Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
TAIJI MAZDA Last modified date:2021.06.11

Professor / Structural and Earthquake Engineering / Faculty of Engineering


Papers
1. K H Park, Y Fujiwara, T Mazda, Y Kajita, Evaluation of mechanical properties considering hysteresis characteristic of High Damping Rubber bearing, International Conference on Engineering Systems 2020, 1687, 2020.06.
2. Kyeong Hoon Park, Taiji Mazda, Evaluation of High Damping Rubber Considering Initial History through Dynamic Loading Test and Program Analysis, 2020th Int. Conf. on Building Structures and Base Isolation System, 343-347, 2020.06.
3. Naito Nobuyuki, Park Kyeonghoon, Mazda Taiji, Uno Hiroshige, Kawakami Masahide. , Evaluation of Seismic Performance Focusing on Increasing Response of Lead Rubber Bearing (LRB) and Over Strength of RC Pier During Earthquake, Global Journal of Researches in Engineering, Vol20, No 3-E, 32-55, 2020.06.
4. Kosuke Hidaka, Makoto Ishimaru, Hiroaki Kobayakawa, Taiji Mazda, Numerical simulations on dynamic centrifugal model tests of rock slope with countermeasure by prevention piles, ISRM2019 Specialized Conference YSRM2019 & REIF2019, 2019.12.
5. Mujtaba Amin, Yukihide Kajita, Taiji Mazda, Numerical Simulation of Pounding Effect on Damage Assessment of an Abutment for Highway Bridge, Proceedings of the 7th Asia Conference on Earthquake Engineering, Paper ID 0009, 2018.11.
6. Yukihide Kajita, Kazuki Onoda, Taiji Matsuda, Kunihiko Uno, Takeshi Kitahara, Investigation on the effect of countermeasures for subsidence at the approaching areas of abutments, 10th International Structural Engineering and Construction Conference, ISEC 2019 ISEC 2019 - 10th International Structural Engineering and Construction Conference, 2019.01.
7. Yukihide Kajita, Gankhuu Khurelbaatar, Kenya Yabe, Taiji Matsuda, Finite element analysis on damage of lateral displacement confining structure and abutment due to collision with superstructure, Modern Developments in Performance of Structures Under Extreme Loading, Paper No.71, 2019.09.
8. Taiji Mazda, Yukihide Kajita, Takashi Akedo and Tsubasa Hazama, Recognition of nonlinear hysteric behavior by neural network using deep learning, Proceedings of the 5th international conference on Architecture, Materials and Construction, Paper No. B19-2021, 2019.12.
9. Mujtaba Amin, Yukihide Kajita, Taiji Mazda, Numerical Simulation of Pounding Effect on Damage Assessment of an Abutment for Highway Bridge, Proceedings of the 7th Asia Conference on Earthquake Engineering, Paper ID 0009, 2018.11, The current study mainly focuses on the impact damage assessment of the abutments considering the non-linearity of backfill soil which has not ever quantitatively estimated. The numerical simulation of pounding effect on four types of the abutments with wing wall variation in shapes and dimensions were carried out using the explicit FE code LS-DYNA. The pounding scenario was simulated by the initial impact velocity on the entire nodes of the superstructure. The numerical models are capable of simulating the nonlinearly of backfill soil, damage of concrete and yielding of reinforcement steel with strain rate effect behavior of concrete and steel reinforcement. The study indicates that the response displacement and the impact force on the back wall are affected by the non-linear backfill soil and wing wall variations. At the initial instant of impact, there is No significant effect on the impact forces whereas, for the rest of the time, the impact force on the back wall slightly decreased and the abutment displacement at the crown of back wall increased due to soil non-linearity. In the case of low impact velocity, damage only occurs at the base of the back wall whereas, in the case of maximum velocity impact, the damage spread over the entire Back wall and damage to the entire abutment was confirmed. In the design, only one impact is considered. However, in a real situation, a few or several impacts would occur during an earthquake. So, if the damage to abutment is predicted precisely, the non-linear property of backfill soil should be considered..
10. Yukihide Kajita, Kazuki Onoda, Taiji Mazda, Kunihiko Uno, Takeshi Kitahara, Investigation on the effect of countermeasures for subsidence at the approaching areas of abutments, Interdependence between Structural Engineering and Construction Management , GFE-12, 2019.05, The purpose of this study is to confirm the effect of soil improvement methods on preventing ground subsidence at the back of abutments. Earthquake seismic analysis is performed for three models. One is a model with no ground improvement. Next is a model with deep mixing method. The third is the model with lightweight banking method. As a result, from the perspective of the passage possibility of the emergency vehicles, both the deep mixing method and lightweight banking method are effective in preventing ground subsidence at the approaching area of abutments. However, in the case of the deep mixing method, it is found that the maximum bending moment of the pile under the liquefaction layer increases because a lump of improved rigid soil that falls down toward the piles..
11. Nobuyuki NAITO, Akira KASAI, Taiji MAZDA, Masahide KAWAKAMI , MODELING ESTIMATION OF LEAD RUBBER BEARING CONSIDERING MULLINS’ EFFECT AND HARDENING
, Proceedings of the 13th Annual Meeting of Japan Association for Earthquake Engineering , 34-39, 2017.11.
12. Masayuki Matsumoto,Akira Kasai,Taiji Mazda,Nobuyuki Ishida,Yuki Ito, Study on Improvement of Seismic Performance of Transmission Tower Using Viscous Damper, Journal of Civil Engineering and Architecture, 11, 455-467, 2017.05.