九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
水永 秀樹(みずなが ひでき) データ更新日:2024.04.12

准教授 /  工学研究院 地球資源システム工学部門 地球工学講座


主な研究テーマ
海洋鉱物資源の探査
キーワード:海洋探査,電気探査,電磁探査,磁気探査
2007.03.
エネルギー資源や鉱物資源の探査
キーワード:地熱探査,温泉探査,石油探査,金鉱床探査,水資源探査
1990.06.
地中レーダや電気探査を用いた埋蔵文化財の探査に関する研究
キーワード:遺跡探査,古墳探査
1993.04.
地下流体の動的挙動の可視化に関する研究
キーワード:石油貯留層の可視化,地熱貯留層の可視化, 地下水・温泉水の可視化
2000.04.
従事しているプロジェクト研究
IP効果を考慮した時間領域電磁探査法データの1次元逆解析手法に関する共同研究
2018.06~2019.03, 代表者:水永秀樹, 九州大学, 独立行政法人 石油天然ガス・金属鉱物資源機構
IP効果を考慮した次回領域電磁法のデータ解析法を開発する.
地盤改良工事での安全安心な改良杭施工のための比抵抗計測技術を用いた着底・混合判断システムの研究開発
2017.04~2019.03, 代表者:水永秀樹, 九州大学, 公益社団法人 佐賀県地域産業支援センター
地盤改良工事での改良杭の着底・混合判断をするための比抵抗計測装置を開発する。.
福岡県筑紫郡那珂川町安徳台遺跡群のレーダー探査
2009.06~2010.03, 代表者:水永秀樹, 九州大学, 福岡県筑紫郡那珂川町
那珂川町の安徳台遺跡群の遺跡探査を実施する.
三雲・井原遺跡における物理探査手法の活用研究
2009.01~2010.03, 代表者:水永秀樹, 九州大学, 福岡県糸島市
前原市の三雲・井原遺跡で伊都国の王墓の遺跡探査を実施する.
水平ドリル用位置計測システムの研究開発
2009.05~2010.03, 代表者:水永秀樹, 九州大学, 株式会社ワービーエム
水平ドリルの先端部の位置決めシステムの開発.
高精度磁気探査 解析技術の高度化検討(その2)
2009.09~2010.03, 代表者:水永秀樹, 九州大学, 株式会社神戸製鋼所
高精度磁気探査の探査データの解析法を研究する.
マリンホースの油漏洩探知に関する研究(継続)
2009.07~2010.03, 代表者:水永秀樹, 九州大学, 横浜ゴム株式会社
マリンホースの油漏洩探知システムを開発する.
時間領域電磁法の簡易解析プログラムの開発
2009.01~2009.12, 代表者:水永秀樹, 九州大学, 石油天然ガス・金属鉱物資源機構(JOGMEC)
時間領域電磁法(TEM法)の簡易解析プログラムを開発する.
マリンホースの油漏洩探知に関する研究
2008.07~2009.03, 代表者:水永秀樹, 九州大学, 横浜ゴム株式会社
マリンホースの油漏洩探知システムを開発する.
三雲・井原遺跡における物理探査手法の活用研究
2008.07~2009.03, 代表者:水永秀樹, 九州大学, 福岡県前原市
前原市の三雲・井原遺跡で伊都国の王墓の遺跡探査を実施する.
流体流動電磁法によるEORのリアルタイムモニタリング
2007.07~2007.12, 代表者:水永秀樹, 九州大学, 石油天然ガス・金属鉱物資源機構(JOGMEC)
流体流動電磁法の計測システムを開発.
流体流動電位法による地中貯留CO2のイメージング
2005.11~2007.03, 代表者:牛島恵輔, 九州大学, 石油天然ガス・金属鉱物資源機構(JOGMEC)
流体流動電位法を用いた地中貯留CO2のモニタリングに関する研究を実施する。.
電気抵抗式地下埋設物探査計の開発
2003.12~2006.03, 代表者:牛島恵輔, 九州大学, 九州大学大学院工学研究院(日本)
地下のガス管や水道管などの埋設管、トンネル壁面内の亀裂や空洞、埋蔵文化財等の埋没遺構、紛争終結後の地域における地雷などを探査するための、ポータブルで汎用性の高い電気抵抗式埋設物探査計を開発する。.
研究業績
主要著書
1. 水永秀樹, はじめの一歩 物理探査学入門, 九州大学出版会, 2019.02, [URL], 物理探査は、目では見えない地下の状態を物理的な方法を使って可視化する探査技術の総称です。もともとは地下資源探査の目的で研究・開発されてきましたが、現在では地下環境の計測や遺跡調査、不発弾や地雷の探査などにも使われています。この本では、物理探査の大部分をカバーできるように、弾性波探査、電気探査、電磁探査、重力探査、磁気探査、地中レーダ探査、放射能探査、地温探査などの数多くの探査手法を章ごとに取り上げています。また、それぞれの探査手法の背景にある地球物理学、地質学、物理学、数学、計測工学などの周辺学問分野についても探査手法ごとに説明していますので、興味のある探査手法から読み進めて行けるようになっています。.
主要原著論文
1. Mohammad Hakim Rezayee, Ahamd Qasim Akbar, Torabaz Poyesh, Ezatullah Rawnaq, Khair Mohammad Samim, Hideki Mizunaga, 3D Geophysical Modeling Based on Multi-Scale Edge Detection, Magnetic Susceptibility Inversion, and Magnetization Vector Inversion in Panjshir, Afghanistan to Detect Probabilistic Fe-Polymetallic Bearing Zone
, Geosciences, doi.org/10.3390/geosciences13120376, Online, 2023.12.
2. Mohammad Hakim Rezayee, Mahdi Khalaj, Hideki Mizunaga, Structural analysis and susceptibility inversion based on ground magnetic data to map the chromite mineral resources: a case study of the Koh Safi Chromite Ore Deposit, Parwan, Afghanistan
, Geoscience Letters, doi.org/10.1186/s40562-023-00298-3, Online, 2023.11.
3. Liang Du, Jie Dou, Hideki Mizunaga, Zhongling Zong, Wenjin Zhu, Xiaotian Dong, Wenbo Wu, Real-Time Monitoring and Simultaneous Verification of Water Percolation Using Electrical Resistivity Tomography and Photography Techniques
, Water, doi.org/10.3390/w15223999, Online, 2023.09.
4. Mel Anthony A. Casulla, Hideki MIZUNAGA, Characterization of potential Cu-Au mineralization using electrical resistivity and induced polarization methods: a case study in Eastern Labo, Bicol, Philippines, Journal of Geophysics and Engineering, DOI: 10.1093/jge/gxad018, Online, 2023.02.
5. Maryadi Maryadi, Annisa Firdaus, Ahmad Zarkasyi, Hideki Mizunaga, Electrical resistivity structure of Danau Ranau geothermal prospect area based on integrated 3-D Inversion of impedance tensor and tipper vector, Geothermics, doi.org/10.1016/j.geothermics.2022.102575, 106, Online, 2022.12.
6. Tamer FARAG, Mohamed Sobh, Hideki MIZUNAGA, 3D constrained gravity inversion to model Moho geometry and stagnant slabs of the Northwestern Pacific plate at the Japan Islands, Techtonophysics, doi.org/10.1016/j.tecto.2022.229297, 829, Online, 2022.03.
7. Hassan Mohamed, Hakim Saibi, Hideki MIZUNAGA, Baher Geith, Basement structure investigation using 3-D forward modeling and inversion of geomagnetic data of the Zeit basin area, Gulf of Suez, Egypt, Marine and Petroleum Geology, doi.org/10.1016/j.marpetgeo.2022.105637, 139, Online, 2022.03.
8. Mel Anthony A. Casulla, Hideki MIZUNAGA, Toshiaki TANAKA, Carla B. Dimalanta, Imaging crustal features and Moho depths through enhancements and inversion of gravity data from the Philippine island arc system, Progress in Earth and Planetary Science, doi.org/10.1186/s40645-022-00473-8, Online, 2022.03.
9. Maryadi, Hideki Mizunaga, Subsurface resistivity imaging of geothermal field by means of impedance tensor and magnetovariational data analysis, Proceedings of International Symposium on Earth Science and Technology 2021, 159-163, 2021.11.
10. Hao Chen, Hideki Mizunaga, Toshiaki Tanaka, Gang Wang, Maik Neukirch, Application of a new robust impedance estimator based on Hilbert-Huang transform for magnetotelluric method, Proceedings of International Symposium on Earth Science and Technology 2021, 253-256, 2021.11.
11. Tamer Farag, Hideki Mizunaga, 3-D interpretaion of airborne gravity data at Wadi El Assuity, Egypt, Proceedings of International Symposium on Earth Science and Technology 2021, 364-367, 2021.11.
12. Kazuto Inoue, Hao Chen, Toshiaki Tanaka, Hideki Mizunaga, Example of application of a new MT time series processing method, Proceedings of International Symposium on Earth Science and Technology 2021, 372-374, 2021.11.
13. Chuichi Inoue, Mizunaga Hideki, Toshiaki Tanaka, A study on visualization of underground roots using electrical techniques, Proceedings of International Symposium on Earth Science and Technology 2021, 368-371, 2021.11.
14. Shafiqullah Wahab, Hakim Saibi, Hideki Mizunaga, Groundwater aquifer detection using the electrical resistivity method at Ito Campus, Kyushu University (Fukuoka, Japan), Geoscience Letters, DOI: 10.1186/s40562-021-00188-6, 2021.04, An electrical resistivity survey was carried out using the pole–pole configuration around the Sayanokami spring area in the northern part of Ito Campus (Kyushu University, Fukuoka, Japan) to study the groundwater aquifer and its electrical characteristics. A Code Division Multiple Transmission (CDMT) system was used. The CDMT system transmits 24 currents simultaneously and measures 24 potential responses with monitoring of actual current waveforms. The system can inject current from multiple electrodes into the underground environment simultaneously using different individual current waveforms. The two-dimensional (2-D) inversion results of the electrical resistivity data indicate three layers from top to bottom, as follows: a) a thin layer with a thickness of 3 m and a low resistivity (
15. Tamer FARAG, Nahal SOLIMAN, Atel El SHAYAT, Hideki MIZUNAGA, Comparison among the natural radioactivity levels, the radiogenic heat production, and the land surface temperature in arid environments: A case study of the El Gilf El Kiber area, Egypt, Journal of African Earth Sciences, DOI: 10.1016/j.jafrearsci.2020.103959, 172, 1-15, 2020.12.
16. Casula Mel Anthony Asis, Hideki Mizunaga, Toshiaki Tanaka, Torres Aniano, Subsurface Characterization using Geophysical and Hydrochemical Data: An Application to Groundwater Resources Management in Pampanga, Philippines, Proceedings of International Symposium on Earth Science and Technology 2020, 162-168, 2020.11.
17. Hao Chen, Hideki Mizunaga, Toshiaki Tanaka, Gang Wang, New strategy to calculate robust impedance using RMHHT estimator for continuous and discontinuous broadband magnetotelluric time-series data, Proceedings of International Symposium on Earth Science and Technology 2020, 169-172, 2020.11.
18. Yushin Higashi, Toshiaki Tanaka, Hideki Mizunaga, An Experimental Study on Quad-Loop EM Method, Proceedings of International Symposium on Earth Science and Technology 2020, 426-429, 2020.11.
19. Soichiro Hashimoto, Toshiaki Tanaka, Hideki Mizunaga, A New Techniques of Resistivity Measurement for Drilling Cores, Proceedings of International Symposium on Earth Science and Technology 2020, 436-439, 2020.11.
20. Abebayehu Andarge Mengiste, Hideki Mizunaga, Toshiaki Tanaka, 1-D and 2-D Inversions of Magnetotelluric Data in Butajira Geothermal Field, Ethiopia, Proceedings of International Symposium on Earth Science and Technology 2020, 440-444, 2020.11.
21. Hassan MOHAMED, Hideki MIZUNAGA, Hakim SAIBI, Computation of geophysical magnetic data for a buried 3-D hexahedral prism using the Gauss–Legendre quadrature method, Near Surface Geophysics, doi: 10.1002/nsg.12104, 18, 5, 575-588, 2020.09, A new method is presented for the 3-D forward modelling of the magnetic effects
(induced magnetization) of a hexahedral (trilinear) prism using the Gauss–Legendre
quadrature method. The 3-D forward modelling provides an improved application
to geological problems. The magnetic effect has been evaluated via the summation
of the effects of the point dipole that fills the volume. The 3-D volume is divided
into smaller prisms using an appropriate number of nodes. The algorithm is tested on
two synthetic examples, and the results are compared against calculated data from
a common program developed at the University of British Columbia–Geophysical
Inversion Facility, with both tests showing positive results. The results of testing the
algorithm against two synthetic slab models are also given. Finally, the program is
applied to a field data set from Aynak-Logar Valley region in Afghanistan. Using this
program, complex 3-D model bodies may be constructed from hexahedral prisms
to facilitate the calculation of their magnetic anomalies and magnetic susceptibility.
Interpretation of the results shows that 3-D constructed models are successful in
recovering the shape and location of the true model..
22. Tumbu Lucus BONIFACE, Hideki MIZUNAGA, Multi-dimensional Resistivity Imaging from Magnetotelluric Data and its Geological Interpretation in Keijo-Mbaka Geothermal Field, South-West Tanzania , Proceedings of International Symposium on Earth Science and Technology 2019, 25-31, 2019.12.
23. Mohammad SHEHATA, Hideki MIZUNAGA, An Enhanced Edge Detection Technique for Potential Field Data; Case Study of Western USA, Proceedings of International Symposium on Earth Science and Technology 2019, 484-487, 2019.12.
24. Hao CHEN, Hideki MIZUNAGA, Toshiaki TANAKA, The research on the application of Hilbert-Huang transformation to time series magnetotelluric data, Proceedings of International Symposium on Earth Science and Technology 2019, 332-335, 2019.12.
25. Yusuke KIYOMOTO, Hideki MIZUNAGA, Toshiaki TANAKA, Development of Magnetotelluric 1-D Sparse Inversion, Proceedings of International Symposium on Earth Science and Technology 2019, 328-331, 2019.12.
26. Tamer FARAG, Nehal SOLIMAN, Atef El SHAYAT, Hideki MIZUNAGA, Landsat 8 and Airborne Geophysical Data Interpretations to Investigate the Radioactivity Hazards at El Gilf El Biber Area, South Western Desert, Egypt, Proceedings of International Symposium on Earth Science and Technology 2019, 458-461, 2019.12.
27. Soichiro HASHIMOTO, Toshiaki TANAKA, Hideki MIZUNAGA, Resistivity measurement technique using capacitor electrodes, Proceedings of International Symposium on Earth Science and Technology 2019, 488-491, 2019.12.
28. 水永 秀樹, 埋蔵文化財の電気探査, 計測と制御, 58, 11, 858-862, 2019.11.
29. Mohammad Shehata, Hideki Mizunaga, Geospatial analysis of surface hydrological parameters for Kyushu Island, Japan, Natural Hazards, 10.1007/s11069-018-3528-0, 96, 1, 33-52, 2019.03, [URL], Defining the surface hydrological parameters represents a crucial factor for the sustainable development purposes. In areas with heavy precipitation and rugged topography, these parameters control the occurrence of some natural hazards, from which the flash flood gets the most attention. Traditional methods for the assessment of the surface hydrological parameters are costly, time-consuming and provide information for limited geographic extent. On the other hand, remotely sensed data provide a cost-effective, rapid and wide aerial coverage with adequate accuracy. Geospatial analysis of these remotely sensed data provides a suitable and effective method for the reconnaissance determination of the surface hydrological parameters. In this work, digital elevation models, Landsat 8 satellite images as well as digital maps of soil and land use for Kyushu Island were acquired and analyzed using geographic information system. Surface hydrological parameters were determined in terms of watershed boundaries, soil moisture, initial abstraction as well as flash flood potentiality. Results of this research show a great correlation with historical flash flood events that occurred in the island. The northern parts of the island are subjected to the threat of flash floods. A follow-up is recommended in some areas on the island. As a conclusion, the geospatial analysis performs an accurate reconnaissance method for hydrological analysis at regional scale, which in turn guides the detailed field observation saving time and cost..
30. Jean d’Amour Uwiduhaye, Hideki Mizunaga, Hakim Saibi, A case history
3-D gravity modeling using hexahedral element in Kinigi geothermal field, Rwanda, Arabian Journal of Geosciences, 10.1007/s12517-019-4249-8, 12, 3, 2019.02, [URL], It is important for geothermal exploration to know regional subsurface structures. The gravity survey is often used to narrow down the promising area at the early stage of geothermal exploration. The gravity survey was carried out to estimate subsurface density structure in the Kinigi geothermal field, Rwanda, in September 2015. In order to interpret the gravity anomaly distribution, 3-D gravity modeling was done by using the new program based on Gauss-Legendre integration using hexahedral elements. As the result, the computed gravity anomalies showed high gravity anomalies in northwest, the northeast, and east-southeast of the studied field and low anomalies in the southwest side of the studied field as Bouguer anomalies. The area was characterized by normal contacts with main boundary trending NW-SE direction. This boundary was estimated as main fault in Kinigi geothermal field, Rwanda. The detected fault could be a better place for installing geothermal wells for future geothermal development in the region..
31. Mohammad SHEHATA, Hideki MIZUNAGA, Directionality and Mimensionality Analysis of USArray Magnetotelluric Data from Weatern USA, Proceedings of International Symposium on Earth Science and Technology 2018, 38-41, 2018.11.
32. Tumbu Lucus BONIFACE, Hideki MIZUNAGA, Three-dimensional Inversion of MT Data to Geothermal Systems in Kisaki Geothermal Field, Eastern Tanzania, Proceedings of International Symposium on Earth Science and Technology 2018, 487-493, 2018.11.
33. Yosuke KIYOMOTO, Hideki MIZUNAGA, Toshiaki TANAKA, Archaeological Survey for Genko Borui Using Ground Penetrating Radar, Proceedings of International Symposium on Earth Science and Technology 2018, 558-561, 2018.11.
34. Gosuke HOSHINO, Hideki MIZUNAGA, Toshiaki TANAKA, Development of a Simulator for 3-D Long-offset TEM Method, Proceedings of International Symposium on Earth Science and Technology 2018, 562-565, 2018.11.
35. Hideaki EJIMA, Hideki MIZUNAGA, Toshiaki TANAKA, Detection and Classification of Anomalies in GPR B-scan Data, Proceedings of International Symposium on Earth Science and Technology 2018, 566-568, 2018.11.
36. Shokai IWAMOTO, Hideki MIZUNAGA, Toshiaki TANAKA, GPR Survey at Kuratsukasa Erea in Dazaifu Historical Site, Fukuoka Prefecture, Japan, Proceedings of International Symposium on Earth Science and Technology 2018, 569-571, 2018.11.
37. Kazuki YAMADA, Hideki MIZUNAGA, Toshiaki TANAKA, Spectrum Analysis of Gamma Ray Data to Extract Spectrum Peaks, Proceedings of International Symposium on Earth Science and Technology 2018, 572-574, 2018.11.
38. Yusuke EGUSA, Hideki MIZUNAGA, Toshiaki TANAKA, 3-D Simulation of Square Array Resistivity Method Considering the Effects of Mixture of Soil-Cement, Proceedings of International Symposium on Earth Science and Technology 2018, 575-578, 2018.11.
39. Hassan Mohamed, Hakim Saibi, Mohand Bersi, Sami Abdelnabi, Baher Geith, Hamdy Ismaeil, Thomas Tindell, Hideki Mizunaga, 3-D magnetic inversion and satellite imagery for the Um Salatit gold occurrence, Central Eastern Desert, Egypt, Arabian Journal of Geosciences, 10.1007/s12517-018-4020-6, 11, 21, 2018.11, [URL], The Um Salatit is a gold occurrence situated in the Central Eastern Desert of Egypt. The studied area is characterized by an intensive imbrication zone of serpentinites and metavolcanic rocks. The integrated use of aeromagnetic and spectral reflectance remote sensing data has proved effective for mapping geology related to ore deposits. Spectral reflectance maps have been produced to discriminate various rocks, such as serpentinites, gabbros, and metavolcanic rocks. 3-D inversion of aeromagnetic data acquired over the Um Salatit study area produced a 3-D magnetic susceptibility model showing magnetic bodies surrounded by less magnetic host rock. The magnetic features are elongated ENE-WSW parallel to the major thrust fault and mapped the Um Salatit serpentinized rocks. Remote sensing data allow investigating surficial geological features and mapping the mineralized areas. Remote results, in conjunction with 3-D inversion of aeromagnetic data, demonstrate that gold occurrence in the study area was effectively restricted to the highly magnetic zone interpreted as host rocks..
40. Uwiduhaya Jean d'Amour, Hakim Saibi, Hideki Mizunaga, Edge detection and 3-D gravity inversion at Kinigi geothermal field, Rwanda, Proceedings of 7th African Rift Geothermal Conference at Kigali, Rwanda, CD-ROM, 2018.10.
41. Cherkose Biruk Abera, Hideki Mizunaga, F. Samrock, Imaging Resistivity Structures of High-Enthalpy Geothermal Systems Using Magnetotelluric Method: A case study of Aluto-Langano geothermal field in Ethiopia, Proceedings of 7th African Rift Geothermal Conference at Kigali, Rwanda, CD-ROM, 2018.10.
42. Jean d.Amour Uwiduhaye, Hideki Mizunaga, Hakim Saibi, Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda, Journal of African Earth Sciences, 10.1016/j.jafrearsci.2017.12.016, 139, 184-192, 2018.03, [URL], A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from −52 to −35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field..
43. Biruk Abera Cherkose, Hideki Mizunaga, Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion, Journal of African Earth Sciences, 10.1016/j.jafrearsci.2017.12.017, 139, 307-318, 2018.03, [URL], Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area..
44. Maryadi Maryadi, Hideki Mizunaga, Estimation of Static Temerature Distribution by Means of Audio-Magnetotelluric Data, Proceedings of 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, CD-ROM, 2018.02.
45. Mohammad Shehata, Hideki Mizunaga, Flash Flood Risk Assessment for Kyushu Island, Japan, Environmental Earth Sciences, 10.1007/s12665-018-7250-8, 77, 3, 2018.02, [URL], Using advanced geospatial analysis technologies, flash flood risk is assessed for the island of Kyushu, Japan. In this study, the flash flood risk is redefined in terms of the flash flood potential index (FFPI) and the flash flood residential hazard (FFRH). The island experiences rainy weather, especially in the summer (June–August), when catastrophic flash flood events have historically occurred. Studies of the surface hydrological properties of the island are very rare and localized; hence, geospatial techniques are most appropriate for the assessment process. The Soil Conservation Service rainfall-runoff model was used to estimate hydrological responses on the island. Four factors were included in the flash flood assessment. A multi-criteria analysis was carried out to map the FFPI and FFRH from the evaluation factors. The results show that the highest flash flood risk occurs in the northern parts of the island, where the soil displays relatively low infiltration rates and relatively high curve numbers, despite the comparatively low precipitation rates that occur there. The results indicate that soil hydrological properties are the main driving forces of flash floods, especially in regions with low precipitation rates. The results of this research are consistent with previous in situ measurements of runoff made at several sites on the island. The results also show a strong geographic correlation with historical flash flood events on the island. This research validates the use of geospatial analysis for large geographic regions where in situ measurements cannot be taken due to time or cost constraints. The results of this study provide decision makers with the information needed to select a management strategy to address possible future flash flood events that considers safety and water harvesting..
46. Ho Trong Long, Hideki Mizunaga, Keisuke Ushijima, Borehole-to-surface electrical data interpretation at Takigami geothermal field in Kyushu, Japan using neural network, Society of Exploration Geophysicists International Exposition and 76tth Annual Meeting 2006, SEG 2006
Society of Exploration Geophysicists - SEG International Exposition and 76tth Annual Meeting 2006, SEG 2006
, 1318-1322, 2018.01, This paper deals with the application of neural network technique for the three-dimension interpretation of mise-à-la-masse data from the Takigami geothermal field in Kyushu, which is one of the most active geothermal area in Japan. To understand the structure of the geothermal field, a 4-layers neural network had been developed. The training algorithm for the network is back-propagation with five paradigms, e.g. on-line back-propagation, batch back-propagation, delta-bar-delta, resilient propagation (RPROP) and quick propagation, were applied to find out the most efficient one. The network was trained with 3-D mise-à-la-masse simulation data set, including 864 cases of a single anomalous resistivity block of 10 Ohm.m moving in the model mesh with background resistivity of 100 Ohm.m. To generate the training data set, a high accuracy algorithm for 3-D numerical simulation, based on finite difference method and the algorithm of the singularity removal, was used. The trained network was tested by a synthetic data and then applied for the real field data set of the study area. The obtained results are remarkably correlated with the other available data from the field such as previous geoelectrical data, formation temperatures, lost circulation zones, hence, promising zones for production or re-injection can be indicated quickly at site of Takigami geothermal field..
47. Mohammad SHEHATA, Hideki MIZUNAGA, Deliniation of the Magnetotelluric Triple Junction Structure Based on Potrential Field Data Interpretation, Proceedings of International Symposium on Earth Science and Technology 2017, 54-59, 2017.12.
48. Maryadi MARYADI, Hideki MIZUNAGA, Analysis of Audio-frequency Magnetotelluric Data for THree-dimensional Deep Temperature Reconstruction, Proceedings of International Symposium on Earth Science and Technology 2017, 68-71, 2017.12.
49. CHERKOSE Biruk Abera, Hideki MIZUNAGA, 3-D Magnetotelluric Inversion to Map Geothermal Structures in Aluto-Langano Geothermal Field, Ethiopia, Proceedings of International Symposium on Earth Science and Technology 2017, 483-486, 2017.12.
50. Yosef KEBEDE, Hideki MIZUNAGA, Dimensionalitu Analysis of Magnetotelluric Data from Tendaho-Alalobeda Geothermal Field, Northeast Ethiopia, Proceedings of International Symposium on Earth Science and Technology 2017, 518-523, 2017.12.
51. Albertus ARIEL, Hideki MIZUNAGA, A New Technique for Noise Reduction of Megnetotelluric Data by Using Cepstrum Analysis, Proceedings of International Symposium on Earth Science and Technology 2017, 556-559, 2017.12.
52. Shafiqullah WAHAB, Hideki MIZUNAGA, Applications of 2-D Resistivity Inversion, Case Studies: Groundwater and Mineral Exploration, Proceedings of International Symposium on Earth Science and Technology 2017, 560-565, 2017.12.
53. Daniel GALLAGHER, Hideki MIZUNAGA, Archaeological Prospection at Dazaifu's Kuratsukasa Area by FDEM, Proceedings of International Symposium on Earth Science and Technology 2017, 566-570, 2017.12.
54. Shunichi OKAMOTO, Toshiaki TANAKA, Hideki MIZUNAGA, Development of a Measurement Instrument Controlled by PSoC5LP for Fluid Flow Electromagnetic Method, Proceedings of International Symposium on Earth Science and Technology 2017, 571-573, 2017.12.
55. Gosuke HOSHINO, Hideki MIZUNAGA, Toshiaki TANAKA, Development of a Ray Tracing Program for Seismic Refraction Method, Proceedings of International Symposium on Earth Science and Technology 2017, 574-576, 2017.12.
56. Ryosuke NAGAWA, Hideki MIZUNAGA, Toshiaki TANAKA, Development of an Inversion Program of Marine TEM Using PSO, Proceedings of International Symposium on Earth Science and Technology 2017, 577-579, 2017.12.
57. Syokai IWAMOTO, Hideki MIZUNAGA, Toshiaki TANAKA, GPR Survey at Kuratsukasa District in Dazaifu Historical Site, Fukuoka Prefecture, Japan, Proceedings of International Symposium on Earth Science and Technology 2017, 580-582, 2017.12.
58. Kazuki YAMADA, Hideki MIZUNAGA, Radioactive Exploration in Ito Campus Using Gamma Ray Spectrometer, Proceedings of International Symposium on Earth Science and Technology 2017, 583-585, 2017.12.
59. Hideaki EJIMA, Hideki MIZUNAGA, Toshiaki TANAKA, Recognition of Buried Objects of GPR Using CNN, Proceedings of International Symposium on Earth Science and Technology 2017, 586-588, 2017.12.
60. Yusuke EGUSA, Hideki MIZUNAGA, Toshiaki TANAKA, Simulation of Square Array Resistivity Method to Detect Subsurface Layer Boundaries, Proceedings of International Symposium on Earth Science and Technology 2017, 589-591, 2017.12.
61. Hassan Mohamed, Hideki Mizunaga, Nasser Mohamed Abou Ashour, Refaat Ahmed Elterb, Ibrahim Mostafa Elalfy, Ayman Shebel Elsayed, Radiogenic heat production in Rudeis Formation, Lower Miocene, Belayim marine oil field, Gulf of Suez, Egypt, Exploration Geophysics, 10.1071/EG15021, 48, 4, 512-522, 2017.12, [URL], This study describes radiogenic heat production (RHP) estimated from two sets of well logging data recorded in Rudeis Formation, Belayim marine oil field. Subsurface total count gamma-ray (GR) data were recorded in nine wells, seven of which possessed spectrometric data (eU, eTh, and K). The data show that RHP estimated from GR logs (ABR) varies from 0.13 to 1.73μW/m3, with an average of 0.7μW/m3 and a standard deviation of 0.26μW/m3. In addition, 72.9% of RHP values fall within the range of 0.6-1.0μW/m3. RHP estimated from the concentrations of radioactive elements (AR) vary from 0.13 to 2.1μW/m3, with an average 0.71μW/m3 and a standard deviation of 0.38μW/m3. 50% of these RHP values fall within the range of 0.6-1.0μW/m3. Cross-correlation of ABR and AR calculations yielded a moderate fit of 0.75. The three-dimensional (3D)-slicing of the reservoir shows that the northern and north-western parts of the study area have higher RHP compared to other parts. The estimated RHP can produce enough heat which has an effect on the hydrocarbon potential in Rudeis Formation..
62. 水永秀樹,山口盛一,田中俊昭,牛島恵輔 , 比抵抗法による岩原双子塚古墳の内部構造の三次元可視化, 考古学と自然科学, 74, 29-43, 2017.11.
63. 水永秀樹,石永清隆, 時間領域IP法の2.5次元モデリングとインバージョン, 物理探査, 70, 69-79, 2017.10.
64. Jean d'Amour UWIDUHAYE, Hideki Mizunaga, Hakim SAIBI, Gravity survey in Kinigi geothermal field, Rwanda, Proceedings of International Symposium on Earth Science and Technology 2016, 118-123, 2016.12.
65. Akitaka NAKAMURA, Hideki Mizunaga, 1D modeling of TEM method in consideration of IP effect, Proceedings of International Symposium on Earth Science and Technology 2016, 473-475, 2016.12.
66. Daniel GALLAGHER, Hideki Mizunaga, 1-D forward modeling of airborne transient electromagnetic method, Proceedings of International Symposium on Earth Science and Technology 2016, 476-479, 2016.12.
67. Keisuke IKEDA, Hideki Mizunaga, Toshiaki Tanaka, GPR survey at Onigaura tunnel tombs and 2-D simulation, Proceedings of International Symposium on Earth Science and Technology 2016, 486-488, 2016.12.
68. Shogo HAMADA, Hideki Mizunaga, Toshiaki Tanaka, A study on identification of signal and noise in fluid flow electromagnetic method, Proceedings of International Symposium on Earth Science and Technology 2016, 489-491, 2016.12.
69. Maryadi MARYADI, Hideki Mizunaga, Correlation analysis between audio-magnetotelluric and borehole thermograms data for developing electromagnetic geothermometry, Proceedings of International Symposium on Earth Science and Technology 2016, 492-497, 2016.12.
70. Biruk Abera CHERKOSE, Hideki Mizunaga, Megnetotelluric investigation in Aluto-Langano geothermal field, Ethiopia, Proceedings of International Symposium on Earth Science and Technology 2016, 510-514, 2016.12.
71. Hassan MOHAMED, Hideki Mizunaga, Nasser Mohamed Abou Ashour, Refaat Ahmed Elterb, Ibrahim Mostafa Elalfy, Ayman Shebel Elsayed, Radiometric heat production in Rudesis Formation, Lower Miocene, Belayim marine oil field, Gulf od Suez, Egypt, Exploration Geophysics, (Published online September 2016), 2016.09.
72. Satoru Yamaguchi, Hideki Mizunaga, Taishiro Katsu, Satoshi Nakamuta, Yasuki Kono, Preliminary Design of an Underwater Glider for Ocean Floor Resources Exploration, Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference, Rodes, Greece, 590-594, 2016.06.
73. 水永秀樹, 重力偏差の3次元モデリングと相関トモグラフィ, 物理探査, 69, 2, 87-101, 2016.05.
74. Satoru Yamaguchi, Hideki Mizunaga, Taishiro Katsu, Satoshi Nakamuta, Yasuki Kono, Preliminary design of an underwater glider for ocean floor resources exploration, 26th Annual International Ocean and Polar Engineering Conference, ISOPE 2016
Proceedings of the 26th International Ocean and Polar Engineering Conference, ISOPE 2016
, 2016-January, 590-594, 2016.01, In this paper, the authors propose a novel exploration system for ocean floor resources using an autonomous underwater glider and OBEM (Ocean bottom electromagnetometer). Studies on the gliding performance and the hydrodynamic characteristics of several kinds of body shape were carried out for the preliminary design of the system. Gliding ratios in a steady flow were estimated based on CFD calculation for different main wing shapes. The effects of the size of the body and the camber of the main wing were examined as well. It was confirmed that designed vehicle had efficient gliding performance to achieve the autonomous OBEM measurement..
75. Hassan MOHAMED, Hideki Mizunaga, Hakim SAIBI, Ali ABDELAZIZ, Three-dimensional Forward Modeling of Geomagnetic Data Using Hexahedral Element with Application to Zeit Basin Area, Gulf of Suez, Egypt, Proceedings of International Symposium on Earth Science and Technology 2015, 155-160, 2015.12.
76. Kyosuke TANNO, Hideki Mizunaga, 3-D Inversion of Gravity Method Using Quantum Annealing, Proceedings of International Symposium on Earth Science and Technology 2015, 306-308, 2015.12.
77. Satoshi TANIMURA, Hideki MIZUNAGA, Development of One-dimensional Inversion Program of Marine Controlled Source Electromagnetic (MCSEM) Method with Particle Swarm Optimization, Proceedings of International Symposium on Earth Science and Technology 2015, 309-312, 2015.12.
78. Keisuke IKEDA, Hideki MIZUNAGA, GPR Survey at Funabaru Ruins in Koga City, Fukuoka Prefecture, Japan, Proceedings of International Symposium on Earth Science and Technology 2015, 313-316, 2015.12.
79. Shogo HAMADA, Hideki MIZUNAGA, Toshiaki TANAKA, Research about Measurement of Marine MT Probe's Posture, Proceedings of International Symposium on Earth Science and Technology 2015, 317-319, 2015.12.
80. Jean d'Amour UWIDUHAYE, Hideki MIZUNAGA, 3-D Simulation of Gravity Method Using Gauss-Legendre Integration, Special Issue of the Joint Program of Sustainable Resources Engineering, JPSRE, International Symposium on Earth Science and Technology 2015, 25-28, 2015.12.
81. Akitaka NAKAMURA, Hideki MIZUNAGA, Saline Contamination Research in Motooka Using TEM Method, Special Issue of the Joint Program of Sustainable Resources Engineering, JPSRE, International Symposium on Earth Science and Technology 2015, 33-35, 2015.12.
82. 水永秀樹, 連続オイラー変換を用いた高精度なリニアフィルター, 物理探査, 68, 1, 1-12, 2015.01.
83. Shota Kukita, Hideki Mizunaga, Three-dimensional Forward Modeling of Airborne TEM Method, Proceedings of International Symposium on Earth Science and Technology 2014, 272-274, 2014.12.
84. Kenta KUMA, Hideki MIZUNAGA, Toshiaki TANAKA, Three-dimensional Modeling and Inversion of Fluid Flow Electromagnetic Method, Proceedings of International Symposium on Earth Science and Technology 2014, 275-278, 2014.12.
85. Satoshi TANIMURA, Hideki MIZUNAGA, Yutaka SASAKI, One-dimensional Forward Modeling of Marine Controlled Source Electromagnetic (MCSEM) Method, Expanded Abstracts by the Students of the School on the Move in AJ-BCEP, International Symposium on Earth Science and Technology 2014, 358-361, 2014.12.
86. Kyosuke TANNO, Hideki MIZUNAGA, Three-dimensional Forward Modeling of the Gravity Exploration Using the Hexahedral Element, Expanded Abstracts by the Students of the School on the Move in AJ-BCEP, International Symposium on Earth Science and Technology 2014, 362-365, 2014.12.
87. Shota Kukita, Hideki Mizunaga, Toshiaki TANAKA, 3-D Forward Modeling of Airborne TEM Method for Wide Geothermal Area, Proceedings of Grand Renewable Energy 2014 International Conference, 2014.07.
88. Kenta Kuma, Hideki Mizunaga, Toshiaki TANAKA, Three-dimensional Numerical Simulation of Fluid Flow Electromagnetic Method for Geothermal Fluid, Proceedings of Grand Renewable Energy 2014 International Conference, 2014.07.
89. 水永 秀樹, 田中俊昭, TEM法解析プログラムTemtoolの開発, 物理探査, 67, 2, 135-142, 2014.04.
90. Wei Deng, Hideki Mizunaga, Yutaka Sasaki, Stepwise 3-D Resistivity Inversion and Sensitibity Factor Analysis, Proceedings of the International Symposium on Earth Science and Technology 2013, 321-327, 2013.12.
91. Tateyuki Negi, Hideki Mizunaga, Yuji Mitsuhata, Quality improvement in the magnetotelluric spectrum using multiple far remore references, Proceedings of the 11th SEGJ International Symposium, USB (only digital data) , 2013.11.
92. Shota Kukita, Hideki Mizunaga, UXO detection using small loop TEM method, Proceedings of the 11th SEGJ International Symposium, USB (only digital data) , 2013.11.
93. Hideki Mizunaga, 井上敬夫, 福岡県那珂川町・安徳台遺跡群の地中レーダ探査, 物理探査, 66, 4, 287-294, 2013.10.
94. Tateyuki Negi, Hideki Mizunaga, Koichi Asamori, Koji Umeda, Three-dimensional magnetotelluric inversion using a heterogeneous smoothness-constrained least-squares method, Exploration Geophysics, 10.1071/EG13026, 44, 3, 145-155, 2013.09, [URL], This paper presents a fast algorithm for electromagnetic data inversion to three-dimensional (3D) resistivity models. The algorithm is distinctive for the level of accuracy it attains while bypassing the sensitivity matrix update. A common sensitivity matrix for homogeneous half-space is used in all iterations. Instead of updating the sensitivity matrix, the smoothness filter coefficients at each model element are updated, based on the spatial variations in resistivity in the model derived from the latest iteration. This substitution is expected not only to reduce the computation time required for large-scale inversions, such as those for 3D surveys, but also to allow the resolution of sharp boundaries in resistivity structures. Our algorithm was applied to 3D magnetotelluric inversion in order to confirm its effectiveness. Using synthetic examples under several conditions, we demonstrated that the method can reduce the number of forward calculations required to reduce data misfits to noise level, and that the method is robust for constructing target models even with sharp boundaries without generating fatally false resistivity structures or boundaries under noisy conditions..
95. Tateyuki Negi, Hideki Mizunaga, Toshihiro Uchida, A Technique for Calculating Magnetotelluric Impedance Based on the Presence of Noise, Journal of Novel Carbon Resource Sciences, Vol.6, 36-40, 2012.09.
96. Tateyuki Negi, Hideki Mizunaga, Koichi Asamori and Koji Umeda, Three dimensional magnetotelluric imaging of the source area of 2000 Western Tottori earthquake using heterogeneous smoothness-constraint least-squares method, Proceedings of International Symposium on Earth Science and Technology 2011, 341-344, 2011.12.
97. Nureddin M. Saadi, Koichiro Watanabe, Hideki Mizunaga, Evaluation of image processing methods for geological interpretation in the different environments in Libya, Arabian Journal of Geosciences, 10.1007/s12517-010-0241-z, 4, 3-4, 635-643, 2011.01, [URL], This study evaluates the use of image processing techniques and methodologies of digital integration of multi-disciplinary geoscientific data to reduce the ambiguity in geological interpretations in different geological environments in Libya. To realize this objective, three areas were selected for this study; Eljufra, an arid environment; the mountainous environment Tarhunah; and the Jifara Plain, a coastal plain environment. Two types of remote sensing data were used in this study: Landsat Enhanced Thematic Mapper Plus (ETM+) and European Remote Sensing Satellite. The digital elevation model extracted from Shuttle Radar Topography Mission and digital topographic maps scale 1:50,000 were used for remote sensing interpretation. GIS and remote sensingbased methods were used to process and integrate all raster and vector layers data. This study offered dramatic benefits for geological interpretations and provided new insights into the efficiency of image processing methods in different geological environments..
98. 水永秀樹,中川慶,牛島恵輔, デコンボリューションフィルターを用いた水平電気探査データの解析, 文化財と探査, 12, 1&2, 3-12, 2010.12.
99. 水永秀樹,牛島恵輔,竹下裕人, 弾性波トモグラフィによる今宿大塚古墳の遺跡探査, 文化財と探査, 12, 1&2, 13-19, 2010.12.
100. 水永秀樹,黒木敬悟,田中俊昭, F-Kマイグレーションを用いた地中レーダの三次元可視化, 文化財と探査, 11, 2, 13-18, 2010.05.
101. 水永秀樹,田中俊昭,牛島恵輔,宮本一夫,辻田淳一郎, 九州大学伊都キャンパスの前方後円墳探査, 文化財と探査, 11, 2, 19-30, 2010.05.
102. Hideki Mizunaga, Toshiaki Tanaka, K. Ushijima, N. Ikeda, Fluid-flow monitoring by a 4-D geoelectrical techniques, 19th Symposium on the Application of Geophysics to Engineering and Environmental Problems: Geophysical Applications for Environmental and Engineering Hazzards - Advances and Constraints, SAGEEP 2006
19th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2006
Geophysical Applications for Environmental and Engineering Hazzards - Advances and Constraints
, 2, 1494-1504, 2006.12, An advanced geoelectrical technique for imaging potential fractures has been developed by Engineering Geophysics Laboratory in Kyushu University. The method, Fluid Flow Tomography (FFT), has been applied to monitor fluid flow behaviors in a reservoir during water injection and steam production operations in geothermal areas. Distribution and extension of major fractures can be evaluated by 3-D inversion of induced self potential (SP) anomalies with a function of time and resistivity structures can be determined by 3-D inversion of the charged potential data in a surveyed area. It is concluded that fluid flow behaviors in a reservoir could be continuously traced and visualized as a function of time by the FFT method..
103. Keisuke Ushijima, Hideki Mizunaga, Toshiaki Tanaka, Mine and UXO exploration by electrical resistivity measurements, 19th Symposium on the Application of Geophysics to Engineering and Environmental Problems: Geophysical Applications for Environmental and Engineering Hazzards - Advances and Constraints, SAGEEP 2006
19th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2006
Geophysical Applications for Environmental and Engineering Hazzards - Advances and Constraints
, 1615-1623, 2006.12, Mine clearing is an urgent matter to be tackled internationally not only from the humanitarian point of view but also from the viewpoint of reconstruction and economic growth in the area where a cessation of armed conflicts was achieved. Operations are already underway to clear landmines, but currently they rely heavily on human works due to a lack of safer and efficient demining techniques. Various geophysical exploration techniques have been applied to the problem of detecting and mapping underground mines and UXO with practical success. The most productive techniques are magnetic, electromagnetic and Ground Penetrating Radar methods for which the mine target exhibits the greatest physical contrast with the host geological formation. Developments of more sensitive geophysical equipments for detecting mines is required to meet the geophysical conditions of lower contrast with the environment and at the scale of the target. Starting from May 2004, a channel of communication between the Egyptian embassy in Tokyo and the Kyushu University Mine Action Group (QMAG) team on the topics of landmines in Egypt has been established on how to apply geophysical techniques newly developed geophysical techniques in Japan to solve the problem of landmines in Egypt. We arranged a campaign for landmines detection technology in Egypt, conducted by research teams of QMAG of Kyushu University. During the campaign three geophysical techniques, DC resistivity, magnetic and ground penetration radar were tested and evaluated..
104. Hideki Mizunaga, Toshiaki Tanaka, Keisuke Ushijima, 3D imaging of archaeological tomb by electrical resistivity techniques, 19th Symposium on the Application of Geophysics to Engineering and Environmental Problems: Geophysical Applications for Environmental and Engineering Hazzards - Advances and Constraints, SAGEEP 2006
19th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2006: Geophysical Applications for Environmental and Engineering Hazzards - Advances and Constraints
, 2, 1374-1377, 2006.12, Several geophysical exploration methods have been applied to the problem of detecting and mapping underground archaeological remains with practical success. The most productive techniques are those for which the archaeological target exhibits the great physical contrast with the surrounding formation. Most widely used in archaeological prospection include Magnetic, Electromagnetic, Ground Penetrating Radar and Electrical Resistivity methods applied at the shallow surface. However, these conventional geophysical measurements for an archaeological prospection has been tried with relatively limited success. Therefore, we have developed an automatic imaging system named as Handy-ARM (Archaeological Resistivity Meter) for an archaeologist based on electrical resistivity techniques..
105. Supriyanto Suparno, Hideki Mizunaga, Keisuke Ushijima, 3-D MAM inversion in Sibayak geothermal field, Indonesia, Memoirs of the Faculty of Engineering, Kyushu University, 66, 2, 99-113, 2006.08, Sibayak geothermal field is located about 65 km to the southwest of Medan in the North Sumatra Province, Indonesia. Starting from 1998, a small-scale geothermal power plant (2 MWe) has been installed in this area. Since electricity demand increases in the North Sumatra Province, Pertamina Geothermal Energy plans to increase the capacity to 20 MWe. Accordingly, detailed knowledge of the reservoir structure and its extension must be determined for a new production target. The mise-a-la-masse (MAM) surveys were carried out in this field using the exploration well SBY-1 and the production well SBY-4 to delineate a new production target for further field development. A conventional one-dimensional MAM data processing has been done to obtain lateral variation of subsurface resistivity. However, the result is not satisfied to image real condition of the geology on the subsurface. Therefore, we carried out an advanced 3-D MAM inversion based on the smoothness-constrained least-squares method using a homogeneous earth as the simplest assumption of the starting model. Interpretation of the 3-D MAM model was done by combining the results with previous geo-electrical data and borehole information to image a promising reservoir zone. The resistivity model obtained from this study is characterized by a very low resistivity cap rock beneath a resistive layer and rather high resistivity layer of the reservoir. The very low resistivity layer is due to clay minerals such as montmorillonite. This interpretation result of the 3-D MAM model indicates that reservoir zones trend to the north-northeast direction of the study area, between Mt. Sibayak and Mt. Pratektekan, and shows a good correlation with the formation temperature and the lost circulation zone. This geophysical information is useful for the task of selecting sites for the promising zone in the Sibayak geothermal field..
106. Ho Trong Long, Hideki Mizunaga, Keisuke Ushijima, Borehole-to-surface electrical data interpretation at Takigami geothermal field in Kyushu, Japan using neural network, SEG Technical Program Expanded Abstracts, 10.1190/1.2369763, 25, 1, 1318-1322, 2006.01, [URL], This paper deals with the application of neural network technique for the three-dimension interpretation of mise-à-la-masse data from the Takigami geothermal field in Kyushu, which is one of the most active geothermal area in Japan. To understand the structure of the geothermal field, a 4-layers neural network had been developed. The training algorithm for the network is back-propagation with five paradigms, e.g. on-line back-propagation, batch back-propagation, delta-bar-delta, resilient propagation (RPROP) and quick propagation, were applied to find out the most efficient one. The network was trained with 3-D mise-à-la-masse simulation data set, including 864 cases of a single anomalous resistivity block of 10 Ohm.m moving in the model mesh with background resistivity of 100 Ohm.m. To generate the training data set, a high accuracy algorithm for 3-D numerical simulation, based on finite difference method and the algorithm of the singularity removal, was used. The trained network was tested by a synthetic data and then applied for the real field data set of the study area. The obtained results are remarkably correlated with the other available data from the field such as previous geoelectrical data, formation temperatures, lost circulation zones, hence, promising zones for production or re-injection can be indicated quickly at site of Takigami geothermal field..
107. Supriyanto Suparno, Hideki Mizunaga, Keisuke Ushijima, MAM and MT Exploration in the Sibayak Geothermal Field, Proceedings of 2005 SEG Annual Meeting, CD-ROM, 2005.11.
108. Hideki Hatanaka, Tetsuo Aono, Hideki Mizunaga, Keisuke Ushijima, Three-Dimensional Modeling and Inversion of the Mise-a-la-masse Data Using a Steel-Casing Borehole, Proceedings of World Geothermal Congress 2005, CD-ROM, 2005.04.
109. Hideki Mizunaga, Tetsuo Aono, Keisuke Ushijima, Imaging Geothermal Reservoir by a 4-D Geoelectrical Method, Proceedings of World Geothermal Congress 2005, CD-ROM, 2005.04.
110. Koichi Tagomori, Enjang Mustopa, Hisashi Jotaki, Hideki Mizunaga, Keisuke Ushijima, Imaging geothermal fractures by CSAMT method at Takigami area in Japan, Proceedings of Thirtieth Workshop on Gepthermal Reservoir Engineering, Stanford University, SGP-TR-176, 2005.01.
111. 水永秀樹,青野哲雄,田中俊昭,佐々木純一,牛島恵輔, 流体流動電位法による大沼地熱地帯の貯留層モニタリング, 日本地熱学会誌, 第26巻,第3号,251-271, 2004.07.
112. 多和田真丈, 波多江亮平, 水永 秀樹, 牛島 惠輔, GPR探査データを用いた3次元イメージング, 電気情報通信学会技術研究報告 宇宙・航行エレクトロニクス, 103, 300, 21-23, 2003.09.
113. 水永秀樹,青野哲雄,牛島恵輔, 傾斜坑井を利用した流電電位法の3次元インバージョン, 物理探査, 第56巻,第4号,209-218, 2003.01.
114. Enjang Jaenal Mustopa, Hisashi Jotaki, Hideki Mizunaga, Keisuke Ushijima, Magnetotelluric exploration of geothermal resources at Takigami area in Japan, Transactions of Geothermal Resource Council, 27, 245-248, 2003.01, A magnetotelluric (MT) survey has been carried out in Takigami geothermal area to determine resistivity structures and the locations of electrical discontinuities that may reflect a possible fault or fracture correlating with promising geothermal reservoir. The MT measurements have been conducted with irregular grid stations covering the Takigami area. The two-dimensional (2-D) inversion results of the MT data show that the resistivity structures in Takigami area are composed mainly of three layers, that is, high resistivity in the first layer overlying low resistivity in the second layer and resistive electrical basement in the third layer. The results are also in a good agreement with electrical resistivity logs, temperature distribution and lost circulation zone during the course of drilling. It is revealed from the interpretation of MT data that the geothermal reservoir of Takigami field is located at two different depths separated by Noine fault zone, which divides the subsurface of the area into eastern and western parts according to the characteristics of resistivity, permeability, temperature and depth of reservoir. The reservoir in the east of Noine fault zone is shallower than that in the west..
115. G. El-Quady, H. Mizunaga, K. Ushijima, Comparative study of resistivity inversion at hamam faraun area, Egypt, Memoirs of the Graduate School of Engineering, Kyushu University, 60, 3, 117-128, 2000.12, DC resistivity method is commonly used for acquiring subsurface resistivity data in environmental and engineering investigations. However, its interpretation is hampered by a variety of factors of which the non-linear nature of the process and bias effects on the data; mainly due to the noise; are the most problem, which limit the model resolution to a large extent. The ability to invert resistivity data successfully depends on many factors such as the uniqueness of the model as well as the robustness of the inversion algorithm. Hereafter we are investigating this problem using three different 1-Diversion algorithms. The three algorithms have been applied to a numerical model of 4 layers to determine the optimum solution produced by each of them. A random noise of 5, 10 and 20 percents has been added to the model in a forward step to determine the most stable, robustness algorithm. Those algorithms have been applied to the field data set measured at Hamam Faraum hot spring area, Egypt, aiming to make a refinement to the previous 1-D inversion done before for the same data set (E1-Qady et. al, 1998). We could conclude that the algorithm of Meju, (1992), is the most effective one in this study. The resulted 1-D geoelectrical cross section could elucidate the subsurface structure and explain the origin of the hot water in the area..
116. Keisuke USHIJIMA, Hideki MIZUNAGA, Toshiaki TANAKA, Kazuo MIYAMOTO, 3D Imaging Archaeological Tomb by Vertical Electric Soundings, Proceedings of Symposium on the Application of Geophysics to Engineering and Environmental Problems 2005, 856-861, 2000.04.
117. Keisuke Ushijima, Hideki Mizunaga, Toshiaki Tanaka, Reservoir monitoring by a 4-D electrical technique, The Leading Edge, 10.1190/1.1438242, 18, 12, 1422-1424, 1999.12, [URL], A multichannel geoelectrical system and software for data acquisition, processing and interpretation was developed. The method, called fluid-flow tomography (FFT), was used for direct imaging of fractures and an extension of geothermal reservoirs, and to monitor an oil reservoir during thermally enhanced oil recovery. The fluid-flow behavior in the subsurface can be monitored and visualized by the technique, providing time-series data of charged potentials and self-potentials, fluid-flow fronts visualizations and quantifications, symmetric anomaly due to anisotropic permeability of the formation, and 3D fractures distribution..
118. Li JISONG, 水永秀樹, 牛島 惠輔, ニューラルネットワークを用いた流電電位法データの解釈, 物理探査, 52, 1, 43-53, 1999.02.
119. Keisuke USHIJIMA, Hideki MIZUNAGA, Toshiaki TANAKA, Kazuo MASUDA, Fluid Flow Monitoring of EOR Process by Electrical Prospecting, SEG Technical Program Expanded Abstructs 1997, 651-654, 1997.11.
120. Li Jisong, Hideki MIZUNAGA, Keisuke USHIJIMA, Interpretation of Mise-a-la-masse Method Data Using Neural Network, International Symposium on Engineering and Environmental Geophysics 1997, 1997.10.
121. 水永秀樹,橋本幸治,田中俊昭,牛島恵輔, 多層構造中の電流源による理論電位の計算, 物理探査, 第50巻,第1号,29-37, 1997.01.
122. Hideki Mizunaga, Toshiaki Tanaka, Hideshi Kaieda, Keisuke Ushijima, Fluid flow monitoring system of a geothermal reservoir by electrical prospecting, Memoirs of the Kyushu University, Faculty of Engineering, 55, 4, 505-512, 1995.12, An advanced geophysical technique for reservoir monitoring by electrical prospecting has been developed by the joint research of Kyushu University and CRIEPI work in related to fracture evaluation at the Hot Dry Rock Geothermal Power Project in the Ogachi area. The Fluid Flow Tomography survey method utilizes a casing pipe itself as a charged current electrode similar to the mise-a-la-masse method. The method has been applied to monitor fluid-flow behaviors during massive hydraulic fracturing operations and fluid-circulation experiments from injection to production boreholes. In the automatic recording system controlled by a personal computer charged potentials (mV/A) and spontaneous potentials (mV) can be simultaneously measured as a function of time at multiple stations (120ch) surrounding an operating borehole. Fluid-flow behavior in the subsurface could be visualized as a function of time by using contour maps of residual potentials from SP data and relative changes of apparent resistivity due to dynamic reservoir stimulations..
123. Hideshi KAIEDA, Yasuhiro Fujimitsu, Takeshi YAMAMOTO, Hideki MIZUNAGA, Keisuke USHIJIMA, Shunji SASAKI, AE and Mise-a-la-masse Measurements during a 22-days Water Circulation Test at Ogachi HDR Site, Japan, Proceedings of the World Geothermal Congress, 1995, 2695-2700, 1995.05.
124. Hideki Mizunaga, Toshiaki Tanaka, Hideshi Kaieda and Keisuke Ushijima, Fluid flow monitoring system of a geothermal reservoir by electrical prospecting, Memoirs of the Faculty of Engineering, Kyushu University, Vol.55, No.4, 505-512, 1995.01.
125. Hideshi Kaieda, Toshiaki Tanaka, Hideki Mizunaga, Keisuke Ushijima, Fluid flow monitoring by vertical electric profiling method in Ogachi HDR site, Akita prefecture, Japan, 1992 Annual Meeting of the Geothermal Resources Council
Transactions - Geothermal Resources Council
, 16, 497-499, 1992.12, Hydraulic fracturing experiments for making a man-made reservoir have been conducted on HDR project by CRIEPI since 1986. The Vertical Electric Profiling (VEP, hole-to-surface) method of the geotomography has been applied to monitor fluid-flow behaviors during massive hydraulic fracturing operations. Self potentials (streaming potentials) and charged potentials (apparent resistivities) were continuously observed at multiple stations on the ground surface before and during pumping operations for estimating fluid-flow front and fracture extents. The injected fluid-flow was continuously imaged as a function of time with a personal computer on the Hot Dry Rock site..
126. Keisuke Ushijima, Shigetsugu Furuya, Hideki Mizunaga, Toshiro Motomatsu, Fluid flow monitoring by vertical electric profiling survey in takigami geothermal field, middle Kyushu, Japan, 1992 Annual Meeting of the Geothermal Resources Council
Transactions - Geothermal Resources Council
, 16, 323-328, 1992.12, The Vertical Electrical Profiling (VEP) surveys were carried out for the direct imaging of fractures in a northern reinjection area using TT-10 reinjection well and in the southern production area using TT-14 and TT-13 production wells in the Takigami geothermal field, Kyushu, Japan. The injection/production fluid-flows were continuously monitored with multiple potential electrodes on the ground surface surrounding the well. The potential data are measured with every 2 sec intervals by the digital recording system controlled by a personal computer on the site. The distribution of fractures estimated from the detected potentials show good agreements with the geometry of major fractures determined by the previous VEP (hole-to-surface) surveys in 1984 and the modern magneto-telluric survey in 1987..
127. K. Ushijima, Hideki Mizunaga, Hideo Mori, A. Hattori, T. Tajima, Fluid flow tomography of reinjection well by the vertical electric profiling method in Kazuno area, Akita prefecture, Japan, 1991 Annual Meeting of the Geothermal Resources Council
Transactions - Geothermal Resources Council
, 297-299, 1991.12, The Vertical Electric Profiling (VEP) methods were carried out for the exploration of fractures for the reinjection purposes in Kazuno area. The first field survey was conducted in 1985 by using a casing pipe of K-1 well and the drill site of K-5 was determined from the interpreted results. The K-5 reinjection well have met a good lost circulation zone of 135 t/h at the depth of 684 m. The second VEP survey was conducted in 1990 by using a casing pipe of K-5 well before and during the injection operations of the separated hotwater. The injected fluid was continuously monitored with 30 stations surrounding the well by the digital recording system controlled by a personal computer on the site. The distribution of fractures estimated from the detected flow paths show good agreements with the geometry of the major fractures obtained by the borehole imaging data by Schlumberger Wireline Service Inc.,..
128. 水永秀樹,牛島恵輔, 流電電位法の3次元モデリング, 物理探査, 第44巻,第4号,215-226, 1991.01.
129. 水永秀樹,牛島恵輔, 流電電位法のデータ処理に関する研究, 物理探査, 第41巻,第5号,345-359, 1988.01.
主要総説, 論評, 解説, 書評, 報告書等
1. Hideki Mizunaga, 掘らずに探すハイテク遺跡探査, 西日本新聞, 2015年1月16日の西日本新聞, 2015.01, 遺跡探査の現状と問題点を提起した.
2. 水永秀樹, 九州大学における資源系教育と人材育成, 石油技術協会誌, Vol.73, No.5,378-382, 2008.09.
3. H. Mizunaga, K. H. Lee and H. J. Kim, Three-dimensional electromagnetic modeling in the Laplace domain, Ernest Orlando Lawrence National Laboratory Technical Report (LBNL-42677), 1999.01.
4. 水永秀樹,牛島恵輔, 電気探査法による遺跡の3次元イメージング, 重点領域研究「遺跡探査」第5回研究成果検討会議論文集, pp.223-234, 1997.02.
5. 水永秀樹,牛島恵輔, 電気探査法による遺跡のイメージング, 重点領域研究「遺跡探査」第4回研究成果検討会議論文集, pp.231-257, 1996.02.
6. 水永秀樹,牛島恵輔, 遺跡探査のための電気探査システム開発, 重点領域研究「遺跡探査」第3回研究成果検討会議論文集, pp.187-194, 1995.02.
主要学会発表等
1. 橋本幸治,水永秀樹,田中俊昭,@平瀬敬司, 小型MT探査装置によるフィールド実験(1):九州大学伊都キャンパス, 日本地熱学会令和5年学術講演会, 2023.11.
2. 水永秀樹,田中俊昭,橋本幸治,@平瀬敬司, 小型MT探査装置によるフィールド実験(2):大分県久住高原, 日本地熱学会令和5年学術講演会, 2023.11.
3. 田中俊昭,水永秀樹,橋本幸治,@平瀬敬司, 小型MT探査装置によるフィールド実験(3):宮崎県えびの高原, 日本地熱学会令和5年学術講演会, 2023.11.
4. 水永秀樹,田中俊昭,橋本幸治, MT法の常識と非常識, 物理探査学会 第149回学術講演会, 2023.10.
5. Mohammad Hakim Rezayee, Hideki Mizunaga, Magnetic Susceptibility Inversion and Magnetic Vector Inversion: A case Study for Polymetallic Prospecting in Panjshir, Afghanistan, 物理探査学会 第149回学術講演会, 2023.10.
6. 水永秀樹,田中俊昭,橋本幸治、@小野寺真也, 小型軽量装置を活用したMT探査手法の高度化(1):プロジェクトの概要, 日本地熱学会令和4年学術講演会, 2022.11.
7. 田中俊昭,水永秀樹,橋本幸治、@小野寺真也, 小型軽量装置を活用したMT探査手法の高度化(2):ハードウェアの設計と試作, 日本地熱学会令和4年学術講演会, 2022.11.
8. 橋本幸治,水永秀樹,田中俊昭,@小野寺真也, 小型軽量装置を活用したMT探査手法の高度化(3):文献調査およびアンケート調査, 日本地熱学会令和4年学術講演会, 2022.11.
9. 水永秀樹,田中俊昭,橋本幸治、@小野寺真也, 小型軽量装置を活用したMT探査手法の高度化(1):プロジェクトの概要, 物理探査学会 第146回学術講演会, 2022.06.
10. 田中俊昭,水永秀樹,橋本幸治、@小野寺真也, 小型軽量装置を活用したMT探査手法の高度化(2):ハードウェアの設計と試作, 物理探査学会 第146回学術講演会, 2022.06.
11. Maryadi, Hideki Mizunaga , Subsurface resistivity imaging of geothermal field by means of impedance tensor and magnetovariational data analysis, International Symposium on Earth Science and Technology 2021, 2021.11.
12. Hao Chen, Hideki Mizunaga, Toshiaki Tanaka, Gang Wang, Maik Neukirch , Application of a new robust impedance estimator based on Hilbert-Huang transform for magnetotelluric method, International Symposium on Earth Science and Technology 2021, 2021.11.
13. Tamer Farag, Hideki Mizunaga, 3-D interpretation of airborne gravity data at Wadi El Assuity, Egypt, International Symposium on Earth Science and Technology 2021, 2021.11.
14. Kazuto Inoue, Hao Chen, Toshiaki Tanaka, Hideki Mizunaga , Example of application of a new MT time series processing method, International Symposium on Earth Science and Technology 2021, 2021.11.
15. Chuichi Inoue, Mizunaga Hideki, Toshiaki Tanaka , A study on visualization of underground roots using electrical techniques, International Symposium on Earth Science and Technology 2021, 2021.11.
16. 水永 秀樹, 地熱開発のための物理探査, 日本応用地質学会九州支部, 2021.09.
17. Hao Chen, Hideki Mizunaga, Toshiaki Tanaka, Gyan Wang, Comparison of the bound influence estimator and the maximum likelihood estimator for magnetotelluric response function, 物理探査学会 第144回学術講演会, 2021.06.
18. Abebayehu Andarge Mengiste, Hideki Mizunaga, Toshiaki Tanaka, 1-D and 2-D Inversions of Magnetotelluric Data in Butajira Geothermal Field, Ethiopia

, International Symposium on Earth Science and Technology 2020, 2020.11.
19. Soichiro Hashimoto, Toshiaki Tanaka, Hideki Mizunaga, A New Techniques of Resistivity Measurement for Drilling Cores

, International Symposium on Earth Science and Technology 2020, 2020.11.
20. Yushin Higashi, Toshiaki Tanaka, Hideki Mizunaga, An Experimental Study on Quad-Loop EM Method

, International Symposium on Earth Science and Technology 2020, 2020.11.
21. Hao Chen, Hideki Mizunaga, Toshiaki Tanaka, Gang Wang, New strategy to calculate robust impedance using RMHHT estimator for continuous and discontinuous broadband magnetotelluric time-series data

, International Symposium on Earth Science and Technology 2020, 2020.11.
22. Casula Mel Anthony Asis, Hideki Mizunaga, Toshiaki Tanaka, Torres Aniano, Subsurface Characterization using Geophysical and Hydrochemical Data: An Application to Groundwater Resources Management in Pampanga, Philippines

, International Symposium on Earth Science and Technology 2020, 2020.11.
23. #Hao Chen, Hideki Mizunaga, Toshiaki Tanaka, Robust impedance estimator based on Hilbert-Huang transformation to time-series magnetotelluric data, 物理探査学会 第143回学術講演会, 2020.11.
24. Tumbu Lucas Boniface, Hideki MIZUNAGA, Multi-dimensional Resistivity Imaging from Magnetotelluric Data and its Geological Interpretation in Keijo-Mbaka Geothermal Field, South-West Tanzania, International Symposium on Earth Science and Technology 2019, 2019.12.
25. Yusuke KIYOMOTO, Hideki MIZUNAGA, Toshiaki TANAKA, Development of Magnetotelluric 1-D Sparse Inversion, International Symposium on Earth Science and Technology 2019, 2019.12.
26. Hao CHEN, Hideki MIZUNAGA, Toshiaki TANAKA, The research on the application of Hilbert-Huang transformation to time series magnetotelluric data, International Symposium on Earth Science and Technology 2019, 2019.12.
27. Mohammad SHEHATA, Hideki MIZUNAGA, An Enhanced Edge Detection Technique for Potential Field Data; Case Study of Western USA, International Symposium on Earth Science and Technology 2019, 2019.12.
28. Tamer FARAG, Nehal SOLIMAN, Atef El SHAYAT, Hideki MIZUNAGA, Landsat 8 and Airborne Geophysical Data Interpretations to Investigate the Radioactivity Hazards at El Gilf El Biber Area, South Western Desert, Egypt, International Symposium on Earth Science and Technology 2019, 2019.12.
29. Soichiro HASHIMOTO, Toshiaki TANAKA, Hideki MIZUNAGA, Resistivity measurement technique using capacitor electrodes, International Symposium on Earth Science and Technology 2019, 2019.12.
30. 水永 秀樹,田中 俊昭,#マリャディ , 電磁地質温度計を用いた地下深部温度の推定, 日本地熱学会 令和元年熊本大会, 2019.11.
31. 水永 秀樹,田中 俊昭, IP効果を考慮した時間領域電磁法の1次元インバージョン, 物理探査学会 第141回学術講演会, 2019.10.
32. #清元 陽介,水永 秀樹,田中 俊昭, MT法の1-Dスパースインバージョン, 物理探査学会 第141回学術講演会, 2019.10.
33. #Mohammad Shehata,Hideki Mizunaga, Three Dimensional Subsurface Resistivity Imaging of the Western USA Retrieved from Magnetotelluric Inversion, 物理探査学会 第141回学術講演会, 2019.10.
34. #Tamer Farag, Mohammad Shehata,Hideki Mizunaga, The Present Scenario Controoling Groundwater Resources Using Magnetic Data at Wadi El Assuity, Egypt, 物理探査学会 第141回学術講演会, 2019.10.
35. 水永 秀樹,田中 俊昭,#江島 秀明, 地中レーダを使った横穴墓の形状再構成, 日本文化財科学会 第36回大会, 2019.06.
36. 清元 陽介, 水永 秀樹,田中 俊昭,岩本 鐘海, レイトレーシングを用いた地中レーダの波動伝播シミュレーション, 物理探査学会 第140回学術講演会, 2019.06.
37. Tumbu LUCAS, Hideki MIZUNAGA, Dimensionality and Directionality Analysis of MT Data to Geothermal Systems in Kiejo-Mbaka Geothermal Field, South-West Tanzania, 物理探査学会 第140回学術講演会, 2019.06.
38. 水永 秀樹,田中 俊昭,山田 一輝, スパースモデリングを用いた放射能探査のガンマ線スペクトル解析, 物理探査学会 第140回学術講演会, 2019.06.
39. 水永 秀樹, 物理探査データのスパースインバージョン, 物理探査学会 平成30年度ワンデーセミナー, 2019.02.
40. 水永 秀樹, 田中 俊昭, 星野剛右, 岡本駿一, 流体流動電磁法による地熱貯留層モニタリング, 日本地熱学会平成30年学術講演会, 2018.11.
41. 石原慎之助, 田中俊昭, 水永 秀樹, 糸井龍一, 樋口聖, 髙山純一, 大霧地熱貯留層における自然状態および生産還元シミュレーション, 日本地熱学会平成30年学術講演会, 2018.11.
42. Mohammad SHEHATA, Hideki MIZUNAGA, Directionality and Mimensionality Analysis of USArray Magnetotelluric Data from Weatern USA, International Symposium on Earth Science and Technology 2018, 2018.11.
43. Tumbu Lucus BONIFACE, Hideki MIZUNAGA, Three-dimensional Inversion of MT Data to Geothermal Systems in Kisaki Geothermal Field, Eastern Tanzania, International Symposium on Earth Science and Technology 2018, 2018.11.
44. Yosuke KIYOMOTO, Hideki MIZUNAGA, Toshiaki TANAKA, Archaeological Survey for Genko Borui Using Ground Penetrating Radar, International Symposium on Earth Science and Technology 2018, 2018.11.
45. Gosuke HOSHINO, Hideki MIZUNAGA, Toshiaki TANAKA, Development of a Simulator for 3-D Long-offset TEM Method, International Symposium on Earth Science and Technology 2018, 2018.11.
46. Hideaki EJIMA, Hideki MIZUNAGA, Toshiaki TANAKA, Detection and Classification of Anomalies in GPR B-scan Data, International Symposium on Earth Science and Technology 2018, 2018.11.
47. Shokai IWAMOTO, Hideki MIZUNAGA, Toshiaki TANAKA, GPR Survey at Kuratsukasa Erea in Dazaifu Historical Site, Fukuoka Prefecture, Japan, International Symposium on Earth Science and Technology 2018, 2018.11.
48. Kazuki YAMADA, Hideki MIZUNAGA, Toshiaki TANAKA, Spectrum Analysis of Gamma Ray Data to Extract Spectrum Peaks, International Symposium on Earth Science and Technology 2018, 2018.11.
49. Yusuke EGUSA, Hideki MIZUNAGA, Toshiaki TANAKA, 3-D Simulation of Square Array Resistivity Method Considering the Effects of Mixture of Soil-Cement, International Symposium on Earth Science and Technology 2018, 2018.11.
50. 水永 秀樹, 田中 俊昭, 流体流動電磁法の三次元スパースインバージョン, 物理探査学会 第139回学術講演会, 2018.10.
51. 田中俊昭,水永 秀樹, 流体流動電磁法測定システムの改良, 物理探査学会 第139回学術講演会, 2018.10.
52. 水永 秀樹, 田中 俊昭, 清元 陽介, 地中レーダによる元寇防塁探査, 日本文化財科学会 第35回大会, 2018.07.
53. 星野 剛右, 岡本 駿一, 田中 俊昭, 水永 秀樹, 窪田 健二, 鈴木 浩一, 海江田 秀志, 流体流動電磁法の測定機開発と注水モニタリング実験, 物理探査学会 第138回学術講演会, 2018.05.
54. 田中 俊昭, 水永 秀樹, 大久保 博晃, 財部 繁久, スクウェア配置比抵抗による地盤の比抵抗測定における改良杭施工の影響, 物理探査学会 第138回学術講演会, 2018.05.
55. 水永 秀樹, 田中 俊昭, 清元 陽介, 地中レーダによる九州大学箱崎キャンパスの元寇防塁探査, 物理探査学会 第138回学術講演会, 2018.05.
56. 水永 秀樹, 経験的モード分会を用いた時系列MT法データの処理, 物理探査学会 第138回学術講演会, 2018.05.
57. 水永 秀樹, 田中 俊昭, 岩本 鐘海, 大宰府蔵司地区の地中レーダ探査(2), 物理探査学会 第137回学術講演会, 2017.11.
58. 水永 秀樹, ケプストラムを使ったMT法データのコヒーレントノイズ除去, 物理探査学会 第137回学術講演会, 2017.11.
59. 那川 涼輔, 水永 秀樹, 粒子群最適化を用いた海洋TEM法の逆解析プログラムの開発, 物理探査学会 第137回学術講演会, 2017.11.
60. 星野 剛右, 田中 俊昭, 水永 秀樹, 海洋TEM法探査装置開発に向けた1Dシミュレーション, 物理探査学会 第137回学術講演会, 2017.11.
61. Shafiqullah WAHAB, 水永 秀樹, 2-D inversion of electrical resistivity data from Aynal copper deposits, Aynak, Afghanistan, 物理探査学会 第137回学術講演会, 2017.11.
62. 水永 秀樹, 田中 俊昭, 流電電位法による奥尻島の地熱貯留層探査, 日本地熱学会平成29年学術講演会, 2017.10.
63. 岡本駿一, 田中 俊昭, 水永 秀樹, 糸井龍一, 地熱開発地域を装丁した流体流動電磁法のシミュレーション, 日本地熱学会平成29年学術講演会, 2017.10.
64. 水永 秀樹, 田中 俊昭, 岩本 鐘海, 大宰府蔵司地区の地中レーダ探査, 物理探査学会 第136回学術講演会, 2017.06.
65. 水永 秀樹, ケプストラムを使ったMT法データの時系列解析, 物理探査学会 第136回学術講演会, 2017.06.
66. Maryadi, Hideki Mizunaga, Application of artificial neural network on vertical and lateral temperature estimation based on magnetotelluric data, 物理探査学会 第136回学術講演会, 2017.06.
67. Yosef Kebede, Hideki Mizunaga, Magnetotelluric exploration at Tendaho high temperature geothermal field in north east Ethiopia, 物理探査学会 第136回学術講演会, 2017.06.
68. Daniel Gallagher, Hideki Mizunaga, Archaeological prospecting at Dazaifu by FDEM, 物理探査学会 第136回学術講演会, 2017.06.
69. 星野 剛右, 水永 秀樹, 田中 俊昭, 屈折法データ解析のための波線追跡プログラムの開発, 物理探査学会 第136回学術講演会, 2017.06.
70. 江種 佑介, 水永 秀樹, 田中 俊昭, 地層境界検出を目的としたスクウェア配置比抵抗法のシミュレーション, 物理探査学会 第136回学術講演会, 2017.06.
71. 岡本 駿一, 濱田 将伍, 水永 秀樹, 田中 俊昭, 海江田 秀志, 鈴木 浩一, 窪田 健二, 流体流動電磁法の注水モニタリング実験, 物理探査学会 第136回学術講演会, 2017.06.
72. Cherkose Biruk Abera, Hideki Mizunaga, Exploration og high-enthalpy geothermal resources using magnetotelluric method - a case study of Alto-Langano geothermal field, Ethiopia, 物理探査学会 第136回学術講演会, 2017.06.
73. 田中 俊昭, 濱田 将伍, 水永 秀樹, 海洋MT法の機器開発, 物理探査学会 第136回学術講演会, 2017.06.
74. 水永 秀樹, 九州大学内の遺跡探査, 地球電磁気・地球惑星圏学会 第140回講演会, 2016.11.
75. 池田啓介, 水永 秀樹, 田中 俊昭, 鬼ヶ浦横穴墓の地中レーダ探査と2Dシミュレーション, 物理探査学会第135回学術講演会, 2016.10.
76. 濱田将伍, 水永 秀樹, 田中 俊昭, 流体流動電磁法のための小型計測装置の開発, 物理探査学会第135回学術講演会, 2016.10.
77. 中村旭貴, 水永 秀樹, IP効果を考慮したTEM法の1Dモデリング, 物理探査学会第135回学術講演会, 2016.10.
78. 岡本駿一, 田中 俊昭, 水永 秀樹, 熱水流体系を想定した流体流動電磁法の数値シミュレーション, 物理探査学会第135回学術講演会, 2016.10.
79. Jean d'Amour UWIDUHAYE, 水永 秀樹, SAIBI HAKIM, 2-D gravity modeling, a case study of Kinigi geothermal field, Rwanda, 物理探査学会第135回学術講演会, 2016.10.
80. 水永 秀樹, L1ノルム最小化を用いた物理探査データのスパースインバージョン, 物理探査学会第135回学術講演会, 2016.10.
81. 水永 秀樹, 田中 俊昭, 池田啓介, 鬼ヶ浦横穴墓の地中レーダ探査, 日本文化財科学会第33回大会, 2016.06.
82. 水永 秀樹, 独立成分分析を用いたMTデータのコヒーレントノイズの除去, 物理探査学会第134回学術講演会, 2016.05.
83. 水永 秀樹, コインシデントループを用いた空中および海洋TEM法の見掛比抵抗, 物理探査学会第134回学術講演会, 2016.05.
84. 濱田将伍, 水永 秀樹, 田中 俊昭, 海江田秀志, 鈴木浩一, 窪田健二, 流体流動電磁法の予備調査, 物理探査学会第134回学術講演会, 2016.05.
85. Hassan MOHAMED, Hideki Mizunaga, Hakim SAIBI, Ali ABDELAZIZ, Three-dimensional Forward Modeling of Geomagnetic Data Using Hexahedral Element with an Application to Zeit Basin Area, Gulf of Suez, Egypt, International Symposium on Earth Science and Technology 2015, 2015.12.
86. Kyosuke TANNO, Hideki Mizunaga, 3-D Inversion of Gravity Method Using Quantum Annealing, International Symposium on Earth Science and Technology 2015, 2015.12.
87. Satoshi TANIMURA, Hideki Mizunaga, Development of One-Dimensional Inversion Program of Marine Controlled Source Electromagnetic (MCSEM) Method with Particle Swarm Optimization, International Symposium on Earth Science and Technology 2015, 2015.12.
88. Keisuke IKEDA, Hideki Mizunaga, GPR survey at Funabaru Ruins in Koga City, Fukuoka Prefecture, Japan, International Symposium on Earth Science and Technology 2015, 2015.12.
89. Shogo HAMADA, Hideki MIZUNAGA, Toshiaki TANAKA, Research about Measurement of Marine MT Probe's Posture, International Symposium on Earth Science and Technology 2015, 2015.12.
90. Jean d'Amour UWIDUHAYE, Hideki MIZUNAGA, 3-D Simulation of Gravity Method Using Gauss-Legendre Integration, International Symposium on Earth Science and Technology 2015, 2015.12.
91. Akitaka NAKAMURA, Hideki MIZUNAGA, Saline Contamination Research in Motooka Using TEM method, International Symposium on Earth Science and Technology 2015, 2015.12.
92. 大野康年, 財部繁久, 水永 秀樹, 薬液注入工法における長距離曲り削孔技術-ワイヤレス式軌道計測システムの開発-, 平成27年度・建設施工と建設機械シンポジウム, 2015.12.
93. 財部繁久, 水永 秀樹, 田中俊昭, 非開削工法用掘削ビット位置計測システムの開発, 第26回 非開削技術研究発表会, 2015.11.
94. 水永 秀樹, 久木田将太, 空中TEM法の3次元モデリング, 日本地熱学会平成27年学術講演会, 2015.10.
95. 水永 秀樹, 田中俊昭, 地下流動を考慮した流体流動電磁法の3次元シミュレーション, 物理探査学会第133回学術講演会, 2015.09.
96. 水永 秀樹, 放射能探査の3次元シミュレーション, 物理探査学会第133回学術講演会, 2015.09.
97. 池田啓介, 水永 秀樹, 地中レーダによる福岡県古賀市船原古墳群の遺跡調査, 物理探査学会第133回学術講演会, 2015.09.
98. 丹野京介, 水永 秀樹, 量子焼き鈍し法を用いた重力探査の3次元インバージョン, 物理探査学会第133回学術講演会, 2015.09.
99. 中村旭貴, 水永 秀樹, TEM法による地下水の塩水化調査, 物理探査学会第133回学術講演会, 2015.09.
100. 水永 秀樹, 池田啓介, 田中俊昭, 船原古墳の地中レーダ探査, 日本文化財科学会第32回大会, 2015.07.
101. 水永 秀樹, 熊健太, 田中俊昭, 流体流動電磁法の重み付き相関トモグラフィ, 物理探査学会第132回学術講演会, 2015.05.
102. Kyoshke Tanno, Hideki Mizunaga, Three-dimensional Forward Modeling of the Gravity Exploration Using the Hexahedral Element, International Symposium on Earth Science and Technology 2014, 2014.12.
103. Satoshi Tanimura, Hideki Mizunaga, Yutaka SASAKI, One-dimensional Modeling of Marine Controlled Source Electromagnetic (MCSEM) Method, International Symposium on Earth Science and Technology 2014, 2014.12.
104. Kenta Kuma, Hideki Mizunaga, Toshiaki TANAKA, Three-dimensional Modeling and Inversion of Fluid Flow Electromagnetic Method, International Symposium on Earth Science and Technology 2014, 2014.12.
105. Shota Kukita, Hideki Mizunaga, Three-dimensional Forward Modeling of Airborne TEM Method, International Symposium on Earth Science and Technology 2014, 2014.12.
106. 水永 秀樹, 田中俊昭, 財部繁久, 増本輝男, MWDのための掘削位置計測システム, 日本地熱学会平成26年学術講演会, 2014.10.
107. 田中俊昭, 水永 秀樹, 流体流動電磁法測定システムのための職制環境における無線データ通信実験, 日本地熱学会平成26年学術講演会, 2014.10.
108. 水永 秀樹, 田中俊昭, 財部繁久, 増本輝男, 地中掘削位置計測システムの開発, 物理探査学会第131回学術講演会, 2014.10.
109. 久木田将太, 水永 秀樹, 空中TEM法の三次元フォワードモデリング, 物理探査学会第131回学術講演会, 2014.10.
110. 熊健太, 水永 秀樹, 田中俊昭, 3次元不均質構造における流体流動電磁法の数値シミュレーション, 物理探査学会第131回学術講演会, 2014.10.
111. 谷村諭志, 水永 秀樹, 佐々木裕, メタンハイドレート探査のための海洋CSEM法の1次元モデリング, 物理探査学会第131回学術講演会, 2014.10.
112. 丹野京介, 水永 秀樹, 六面体要素を用いた重力探査の3次元モデリング, 物理探査学会第131回学術講演会, 2014.10.
113. Shota Kukita, Hideki Mizunaga, Toshiaki TANAKA, 3-D Forward Modeling of Airborne TEM Method for Wide Geothermal Area, Grand renewable Energy 2014 International Conference, 2014.07.
114. Kenta Kuma, Hideki Mizunaga, Toshiaki TANAKA, Three-dimensional Numerical Simulation of Fluif Flow Electromagnetic Method for Geothermal Fluid, Grand renewable Energy 2014 International Conference, 2014.07.
115. 水永 秀樹, 田中俊昭, 一貴山銚子塚古墳の地中レーダ探査, 日本文化財科学会第31回大会, 2014.07.
116. 水永 秀樹, アンサンブルカルマンフィルタを用いたMT法のインバージョン, 物理探査学会第130回学術講演会, 2014.05.
117. 田中俊昭, 奥澤 洸, 水永 秀樹, 整流特性を考慮した時間領域IP法の基礎実験, 物理探査学会第130回学術講演会, 2014.05.
118. 水永 秀樹, 六面体要素を用いた重力偏差の3次元モデリング, 物理探査学会第130回学術講演会, 2014.05.
119. Takeru Okuzawa, Hideki Mizunaga, New Algorithm to Calculate Transient Response of Time-domain IP Method, International Symposium on Earth Science and Technology 2013, 2013.12.
120. Takeru Okuzawa, Toshiaki Tanaka, Hideki Mizunaga, Development of a Practical Measurement Equipment for Time-domain IP Method, International Symposium on Earth Science and Technology 2013, 2013.12.
121. Kenta Kuma, Hideki Mizunaga, Three-dimensional Forward Modeling Program of Fluid Flow Electromagnetic Method, International Symposium on Earth Science and Technology 2013, 2013.12.
122. Shota Kukita, Hideki Mizunaga, Field Experiment and 3-D Numerical Modeling of UXO Detection by TEM Method, International Symposium on Earth Science and Technology 2013, 2013.12.
123. Shota KUKITA, Hideki Mizunaga, UXO detection using small loop TEM method, The 11th SEGJ International Symposium, 2013.11.
124. Tateyuki NEGI, Hideki MIZUNAGA, Yuji MITSUHATA, Quality improvement in the magnetotelluric spectrum using multiple far remote references, The 11th SEGJ International Symposium, 2013.11.
125. 田中 俊昭, 奥澤洸, 水永 秀樹, 時間領域IP法探査装置の開発, 物理探査学会第129回学術講演会, 2013.10.
126. 水永 秀樹, 時間領域IP法の過渡応答の新しい計算法, 物理探査学会第129回学術講演会, 2013.10.
127. 水永 秀樹, 中村大夢, IP効果を考慮したMT法の1Dインバージョン, 物理探査学会第128回学術講演会, 2013.06.
128. 田中 俊昭, 水永 秀樹, 低消費電力型ワイヤレスセンサーネットワークを用いた流体流動電磁法測定システムの開発, 物理探査学会第128回学術講演会, 2013.06.
129. 熊健太, 水永 秀樹, 田中 俊昭, 流体流動電磁法の3次元インバージョン, 物理探査学会第128回学術講演会, 2013.06.
130. 久木田将太, 水永 秀樹, スモールループを用いたTEM法による不発弾探査, 物理探査学会第128回学術講演会, 2013.06.
131. 田中俊昭,水永秀樹, 流体流動電磁法のためのワイヤレスセンサーネットワークを用いた多点同時計測システムの開発, 物理探査学会第127回学術講演会, 2012.11.
132. 水永秀樹, 物理探査データのヤコビアンフリーインバージョン, 物理探査学会第127回学術講演会, 2012.11.
133. 水永 秀樹, 田中 俊昭, 流体流動電磁法の3次元インバージョン, 日本地熱学会平成24年学術講演会, 2012.10.
134. Okumoto Ryosuke, Mizunaga Hideki, Tanaka Toshiaki, Development of 2.5-D Modeling Program for Time-Domain IP Method, KSEG International Sympusium on "Geophysics for Discovery and Exploration", 2012.09.
135. Okuzawa Takeru, Tanaka Toshiaki, Mizunaga Hideki, Basic Experiment for Development of the Measurement Equipment for Time-Domain IP Method, KSEG International Sympusium on "Geophysics for Discovery and Exploration", 2012.09.
136. Yoshimatsu Keita, Mizunaga Hideki, Sasaki Yutaka, Numerical Hankel Transform Using Continuous Euler Transformation in 1-D Electromagnetic Method, KSEG International Sympusium on "Geophysics for Discovery and Exploration", 2012.09.
137. 水永秀樹,狩野心作,田中俊昭,平尾和久, 新町支石墓群の地中レーダ探査, 日本文化財化学会第29回大会, 2012.06.
138. 水永秀樹, 超実数を用いたヤコビアンの高精度計算, 物理探査学会第126回学術講演会, 2012.05.
139. 奥本涼介,水永秀樹,田中俊昭,吉松圭太, 時間領域IP法の2.5次元解析プログラムの開発, 物理探査学会第126回学術講演会, 2012.05.
140. 奥澤洸,田中俊昭,水永秀樹, 時間領域IP法の探査装置の開発に向けての基礎実験, 物理探査学会第126回学術講演会, 2012.05.
141. 根木健之, 水永秀樹, 内田利弘, ノイズ成分の存在を考慮したMT法インピーダンスの導出方法, 物理探査学会第126回学術講演会, 2012.05.
142. Tateyuki NEGI, Hideki MIZUNAGA, Koichi ASANUMA, Koji UMEDA, Three dimensional magnetotelluric imaging of the source area of the 2000 Western Tottori earthquake using heterogeneous smoothness-constraint least-squares method, International Symposium on Earth Science and Technology 2011, 2011.12.
143. Takao INOUE, Hideki MIZUNAGA, Numerical modeling of ground penetrating radar using FDTD method, International Symposium on Earth Science and Technology 2011, 2011.12.
144. Chikara OKADA, Hideki MIZUNAGA, Yutaka SASAKI, The efficacy of SIP parameterical analysis using modefied Cole-Cole equations, International Symposium on Earth Science and Technology 2011, 2011.12.
145. Tateyuki NEGI, Hideki MIZUNAGA, Koichi ASANUMA, Koji UMEDA, Three dimensional magnetotelluric inversion using heterogeneous smoothness-constraint least-squares method, The 10th SEGJ International Symposium, 2011.11.
146. 田中俊昭,水永秀樹, 流体流動電磁法による地熱流体挙動のモニタリングのための多点測定システムの開発, 日本地熱学会平成23年学術講演会, 2011.11.
147. 吉松圭太,水永秀樹, 電気・電磁探査法における数値ハンケル変換の基礎研究, 物理探査学会第125回学術講演会, 2011.09.
148. 水永秀樹,田中俊昭, 時間領域IP法の3次元モデリング, 物理探査学会第125回学術講演会, 2011.09.
149. 水永秀樹,井上敬夫,茂和敏, 地中レーダによる安徳台遺跡群の遺跡探査, 日本文化財科学会第28回大会, 2011.06.
150. 水永秀樹,田中俊昭,島田淳平,平尾和久, 井原鑓溝遺跡の地中レーダ探査, 物理探査学会第124回学術講演会, 2011.05.
151. 水永秀樹,石永清隆, 時間領域IP法の2.5次元インバージョン, 物理探査学会第124回学術講演会, 2011.05.
152. 吉松圭太,水永秀樹,佐々木裕, 海洋CSEM法における数値ハンケル変換の高精度化, 物理探査学会第124回学術講演会, 2011.05.
153. Hiraku MURATA, Yutaka SASAKI, Hideki MIZUNAGA, Joint Analysis of Marine MT and CSEM Data, International Symposium on Earth Science and Technology 2010, 2010.12.
154. 水永秀樹,田中俊昭, 流体流動電磁法のシミュレーション, 日本地熱学会平成22年学術講演会, 2010.11.
155. 田中俊昭,水永秀樹, 流体流動電磁法による地熱流体モニタリングのための測定システムの開発, 日本地熱学会平成22年学術講演会, 2010.11.
156. 井上敬夫,水永秀樹,茂 和敏, 安徳台遺跡群の地中レーダ探査, 物理探査学会第123回学術講演会, 2010.09.
157. 岡田力,水永秀樹,佐々木裕, 変形コール・コール式を用いたIPパラメータの推定法, 物理探査学会第123回学術講演会, 2010.09.
158. 水永秀樹,石永清隆, 時間領域IP法の2.5次元モデリング, 物理探査学会第123回学術講演会, 2010.09.
159. 田中俊昭,水永秀樹, モニタリング用小型MT探査装置の改良, 物理探査学会第123回学術講演会, 2010.09.
160. 水永秀樹, 田中俊昭, 重松愛二郎, 流体流動電磁法の計測システムの開発, 平成22年度・石油技術協会春季講演会, 2010.06.
161. 水永秀樹,田中俊昭,重松愛二郎, 流体流動電磁法の計測システムの開発, 石油技術協会第75回学術講演会, 2010.06.
162. 水永秀樹,田中俊昭, 連続オイラー変換を用いたハンケル変換の高精度計算, 物理探査学会第122回学術講演会, 2010.05.
163. 田中俊昭,水永秀樹,重松愛二郎, モニタリング用小型MT探査装置の開発, 物理探査学会第122回学術講演会, 2010.05.
164. 水永秀樹,田中俊昭,片山弘行, TEM法の解析プログラムの開発, 物理探査学会第122回学術講演会, 2010.05.
165. 水永秀樹,田中俊昭, 電磁探査の3次元モデリング, 物理探査学会第121回学術講演会, 2009.11.
166. 水永秀樹,野下孝弘,黒木敬悟,江崎靖隆, 井原鑓溝遺跡の地中レーダ探査(2), 日本文化財探査学会, 2009.06.
167. 水永秀樹,濱口和壽, 海底電気探査法によるメタンハイドレート探査のシミュレーション, 物理探査学会第120回学術講演会, 2009.05.
168. 水永秀樹,田中俊昭,義山弘男,竹嶋信幸, 山川地熱地域の流体流動電位法調査, 日本地熱学会平成20年学術講演会, 2008.11.
169. 水永秀樹,田中俊昭,池田直継,下山久満, 電磁法による不発弾探査の基礎実験, 物理探査学会第119回学術講演会, 2008.10.
170. 水永秀樹, 九州大学における資源系教育と人材育成, 石油技術協会, 2008.06.
171. 水永秀樹,田中俊昭, 流体流動電磁法の計測システムの開発 -小型3軸磁力計の開発-, 物理探査学会第118回学術講演会, 2008.05.
172. 水永秀樹, 田中俊昭, 流体流動電磁法の基礎実験, 日本地熱学会平成19年学術講演会, 2007.11.
173. 水永秀樹,田中俊昭,牛島恵輔, 九州大学伊都キャンパスの遺跡探査, 日本文化財探査学会, 2007.06.
174. 水永秀樹,宮川雅洋, 免疫アルゴリズムを用いた自然電位データの解析, 物理探査学会第116回学術講演会, 2007.05.
175. 水永秀樹,牛島恵輔, 相関トモグラフィによる流電電位法の3次元インバージョン, 物理探査学会第115回学術講演会, 2006.10.
176. 牛島 惠輔, 水永秀樹, 田中俊昭, 橋本幸治, 4次元物理探査法による貯留層のモニタリング, 日本地熱学会平成17年学術講演会, 2005.11.
177. 牛島 惠輔, 水永秀樹, 田中俊昭, 橋本幸治, 4次元物理探査法による貯留層のモニタリング, 日本地熱学会平成17年学術講演会, 2005.11.
178. 水永秀樹,牛島恵輔, 流電電位法のIP効果のシミュレーション, 物理探査学会第113回学術講演会, 2005.10.
179. 青野哲雄, 杉本芳博, 牛島 惠輔, 水永秀樹, 確率トモグラフィによる自然電位データ解析の検討, 日本地熱学会平成16年学術講演会, 2004.12.
180. 水永秀樹, 牛島 惠輔, SP法の3次元インバージョン, 日本地熱学会平成16年学術講演会, 2004.12.
181. 牛島 惠輔, 水永秀樹, 田中俊昭, 青野哲雄, 池田直継, 4次元電気探査法による浸透流のイメージング, 日本地熱学会平成16年学術講演会, 2004.12.
182. 牛島 惠輔, 水永秀樹, 上滝尚史, Enjang MUSTOPA, 大分県滝上地熱地域のMT法探査, 日本地熱学会平成15年学術講演会, 2003.11.
183. 水永秀樹,中川慶,牛島恵輔, デコンボリューションフィルターを用いた水平電気探査のデータ解析, 物理探査学会第109回学術講演会, 2003.10.
184. 牛島 惠輔, 水永秀樹, 青野哲雄, 佐々木純一, 4次元電気探査による貯留層のモニタリング, 日本地熱学会平成14年学術講演会, 2002.11.
185. 水永秀樹,青野哲雄,牛島恵輔,佐々木純一, 流体流動電位法データの3次元解析, 物理探査学会第107回学術講演会, 2002.10.
186. 水永秀樹,青野哲雄,牛島恵輔, 古墳の内部構造の3次元イメージング, 物理探査学会第107回学術講演会, 2002.10.
187. 水永秀樹,山口盛一,牛島恵輔, シュランベルジャー法の3次元インバージョン, 物理探査学会第106回学術講演会, 2002.05.
188. 青野哲雄,水永秀樹,牛島恵輔, 流電電位法の3次元インバージョン, 物理探査学会第106回学術講演会, 2002.05.
189. 坂本靖敬,相原恵一,水永秀樹,牛島恵輔, 福岡市元岡地区の地下水調査, 物理探査学会第105回学術講演会, 2001.10.
190. 西村敦,山口盛一,水永秀樹,牛島恵輔, 3次元電気探査データの解析, 物理探査学会第105回学術講演会, 2001.10.
191. 廣岡義幸,青野哲雄,水永秀樹,牛島恵輔, 岩原双子塚古墳の弾性波探査, 物理探査学会第105回学術講演会, 2001.10.
192. 水永秀樹,牛島恵輔,青野哲雄,川崎譲, 太宰府水城跡の遺跡調査, 物理探査学会第105回学術講演会, 2001.10.
193. 川崎譲,青野哲雄,水永秀樹,牛島恵輔, 前方後円墳の地中レーダ探査, 物理探査学会第105回学術講演会, 2001.10.
194. 日野昇平,青野哲雄,水永秀樹,牛島恵輔,有木和春,山岸喜之, 秋田県大沼地域における流体流動電位法調査, 物理探査学会第105回学術講演会, 2001.10.
195. 犬塚伸一,青野哲雄,水永秀樹,牛島恵輔,久保浩規,梶原竜哉, 北海道森地区の流体流動電位法調査, 物理探査学会第105回学術講演会, 2001.10.
196. 青野哲雄,水永秀樹,牛島恵輔,有木和春,山岸喜之, 澄川地区の流体流動電位法調査, 物理探査学会第105回学術講演会, 2001.10.
197. 青野哲雄, 水永秀樹, 牛島 惠輔, 有木和春, 山岸喜之, 澄川地区の流体流動電位法調査, 物理探査学会第105回学術講演会, 2001.10.
198. 日野昇平,中西洋彰,青野哲雄,水永秀樹,牛島恵輔, MT法の3次元モデリング, 物理探査学会第104回学術講演会, 2001.05.
199. 坂本靖敬,相原恵一,青野哲雄,水永秀樹,牛島恵輔, TEM法による地下水汚染のモニタリング, 物理探査学会第104回学術講演会, 2001.05.
200. 山口盛一,西村敦,水永秀樹,牛島恵輔, 垂直電気探査データの3次元インバージョン, 物理探査学会第104回学術講演会, 2001.05.
201. 水永秀樹, 青野哲雄, 牛島 惠輔, 流体流動電位法データの解析, 日本地熱学会平成12年学術講演会, 2000.11.
202. 水永秀樹,牛島恵輔,山口盛一, シュランベルジャー法の3次元インバージョン, 物理探査学会第102回学術講演会, 2000.05.
203. 水永秀樹,牛島恵輔, TEM法とMT法のジョイントインバージョン, 物理探査学会第102回学術講演会, 2000.05.
204. 水永秀樹, 久保浩規, 牛島 惠輔, SPトモグラフィに関する研究, 日本地熱学会平成11年学術講演会, 1999.12.
205. 水永秀樹,牛島恵輔,久保浩規, SP法の確率トモグラフィ, 物理探査学会第101回学術講演会, 1999.10.
206. 牛島恵輔,水永秀樹,西村康, 埋蔵文化財の物理探査, 物理探査学会第101回学術講演会, 1999.10.
207. 西岡貴弘,水永秀樹,牛島恵輔,西村康, 前方後円墳の電気探査, 物理探査学会第100回学術講演会, 1999.06.
208. 享保亮一,水永秀樹,牛島恵輔, 垂直電気探査法による帯水層のモニタリング, 物理探査学会第100回学術講演会, 1999.06.
209. 水永秀樹,Ki Ha Lee,金喜俊, ラプラス領域での3次元電磁場モデリング, 物理探査学会第100回学術講演会, 1999.06.
210. 水永秀樹, 牛島 惠輔, 流体流動電位法による浸透流のイメージング, 資源・素材学会1999年春季大会, 1999.03.
211. 牛島 惠輔, 水永秀樹, 松下正樹, 垂直電気探査法による金鉱床のイメージング, 資源・素材学会1999年春季大会, 1999.03.
212. 牛島恵輔,水永秀樹,田中俊昭,橋本幸治, 電気的手法によるフラクチャーのイメージング, 物理探査学会第99回学術講演会, 1998.10.
213. Keisuke USHIJIMA, Hideki MIZUNAGA, Chika SAKAMOTO, 3D Imaging of Monumental Tombs Buried in Keyhole-shaped Tumuli by Electrical Prospecting, Second International Conference on Archaeological Prospection 1997, 1997.09.
214. 水永秀樹,牛島恵輔,岸川広, 電気探査法による遺跡探査 -貝吹山古墳の調査例-, 物理探査学会第96回学術講演会, 1997.05.
215. 大成郁生,入江彰二郎,水永秀樹,牛島恵輔, 自然電位法による地下水探査, 物理探査学会第96回学術講演会, 1997.05.
216. 牛島恵輔,水永秀樹,田中俊昭,橋本幸治, 流体流動電位法のデータ解析, 物理探査学会第96回学術講演会, 1997.05.
217. 伊藤俊一郎,奥野雅人,牛島恵輔,水永秀樹, MT法の2次元インバージョン解析, 物理探査学会第96回学術講演会, 1997.05.
218. 牛島 惠輔, 水永秀樹, 田中俊昭, 橋本幸治, 電気探査法による流体流動モニタリング, 日本地熱学会平成8年学術講演会, 1996.12.
219. 池田直継, 水永秀樹, 牛島 惠輔, 自然電位ログによるフラクチャーの検出, 日本地熱学会平成8年学術講演会, 1996.12.
220. 海江田秀樹, 田中俊昭, 水永秀樹, 佐々木俊二, 牛島 惠輔, 高温岩体発電のための雄勝計画(6)-AE観測と流電電位計測による貯留層評価-, 日本地熱学会平成8年学術講演会, 1996.12.
221. 水永秀樹, 畠中英樹, 本田満, 牛島 惠輔, 流電電位法データの3次元インバージョン, 日本地熱学会平成8年学術講演会, 1996.12.
222. 増田一夫,玉川哲也,田中俊昭,水永秀樹,牛島恵輔, 電気探査法による石油強制回収法のモニタリング(Ⅱ), 物理探査学会第95回学術講演会, 1996.10.
223. 牛島恵輔,水永秀樹,増田一夫,池田直継, 電気探査法によるEOR/IORモニタリング, 物理探査学会第95回学術講演会, 1996.10.
224. 橋本幸治,海江田秀志,水永秀樹,牛島恵輔, 流電電位法探査のデータ処理, 物理探査学会第95回学術講演会, 1996.10.
225. 水永秀樹,牛島恵輔,橋本幸治,増田一夫, 水平坑井を用いた流電電位法の3次元モデリング, 物理探査学会第95回学術講演会, 1996.10.
226. 奥野雅人,畠中英樹,水永秀樹,牛島恵輔, 流電電位法データのインバージョン解析, 物理探査学会第94回学術講演会, 1996.05.
227. 岸川広,青野哲雄,田中俊昭,水永秀樹, 電界残差法による遺跡探査, 物理探査学会第94回学術講演会, 1996.05.
228. 岸川広,青野哲雄,田中俊昭,水永秀樹,牛島恵輔, 前方後円墳の電気探査, 物理探査学会第93回学術講演会, 1995.10.
229. 増田一夫,玉川哲也,田中俊昭,水永秀樹,牛島恵輔, 電気探査法による石油強制回収法のモニタリング, 物理探査学会第93回学術講演会, 1995.10.
230. 海江田秀志, 田中俊昭, 水永秀樹, 佐々木俊二, 牛島 惠輔, 高温岩体発電のための雄勝計画(5)-循環実験と水圧破砕実験におけるAE観測と流電電位法計測-, 日本地熱学会平成7年学術講演会, 1995.10.
231. 増田一夫, 玉川哲也, 田中俊昭, 水永秀樹, 牛島 惠輔, 電気探査法による石油強制回収法のモニタリング, 物理探査学会第93回学術講演会, 1995.10.
232. 入江彰二郎,藤井良和,水永秀樹,牛島恵輔, MK地区の地下水探査, 物理探査学会第92回学術講演会, 1995.06.
233. 橋本幸治,浦本努,田籠功一,水永秀樹,牛島恵輔, SPデータの3次元インバージョン, 物理探査学会第92回学術講演会, 1995.06.
234. 青野哲雄,角和幸,水永秀樹,牛島恵輔, 福岡県八女市岩戸山古墳の電気探査, 物理探査学会第92回学術講演会, 1995.06.
235. 畠中英樹,田中俊昭,海江田秀志,平田博之,水永秀樹,牛島恵輔, 電気探査法によるフラクチャー評価, 物理探査学会第92回学術講演会, 1995.06.
236. Hideshi KAIEDA, Yasuhiro Fujimitsu, Takeshi YAMAMOTO, Hideki MIZUNAGA, Keisuke USHIJIMA, Shunji SASAKI, AE and Mise-a-la-masse Measurements during a 22-day Water Circulation Test at Ogachi HDR site, Japan, World Geothermal Congress, 1995, 1995.05.
237. 畠中英樹,田中俊昭,水永秀樹,牛島恵輔, 流電電位法の3次元シミュレーション, 物理探査学会第91回学術講演会, 1994.10.
238. 浦本努,橋本幸治,水永秀樹,牛島恵輔, 電気探査法による地下浸透流のイメージング -SPデータの3次元モデル解析-, 物理探査学会第91回学術講演会, 1994.10.
239. 藤井良和,田中俊昭,水永秀樹,牛島恵輔, 福岡市元岡・桑原地区の電気探査, 物理探査学会第91回学術講演会, 1994.10.
240. 橋本幸治, 田中俊昭, 海江田秀志, Hideki Mizunaga, 牛島 惠輔, 流電電位法による地下浸透流のモニタリング-SPデータの3次元モデル解析-, 物理探査学会第90回学術講演会, 1994.05.
作品・ソフトウェア・データベース等
1. 水永秀樹,田中俊昭, TEM法解析ツールTemtool, 2014.04, インループのTEM法データの解析プログラムを開発した。.
特許出願・取得
特許出願件数  14件
特許登録件数  3件
その他の優れた研究業績
2016.05, 非開削工法に必要な水平掘削の掘削位置の3次元位置をリアルタイムで計測・表示する”掘削位置計測システム”を(株)ワイビーエムと共同開発した。.
学会活動
所属学会名
物理探査学会
日本地熱学会
資源・素材学会
石油技術協会
日本文化財探査学会
Environmental & Engineering Geophysical Society (EESS)
Society of Exploration Geophysics (SEG)
European Association of Geoscientists & Engineers (EAGE)
Geothermal Resources Council (GRC)
学協会役員等への就任
2014.10~2015.03, 物理探査学会, 空中物理探査研究委員会 委員.
2004.04~2010.03, 日本文化財探査学会, 評議員.
2005.03~2010.05, 物理探査学会, 学術講演委員.
2006.11~2010.11, 日本地熱学会, 学会賞選考委員.
1999.04~2002.03, 物理探査学会, 企画調査委員.
2001.04~2002.03, 物理探査学会, 行事委員.
2003.04, 物理探査学会, 代議員.
学会大会・会議・シンポジウム等における役割
2016.05.16~2016.05.18, 物理探査学会第134回学術講演会, 座長(Chairmanship).
2014.05.28~2014.05.30, 物理探査学会第130回学術講演会, 座長(Chairmanship).
2014.12.04~2014.12.05, International Symposium on Earth Science and Technology 2014, 座長(Chairmanship).
2013.12.03~2013.12.04, International Symposium on Earth Science and Technology 2013, 座長(Chairmanship).
2013.11.18~2013.11.21, The 11th SEGJ International Symposium, 座長(Chairmanship).
2012.05.29~2012.05.31, 物理探査学会第126回学術講演会, 座長(Chairmanship).
2011.12.06~2011.12.07, International Symposium on Earth Science and Technology 2011, 座長(Chairmanship).
2011.06.11~2011.06.12, 日本文化財科学会第28回つくば大会, 座長(Chairmanship).
2010.12.07~2010.12.08, International Symposium on Earth Science and Technology 2010, 座長(Chairmanship).
2009.12.08~2009.12.09, International Symposium on Earth Science and Technology 2009, 座長(Chairmanship).
2009.11.23~2009.11.25, 物理探査学会第121回学術講演会, 座長(Chairmanship).
2008.12.01~2008.12.02, International Symposium on Earth Science and Technology 2008, 座長(Chairmanship).
2008.05~2008.05, 物理探査学会第118回学術講演会, 座長(Chairmanship).
2006.12~2006.12, 4th International Workshop on Earth Science and Technology, 座長(Chairmanship).
2006.10~2006.10, 物理探査学会第115回学術講演会, 座長(Chairmanship).
2005.12~2005.12, 3rd International Workshop on Earth Science and Technology, 座長(Chairmanship).
2005.10~2005.10, 物理探査学会第113回学術講演会, 座長(Chairmanship).
2004.09~2004.09, 物理探査学会第111回学術講演会, 座長(Chairmanship).
2003.10~2003.10, 物理探査学会第109回学術講演会, 座長(Chairmanship).
2003.05~2003.05, 物理探査学会第108回学術講演会, 座長(Chairmanship).
2013.11.18~2013.11.20, The 11th SEGJ International Symposium, Convenor and Chairman of DC/EM Imaging Technologies.
2011.12.06~2011.12.07, International Symposium on Earth Science and Technology 2011, Editorial and Awarding Committee.
2011.11.09~2011.11.11, 日本地熱学会平成23年度学術講演会, 現地実行委員.
2010.12.07~2010.12.08, International Symposium on Earth Science and Technology 2010, Editorial and Awarding Committee.
2010.05.31~2010.06.02, 物理探査学会第122回学術講演会, 学術講演委員.
2009.12.08~2009.12.09, International Symposium on Earth Science and Technology 2009, Editorial and Awarding Committee.
2009.11.23~2009.11.24, 物理探査学会第121回学術講演会, 学術講演委員,座長.
2009.07.31~2010.06.08, 石油技術協会・第75回定時総会準備委員会, 準備委員会委員.
2009.05.25~2009.05.27, 物理探査学会第120回学術講演会, 学術講演委員.
2008.12.01~2008.12.02, International Symposium on Earth Science and Technology 2008, Editorial and Awarding Committee.
2008.10.21~2008.10.23, 物理探査学会第119回学術講演会, 学術講演委員.
2008.05.13~2008.05.15, 物理探査学会第118回学術講演会, 学術講演委員,座長.
2007.10.06~2007.05.08, 物理探査学会第117回学術講演会, 学術講演委員.
2007.05.28~2007.05.30, 物理探査学会第116回学術講演会, 学術講演委員.
2006.10~2006.10, 物理探査学会第115回学術講演会, 現地実行委員長(代行),学術講演委員.
2005.11~2005.11, 日本地熱学会学術講演会, 現地実行委員・会場係.
2001.10~2001.10, 物理探査学会第105回学術講演会, 現地実行委員、行事委員.
2001.01~2001.01, The 5th SEGJ International Symposium - Imaging Technology -, Advisory member.
1999.12~1999.12, 日本地熱学会学術講演会, 現地実行委員・懇親会担当.
1998.12~1998.12, The 4th SEGJ International Symposium - Fracture Imaging -, Committee member.
学会誌・雑誌・著書の編集への参加状況
2012.05~2014.04, 物理探査, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2016年度
2015年度
2014年度
2013年度 10 
2012年度
2011年度 11 
2010年度
2009年度
2008年度
2007年度
2006年度
2005年度
2004年度
2003年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
カンボジア工科大学, Cambodia, 2013.03~2013.03.
University of California Berkeley, Lawrence Berkeley Laboratory, UnitedStatesofAmerica, 1997.10~1998.09.
外国人研究者等の受入れ状況
2013.10~2014.04, 1ヶ月以上, エジプト国立天文学・地球物理学研究所, Egypt, エジプト政府.
2009.10~2011.09, 1ヶ月以上, Libya, 日本学術振興会.
受賞
Top Cited Article 2020-2021, Near Surface Geophysics (Wiley), 2022.03.
日本地熱学会論文賞, 日本地熱学会, 2005.11.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2018年度~2022年度, 基盤研究(B), 代表, 流体流動電磁法による地下流体のモニタリングシステムの高度化.
2014年度~2017年度, 基盤研究(B), 分担, 自律型OBEM計測システム用海中ビークルの着底位置制御に関する研究.
2011年度~2012年度, 挑戦的萌芽研究, 代表, 時間領域IP法による鉱種の識別.
2010年度~2012年度, 基盤研究(B), 代表, 流体流動電磁法による地下流体の可視化.
2005年度~2007年度, 基盤研究(B), 代表, 流体流動電位法の計測システムの高度化.
2004年度~2005年度, 萌芽研究, 代表, 流電電位法のIP効果に関する基礎的研究.
1999年度~1999年度, 萌芽研究, 分担, エレクトロサイスミック現象を用いた地下探査法の基礎的研究.
1996年度~1996年度, 重点領域研究, 代表, 電気探査法による遺跡の3次元イメージング.
1995年度~1997年度, 基盤研究(A), 分担, 石油強制回収法のモニタリング.
1995年度~1995年度, 重点領域研究, 代表, 電気探査法による遺跡のイメージング.
1994年度~1994年度, 重点領域研究, 代表, 遺跡探査のための電気探査システム開発.
1993年度~1993年度, 重点領域研究, 分担, 地下空洞のリアルタイム探査法のシステム開発.
1992年度~1992年度, 重点領域研究, 分担, 地下空洞のリアルタイム探査法のシステム開発.
競争的資金(受託研究を含む)の採択状況
2024年度~2024年度, (独)エネルギー・金属鉱物資源機構 令和6年度地熱発電技術研究開発事業, 代表, 地熱発電技術研究開発事業 「高効率高密度地熱探査技術~小型軽量装置を活用したMT探査手法の高度化~」に係る令和6年度フォローアップ研究
.
2023年度~2023年度, (独)エネルギー・金属鉱物資源機構 令和5年度地熱発電技術研究開発事業, 代表, 高効率高密度地熱探査技術 ~小型軽量装置を活用したMT探査手法の高度化~.
2022年度~2022年度, (独)エネルギー・金属鉱物資源機構 令和4年度地熱発電技術研究開発事業, 代表, 高効率高密度地熱探査技術 ~小型軽量装置を活用したMT探査手法の高度化~.
2021年度~2021年度, (独)エネルギー・金属鉱物資源機構 令和3年度地熱発電技術研究開発事業, 代表, 高効率高密度地熱探査技術 ~小型軽量装置を活用したMT探査手法の高度化~.
2019年度~2019年度, 平成31年度実施事業「大学発ベンチャー事業シーズ育成支援プログラム」 (第3期九大ギャップファンド), 代表, 防災対策を目的とした地下環境の実時間監視システム.
2008年度~2009年度, JOGMEC 平成20年度探査技術開発事業, 代表, 時間領域電磁法の簡易解析プログラムの開発.
2007年度~2007年度, JOGMEC 平成19年度 石油・天然ガス基礎研究委託事業, 代表, 流体流動電磁法によるEORのリアルタイムモニタリング.
2006年度~2006年度, JOGMEC 平成18年度 大学・公的機関を対象とする委託研究, 分担, 流体流動電位法による地中貯留CO2のイメージング.
2003年度~2005年度, 大学発ベンチャー創出推進のための事業 (文部科学省), 分担, 電気抵抗式地下埋設物探査計の開発.
共同研究、受託研究(競争的資金を除く)の受入状況
2022.04~2022.12, 代表, 電気的手法を用いた根の可視化に関する研究.
2021.02~2021.12, 代表, 電気的手法を用いた根の可視化に関する研究.
2020.02~2020.12, 代表, 電気的手法を用いた根の可視化に関する研究.
2019.07~2020.03, 分担, 携帯型電気物性測定機器の開発に関する共同研究.
2019.06~2020.03, 代表, IP効果を考慮した時間領域電磁探査法データの1次元逆解析手法に関する共同研究.
2018.06~2019.03, 代表, IP効果を考慮した時間領域電磁探査法データの1次元逆解析手法に関する共同研究.
2018.04~2019.03, 代表, 平成30年度戦力的基盤技術高度化支援事業(地盤改良工事での安全安心な改良杭施工のための比抵抗計測技術を用いた着底・混合判断システムの研究開発).
2016.11~2017.03, 代表, 大宰府跡蔵司地区C区レーダ探査.
2016.09~2017.02, 代表, 地盤改良工事での安全安心な改良杭施工のための比抵抗計測技術を用いた着底・混合判断システムの研究開発.
2016.02~2016.03, 代表, 鬼ケ浦横穴墓群のレーダ探査.
2015.02~2017.03, 代表, 流体流動電磁法による地下深部流体挙動モニタリング手法の開発.
2014.10~2015.03, 代表, 沖縄における不発弾探査の効率化に関する予備実験.
2014.08~2015.03, 代表, 福岡県古賀市谷山所在舟原古墳および舟原古墳埋納坑における物理探査手法の活用研究.
2012.09~2013.03, 代表, 糸島市一貴山銚子塚古墳における物理探査手法の活用研究.
2011.12~2012.03, 代表, 糸島市新町支石墓群における物理探査手法の活用研究.
2011.12~2012.03, 代表, 沖縄における不発弾探査の効率化に関する研究.
2011.10~2016.03, 代表, 非開削工法用高精度掘削システムの開発.
2011.02~2011.09, 代表, 非開削工法用高精度掘削システムの開発.
2010.11~2011.03, 代表, 三雲・井原遺跡における物理探査手法の活用研究.
2010.01~2010.03, 代表, 三雲・井原遺跡における物理探査手法の活用研究.
2009.09~2010.03, 代表, 高精度磁気探査 解析技術の高度化検討(その2).
2009.07~2010.03, 代表, マリンホースの油漏洩探知に関する研究.
2009.06~2010.02, 代表, 福岡県筑紫郡那珂川町安徳台遺跡群のレーダー探査.
2008.07~2009.03, 代表, 三雲・井原遺跡における物理探査手法の活用研究.
2008.07~2009.03, 代表, マリンホースの油漏洩探知に関する研究.
2007.07~2007.12, 代表, 流体流動電磁法によるEORのリアルタイムモニタリング.
2007.05~2008.03, 代表, 高精度磁気探査 解析技術の高度化検討.
2005.04~2006.03, 分担, 流体流動電位法による貯留層内のリアルタイム流体挙動推定システムの開発.
2004.10~2005.03, 分担, 流体流動電位法による貯留層内のリアルタイム流体挙動推定システムの開発.
1999.04~2000.03, 代表, TEM法とMT法を併用した地下深部高精度探査.
1997.04~1998.03, 代表, MT法による深部金鉱床の探査.
1996.04~1998.03, 分担, 電磁法の3次元モデリング・インバージョン.
1994.04~1997.03, 分担, VEP法によるEORモニタリング技術に関する研究.
1991.04~1998.03, 分担, 流電電位法による高温岩体発電破砕面の評価技術に関する研究.
寄附金の受入状況
2021年度, (株)ワイビーエム, 使途特定寄付金.
2019年度, (株)ワイビーエム, 使途特定寄付金.
2015年度, (株)ワイビーエム, 九州大学工学研究院研究資金/非開削工法用高精度位置計測システム研究開発及び地盤改良杭のリアルタイム計測システムの開発.
2014年度, 日鉄鉱コンサルタント株式会社, 使途特定寄附金.
2013年度, 日鉄鉱コンサルタント株式会社, 使途特定寄附金.
2012年度, (株)ワイビーエム, 九州大学工学研究院研究資金/非開削工法用高精度位置計測システム研究開発のため.
2009年度, 日本地研株式会社, 使途特定寄付金.
2009年度, (株)ワイビーエム, 使途特定寄付金.
2009年度, (株)ダイヤコンサルタント, 使途特定寄付金.
2008年度, 日鉄鉱業(株), 使途特定寄付金.
2007年度, 西日本技術開発株式会社, 使途特定寄付金.
2007年度, (株)TRES, 使途特定寄付金.
2006年度, (株)ダイヤコンサルタント, 使途特定寄付金.
2006年度, 日鉄鉱業(株), 使途特定寄付金.
1999年度, 住友財団, 住友財団・環境研究助成「電気探査法による地下水汚染状況のモニタリング」.
学内資金・基金等への採択状況
2014年度~2014年度, 平成26年度工学研究院大型科学研究費申請支援のための助成, 代表, 大型科学研究費申請.
2013年度~2013年度, 平成25年度工学研究院大型科学研究費申請支援のための助成, 代表, 大型科学研究費申請.
2008年度~2008年度, 平成20年度工学研究院大型科学研究費申請支援のための助成, 代表, 大型科学研究費申請.
2004年度~2005年度, 九州大学教育研究プログラム・研究拠点形成プログラム(P&P), 分担, 新キャンパス地域の遺跡調査.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。