average load to fall abruptly. However, as the contour length of the unzipped arms increases, the peaks become less distinct. Moreover, when we include the long DNA/RNA handles that have been used in single-molecule experiments, the unzipping of individual base pairs cannot be resolved at all. Instead, with the hairpin in the folded state, the average load increases with extension until the elastic energy stored in the handles makes it energetically favourable for the hairpin to unzip over a narrow range of extensions. The resultant yield point produces a mechanical hysteresis loop with a negative slope, as observed experimentally. Unfolding of the hairpin is also affected by the elastic energy stored in a compliant force transducer. We find that short, stiff handles and a stiff force transducer could improve the resolution of mechanical experiments on single molecules..
13. Yasuhiro Imafuku, Koh ichi Enomoto, Hiroko Kataoka, Isao Ito, Takashi Maeno, Novel Distinctive Roles of Docking Proteins in Short-term Synaptic Plasticity of Frog Neuromuscular Transmission Revealed by Botulinum Neurotoxins, Neuroscience, 10.1016/j.neuroscience.2017.11.022, 369, 374-385, 2018.01, [URL], Short-term synaptic plasticity (SSP) is a basic mechanism for temporal processing of neural information in synaptic transmission. Facilitation, the fastest component of SSP, has been extensively investigated with regard to Ca2+ signaling and other relevant substances. However, systematic analyses on the slower components of SSP, originated by Magleby and Zengel, have remained stagnant for decades, as few chemicals directly modifying these slower components have been identified. In combination with refined experimental protocols designed to study the stimulation frequency-dependence of SSP and botulinum neurotoxins A and C (BoNT-A and BoNT-C), we investigated SSP of frog neuromuscular transmission to clarify the roles of synaptosomal-associated protein of 25 kDa (SNAP-25) and syntaxin, SNARE proteins exclusively participating in vesicular events including docking, priming and exocytosis. We found that BoNT-A treatment eliminated slow potentiation, and BoNT-C poisoning abolished intermediate augmentation, two components of SSP. Fast facilitation was maintained after double poisoning with BoNT-A and -C, but the postsynaptic response became biphasic. A novel depression, termed repression, emerged by double poisoning. Repression was different from depletion because it developed even at a low-frequency stimulation of 1 Hz. We conclude that SNAP-25 and syntaxin not only play roles as cooperative exocytotic machinery, but also have roles in SSP..
主要学会発表等
1. Yasuhiro Imafuku, Naoya Suzuki, Koh-ichi Enomoto, Hiroko Kataoka, Isao Ito, and Takashi Maeno, TNBS, a denaturing reagent, mimics the actions of Botulinum neurotoxin types A and C on the synaptic plasticity., 第42回日本神経科学大会, 2019.07.
2. Yasuhiro Imafuku, Koh-ichi Enomoto, Hiroko Kataoka, Isao Ito, and Takashi Maeno, Novel Roles of SNARE Proteins in Short-term Synaptic Plasticity of Frog Neuromuscular Transmission, 第41回日本神経科学大会, 2018.07.
3. Yasuhiro Imafuku, Koh-ichi Enomoto, Hiroko Kataoka, Isao Ito, and Takashi Maeno, Novel Distinctive Roles of Docking Proteins in Short-term Synaptic Plasticity of Frog Neuromuscular Transmission, 第55回日本生物物理学会年会, 2017.09.
4. Yasuhiro Imafuku, Nils Gustafsson and Neil Thomas, ATP synthesis by elastically coupled molecular motors, 第52回日本生物物理学会年会, 2014.09.
5. Yasuhiro Imafuku, Nils Gustafsson and Neil Thomas, ATP synthesis by elastically coupled nanomotors, 第50回日本生物物理学会年会, 2012.09.
6. 今福泰浩、ニール・トーマス, RNA ヘアピンとキネシンネックリンカーの構造変化ダイナミクス, 2011年 生体運動研究合同班会議, 2011.01.
7. Yasuhiro Imafuku and Neil Thomas, Zipping dynamics of RNA hairpin and kinesin neck linker, 第48回日本生物物理学会念会, 2010.09.
8. 今福泰浩、ニール・トーマス, キネシンネックリンカーとRNA ヘアピンのダイナミックス, 2010年 生体運動研究合同班会議, 2010.01.
9. Yasuhiro Imafuku and Neil Thomas, Dynamics of zipping the kinesin neck linker and an RNA hairpin, 第47回日本生物物理学会念会, 2009.10.
10. Yasuhiro Imafuku, Katsuhisa Tawada and Neil Thomas, Hopping and Stalling of Processive Molecular Motors, 6th Asian Biophysics Association (ABA) Symposium, 2009.01.
11. Neil Thomas and Yasuhiro Imafuku, Zipping model for kinesin neck-linker docking, 第46回日本生物物理学会年会, 2008.12.
12. Toshiki Taba, Masaki Edamatsu, Shiori Toba, Keitaro Shibata, Yasuhiro Imafuku, Yoko Yano Toyoshima, Katsuhisa Tawada, and Akira Yamada, Torsional Flexibility of Kinesin: Direction and Speed of Microtubule Movements Driven by Kinesin Motors Arranged on Catchin Filaments, 2nd International Symposium on Bio-nanosystems, 2008.11.
13. 田場登志希、枝松正樹、鳥羽栞、今福泰浩、豊島陽子、太和田勝久、山田章, 再構成キネシン繊維上での微小管滑り運動の方向と速度, 第45回日本生物物理学会年会, 2007.12.
14. Y. Imafuku, N. Mitarai, K. Tawada, and H. Nakanishi , Fluctuations in sliding motion of cytoskeltal filament driven by molecular motors, MHS2007 & Micro-Nano COE, 2007.11.
15. Yasuhiro Imafuku, Namiko Mitarai, Hiizu Nakanishi and Katsuhisa Tawada, Fluctuation in sliding movement driven by molecular motors: computer simulation study, Alpbach Workshop on Molecular Motors 2007, 2007.03.
16. Yasuhiro Imafuku, Namiko Mitarai, Hiizu Nakanishi, and Katsuhisa Tawada,, Fluctuation in sliding movement driven by molecular motors: simulation study, EABS and BSJ 2006, 2006.11.
17. Naoki Noda, Yasuhiro Imafuku, Akira Yamada, and Katsuhisa Tawada, Fluctuation of actin sliding over myosin thick filament in vitro, MHS 2006 and Micro-Nano COE, 2006.11.
18. 今福泰浩、御手洗菜美子、中西秀、太和田勝久, 多数の分子モーターの同期と協調;滑り運動の計算機シミュレーションの揺らぎ解析, 生体運動合同班会議, 2006.01.
19. 田場登志希、枝松正樹、豊島陽子、鳥羽栞、山田章、今福泰浩、太和田勝久, キネシン繊維に沿った微小管の運動;ネック部位を短くした場合, 第43回生物物理学会年会(演題番号1P173), 2005.11.
20. 今福泰浩、Neil Thomas、太和田勝久, キネシンヘテロダイマーの運動速度、キネシン頭部の速い結合解離による「ホッピング」, 第42回生物物理学会年会(演題番号3P173), 2004.12.
21. 今福泰浩、Neil Thomas、太和田勝久, 5. , “キネシン変異体ヘテロダイマーの運動特性とホッピング”, , , 生体運動合同班会議, 2004.01.
22. 今福泰浩、Neil Thomas、太和田勝久, キネシン変異体ヘテロダイマーの運動特性とホッピング, 生体運動合同班会議, 2004.01.
作品・ソフトウェア・データベース等
1. 今福泰浩, MeasureWin.exe
粒子運動の動画を観察する際に、粒子の位置を測定するソフトウェア。Microsoft Windows において使用可能。ただし、.NET 1.1 および DirectX9 が必要。開発には C# を使用した。.
学会活動
所属学会名
神経科学学会
日本生物物理学会
学会大会・会議・シンポジウム等における役割
2003.09~2003.09.20, 第41回日本生物物理学会年会, 座長(Chairmanship).
2003.09~2003.09.20, 生物物理学会年会, シンポジウム企画および座長.
その他の研究活動
海外渡航状況, 海外での教育研究歴
University of Birmingham, UK, UnitedKingdom, 2012.03~2012.03.
University of Birmingham, UK, UnitedKingdom, 2011.01~2011.02.
University of Birmingham, UK, UnitedKingdom, 2010.08~2010.09.
University of Birmingham, UK, UnitedKingdom, 2009.08~2009.09.
University of Birmingham, UK, UnitedKingdom, 2008.08~2008.09.
University of Birmingham, UK, UnitedKingdom, 2007.08~2007.09.
University of Birmingham, UK, Alpbach Congress Centre, Tirol, Austria, UnitedKingdom, Austria, 2007.03~2007.03.
University of Birmingham, UK, UnitedKingdom, 2006.02~2006.03.
University of Birmingham, UK, UnitedKingdom, 2003.01~2003.02.
外国人研究者等の受入れ状況
2005.08~2005.09, 1ヶ月以上, The University of Birmingham, UnitedKingdom, 日本学術振興会.
2003.08~2003.12, 1ヶ月以上, The University of Birmingham, UnitedKingdom, 外国政府・外国研究機関・国際機関.
2004.04~2004.04, 1ヶ月以上, The University of Birmingham, UnitedKingdom, 外国政府・外国研究機関・国際機関.
受賞
第15回加藤記念研究助成, 加藤記念バイオサイエンス研究振興財団, 2004.03.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2007年度~2009年度, 若手研究(B), 代表, 再構成キネシン繊維上での微小管滑り運動の速度と揺らぎ.
2006年度~2007年度, 特定領域研究, 代表, 天然の筋肉構造にヒントを得た再構成分子モーター繊維の作成と滑り運動の解析.
2004年度~2006年度, 若手研究(B), 代表, 多数の分子モーターの非線形相互作用によるマクロな滑り運動の創発.
競争的資金(受託研究を含む)の採択状況
2005年度~2005年度, 平成17年度稲盛財団研究助成, 代表, 多数の生物分子モーターが非線型相互作用することでおこるマクロな滑り運動の創発.
2004年度~2004年度, 加藤記念研究助成, 多数の生物分子モーターが非線型相互作用することでおこるマクロな滑り運動の創発.
2003年度~2003年度, 笹川科学研究助成, 代表, 多数の生物分子モーターが非線型相互作用することでおこるマクロな滑り運動の創発.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。