九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
堤 祐司(つつみ ゆうじ) データ更新日:2020.06.17

教授 /  農学研究院 環境農学部門 サスティナブル資源科学


主な研究テーマ
循環型社会を目指す木質バイオマスの高度利用
キーワード:木質バイオマス、エネルギー
2005.04.
樹木の細胞壁構築(特にリグニンの生合成)機構の解明
キーワード:リグニン、木化、細胞壁形成、生合成、ペルオキシダーゼ、4CL、酵素化学、遺伝子工学
1993.04.
白色腐朽菌および酵素による病原性プリオンの分解と不活化
キーワード:白色腐朽菌、酵素、異常プリオン、感染性除去
2005.04~2011.05.
白色不朽菌による環境汚染物質の分解と環境浄化
キーワード:白色不朽菌、環境汚染物質、分解、環境浄化
1996.01.
従事しているプロジェクト研究
バンブーリファイナリー技術開発による竹林有効利用の先進的九州モデル構築
2015.05~2018.03, 代表者:堤 祐司, 九州大学.
鳥インフルエンザ、BSE等の高精度かつ効率的なリスク管理技術の開発委託事業
2008.05~2012.03, 代表者:堤 祐司, 九州大学.
エネルギー生産資源としての木質バイオマスの開発
2008.12~2012.11, 代表者:堤 祐司, 九州大学農学研究院, 株式会社東洋高圧
エネルギー生産に適した木質バイオマス資源となる有用樹木を開発する.
研究業績
主要著書
主要原著論文
1. Manami Takeuchi, Watanabe Atsushi, Miho Tamura, Yuji Tsutsumi, The gene expression analysis of Arabidopsis thaliana ABC transporters by real-time PCR for screening monolignol-transporter candidates, Journal of Wood Science, 10.1007/s10086-018-1733-9, 64, 477-484, 2018.10, The transport of monolignols from the cytosol to the cell wall is essential for lignin synthesis. The ATP-binding cassette (ABC) transporters may be involved in the transport of lignin precursors. ABC transporter genes subjected to expression analysis were chosen based on two criteria for screening candidate transporter genes related to lignification. The expression levels of 15 target genes in five plant organs were analyzed by real-time PCR. Five transporter genes (ABCG29, ABCG30, ABCG33, ABCG34, and ABCG37), which were simultaneously expressed with the reference genes, were selected as candi- dates. The candidate gene expression levels in root tissues of T-DNA insertion mutants were determined by semi-quantitative reverse transcription PCR. ABCG30 was more highly expressed in the abcg34 mutant than in the wild-type plants, while the expression of ABCG34 was twofold higher in the abcg30 mutant plants than in the wild-type plants. Thus, the expression of ABCG30 and ABCG34 may affect each other. There was no significant change in lignin content and composition in the single-gene knockout mutants of the candidate transporter genes, which suggested that each candidate gene did not solely contribute to lignin synthesis..
2. Jun Shigeto, Hiroki Honjo, Koki Fujita and Yuji Tsutsumi, Generation of lignin polymer models via dehydrogenative polymerization of coniferyl alcohol and syringyl alcohol via several plant peroxidases involved in lignification and analysis of the resulting DHPs by MALDI-TOF analysis, Holzforschung, 10.1515/hf-2017-0125, 72, 4, 267-274, 2017.12, The mechanism of lignin dehydrogenative poly- merization (DHP), made by means of horseradish peroxi- dase (HRP), was studied in comparison with other plant peroxidases. Interestingly, HRP is efficient for guaiacyl type polymer formation (G-DHPs), but is not efficient in the case of syringyl type DHPs (S-DHPs). It was previously demonstrated that lignification-related Arabidopsis thali- ana peroxidases, AtPrx2, AtPrx25 and AtPrx71, and cati- onic cell-wall-bound peroxidase (CWPO-C) from Populus alba are successful to oxidize syringyl- and guaiacyl-type monomers and larger lignin-like molecules. This is the reason why in the present study the DHP formation by means of these recombinant peroxidases was tested, and all these enzymes were successful for formation of both G-DHP and S-DHP in acceptable yields. CWPO-C led to S-DHP molecular size distribution similar to that of iso- lated lignins..
3. Manami Takeuchi, Takahiro Kegasa, Watanabe Atsushi, Miho Tamura, Yuji Tsutsumi, Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation, Journal of Plant Research, 10.1007/s10265-017-0979-4, 131, 297-305, 2018.03, The mechanism of monolignol transportation from the cytosol to the apoplast is still unclear despite being an essential step of ligni cation. Recently, ATP-binding cas- sette (ABC) transporters were suggested to be involved in monolignol transport. However, there are no reliable clues to the transporters of the major lignin monomers coniferyl and synapyl alcohol. In this study, the ligni cation progress of Arabidopsis cultured cells during tracheary element dif- ferentiation was monitored. The expression of selected trans- porter genes, as well as ligni cation and cell-wall formation related genes as references, in di erentiating cultured cell samples harvested at 2-day intervals was analyzed by real- time PCR and the data were statistically processed. The cell wall formation transcription factor MYB46, programmed- cell death related gene XCP1 and lignin polymerization peroxidase AtPrx25 were classi ed into the same cluster. Furthermore, the cluster closest to the abovementioned cluster contained the lignin synthesis transcription factor..
4. Jun Shigeto, Yukie Ueda, Shinya Sasaki, Koki Fujita, Yuji Tsutsumi, Enzymatic activities for lignin monomer intermediates highlight the biosynthetic pathway of syringyl monomers in Robinia pseudoacacia, Journal of Plant Research, 10.1007/s10265-016-0882-4, 130, 1, 203-210, 2017.01, Most of the known 4-coumarate:coenzyme A ligase (4CL) isoforms lack CoA-ligation activity for sinapic acid. Therefore, there is some doubt as to whether sinapic acid contributes to sinapyl alcohol biosynthesis. In this study, we characterized the enzyme activity of a protein mixture extracted from the developing xylem of Robinia pseudoacacia. The crude protein mixture contained at least two 4CLs with sinapic acid 4-CoA ligation activity. The crude enzyme preparation displayed negligible sinapaldehyde dehydrogenase activity, but showed ferulic acid 5-hydroxylation activity and 5-hydroxyferulic acid O-methyltransferase activity; these activities were retained in the presence of competitive substrates (coniferaldehyde and 5-hydroxyconiferaldehyde, respectively). 5-Hydroxyferulic acid and sinapic acid accumulated in the developing xylem of R. pseudoacacia, suggesting, in part at least, sinapic acid is a sinapyl alcohol precursor in this species..
5. Premjet Siripong, Premjet Duangporn, Eri Takata, Yuji Tsutsumi, Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis, Bioresource Technology, 10.1016/j.biortech.2015.12.037, 203, 303-308, 2016.03, Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility..
6. Jun Shigeto, Itoh Yoshitaka, Hrao Sakie, Ohhira Kaori, Koki Fujita, Yuji Tsutsumi, Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem, JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 10.1111/jipb.12334, 57, 4, 349-356, 2015.04, Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors..
7. Jun Shigeto, Mariko Nagano, Koki Fujita, Yuji Tsutsumi, Catalytic Profile of Arabidopsis Peroxidases, AtPrx-2, 25 and 71, Contributing to Stem Lignification , PLoS ONE, 10.1371/journal.pone.0105332, 9, 8, e105332, 2014.08, Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors..
8. Eri Takata, Tatsushi Tsuruoka, Ken Tsutsumi, Yuji Tsutsumi, Kenji Tabata, Production of xylitol and tetrahydrofurfuryl alcohol from xylan in napier grass by a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation, Bioresource Technology, 10.1016/j.biortech.2014.05.112, 167, 74-80, 2014.06, The production of xylitol and tetrahydrofurfuryl alcohol (THFA) from napier grass was studied using two
steps: a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation with
Pd/C. Xylose obtained from the napier grass by the hydrothermal treatment with 3.0 wt% phosphorous
acid was subsequently converted into xylitol at 51.6% yield of the xylan in napier grass by hydrogenation
with 5.0 wt% Pd/C. The furfural produced from napier grass with a 3.0 wt% phosphoric acid treatment was
also directly subjected to the hydrogenation as a hydrolysate to yield 41.4% THFA based on the xylan in
napier grass. The yields of xylitol and THFA obtained by hydrogenation using the napier grass hydrolysate
containing xylose or furfural were almost the same as those of hydrogenation using commercial materi-
als. To our knowledge, this is the first report on the production of THFA in high yield by hydrogenation
directly from biomass hydrolysate..
9. Eri Takata, Ken Tsutsumi, Yuji Tsutsumi, Kenji Tabata, Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid, Bioresource Technology, 10.1016/j.biortech.2013.05.112, 143, 53-58, 2013.09.
10. Jun Shigeto, Yuko Kiyonaga, Koki Fujita, RYUICHIRO KONDO, Yuji Tsutsumi, Putative Cationic Cell-Wall-Bound Peroxidase Homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are Involved in Lignification, J. Agric. Food Chem., 10.1021/jf400426g, 61, 16, 3781-3788, 2013.04, The final step of lignin biosynthesis, which is catalyzed by a plant peroxidase, is the oxidative coupling of the
monolignols to growing lignin polymers. Cationic cell-wall-bound peroxidase (CWPO-C) from poplar callus is a unique enzyme
that has oxidative activity for both monolignols and synthetic lignin polymers. This study shows that putative CWPO-C
homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignin biosynthesis. Analysis of stem tissue using the
acetyl bromide method and derivatization followed by the reductive cleavage method revealed a significant decrease in the total
lignin content of ATPRX2 and ATPRX25 deficient mutants and altered lignin structures in ATPRX2, ATPRX25, and ATPRX71
deficient mutants. Among Arabidopsis peroxidases, AtPrx2 and AtPrx25 conserve a tyrosine residue on the protein surface, and
this tyrosine may act as a substrate oxidation site as in the case of CWPO-C. AtPrx71 has the highest amino acid identity with
CWPO-C. The results suggest a role for CWPO-C and CWPO-C-like peroxidases in the lignification of vascular plant cell walls..
11. Shigeto Jun;Itoh Yoshitaka;Tsutsumi Yuji;et al., Identification of Tyr74 and Tyr177 as substrate oxidation sites in cationic cell wall-bound peroxidase from Populus alba L., FEBS JOURNAL, 10.1111/j.1742-4658.2011.08429x, 279, 2, 348-357, 2012.01.
12. I. Kamei, C. Daikoku, Y. Tsutsumi, R. Kondo , Saline-dependent regulation of manganese peroxidase genes in the hypersaline-tolerant white rot fungus Phlebia sp. MG-60, Applied and Environmental Microbiology, 74(9), 2709-2716 , 2008.04.
13. Sasaki S, Shimizu S, Wariishi H, Tsutsumi Y, Kondo R, Transcriptional and translational analyses of poplar anionic peroxidase isoenzymes. J. Wood. Sci., , J. Wood. Sci., 53:427-435, 2007.12.
14. Shinya Sasaki, Daisuke Nonaka, Hiroyuki Wariishi, Yuji Tsutsumi, Ryuichiro Kondo, Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: Potentially unique oxidation sites for oxidative polymerization of lignin., Phytochemistry, 69 (2) 348-355 (2008), 2007.03.
15. K. Oshiman, Y. Tsutsum, T. Nishida, Y. Matsumura, Isolation and characterization of a novel bacterium, Sphingomonas bisphenolicum strain AO1, that degrades bisphenol A , Biodegradation, 18, 247-255 , 2007.02.
16. S. Sasaki, K. Baba, T. Nishida, Y. Tsutsumi, R. Kondo, The cationic cell-wall-peroxidase having oxidation ability for polymeric substrate participates in the late stage of lignification of Populus alba L, Plant Mol. Biol., 62(6), 797-807, 2006.12.
17. K. Hamada, T. Nishida, K. Yamauchi, K. Fukushima, R. Kondo, Y. Tsutsumi, 4-Coumarate:coenzyme A ligase in black locust (Robinia pseudoacacia) catalyses the conversion of sinapate to sinapoyl-CoA., Journal of Plant Research, 10.1007/s10265-004-0159-1, 117, 4, 303-310, 117(4) 303-310 (2004), 2004.08.
18. S. Sasaki, T. Nishida, Y. Tsutsumi, R. Kondo., Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage., FEBS Letters, 10.1016/S0014-5793(04)00224-8, 562, 1-3, 197-201, 562: 197-201 (2004), 2004.04.
19. K Hamada, Y. Tsutsumi, T. Nishida, Treatment of poplar callus with ferulic and sinapic acids II: Effect on related monolignol biosynthetic pathway enzyme activities., J. Wood Sci., 10.1007/s10086-002-0475-9, 49, 4, 366-370, 49:366-370 (2003)
 , 2003.08.
20. K Hamada, Y. Tsutsumi, K. Yamauchi, K. Fukushima, T. Nishida, Treatment of poplar callus with ferulic and sinapic acids I: Incorporation and enhancement of lignin biosynthesis., J. Wood Sci., 10.1007/s10086-002-0477-7, 49, 4, 333-338, 49:333-338 (2003)
 , 2003.08.
21. K.Yamauchi, S. Yasuda, K. Hamada, Y. Tsutsumi, K. Fukushima, Multiform biosynthetic pathway of syringyl lignin in angiosperms, Planta, 10.1007/s00425-002-0865-7, 216, 3, 496-501, 216(3):496-501 (2003), 2003.01.
22. W. Aoyama, S. Sasaki, S. Matsumura, T. Mitsunaga, H. Hirai, Y. Tsutsumi, T. Nishida, Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol., J. Wood Sci., 10.1007/BF00766646, 48, 6, 497-504, 48(6):497-504 (2002), 2002.12.
23. Aoyama W., Matsumura A., Tsutsumi Y., Nishida T, Lignification and peroxidase in tension wood of Eucalyptus viminalis seedlings., J. Wood Sci., 47:419-424 (2001), 2001.01.
24. Tsutsumi Y., Haneda T., Nishida T., Removal of estrogenic activities of bisphenol a and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes., Chemosphere, 42(3): 271-276, (2001), 2001.01.
主要総説, 論評, 解説, 書評, 報告書等
1. Jun Shigeto, Yuji Tsutsumi, Diverse functions and reactions of class III peroxidases, New Phytologist, Volume 209, Issue 4, Pages 1395–1402, 2016.03, Higher plants contain plant-specific peroxidases (class III peroxidase; Prxs) that exist as large multigene families. Reverse genetic studies to characterize the function of each Prx have revealed that Prxs are involved in lignification, cell elongation, stress defense and seed germination. However, the underlying mechanisms associated with plant phenotypes following genetic engineering of Prx genes are not fully understood. This is because Prxs can function as catalytic enzymes that oxidize phenolic compounds while consuming hydrogen peroxide and/or as generators of reactive oxygen species. Moreover, biochemical efforts to characterize Prxs responsible for lignin polymerization have revealed specialized activities of Prxs. In conclusion, not only spatiotemporal regulation of gene expression and protein distribution, but also differentiated oxidation properties of each Prx define the function of this class of peroxidases..
主要学会発表等
1. 横山 裕亮,富家 梓,YOSHIKAY Diego,雉子谷 佳男,堤 祐司, 植物ペルオキシダーゼ、 CWPO-Cによる成長制御作用機序の解明, 第36回日本木材学会九州支部大会, 2019.09.
2. Hiroshima Shota,Kakoi Takumi,Hayashi Junya,Tsutsumi Yuji,Shimizu Kuniyoshi, Cytotoxicity of lignin-derived compounds isolated from bamboo (Phyllostachys pubescence) on cancer cell line, 1st International Lignin Symposium, 2019.09.
3. Diego A. Yoshikay,Yusuke Yokoyama ,Jun Shigeto, Yuji Tsutsumi , Regulation of differentiation and growth by plant peroxidase CWPO-C, 1st International Lignin Symposium, 2019.09.
4. 廣島 将大,栫 拓巳,堤 祐司,清水 邦義, モウソウチク(Phyllostachys pubescens)稈由来リグニンの分解生成物中に含まれる化合物の生理活性, 第70回日本木材学会大会, 2020.03.
5. 川口 なつみ,堤 祐司, 細胞壁二次壁構造を模倣した三次元マトリックスフィルムの創製, 第70回日本木材学会大会, 2020.03.
6. 横山 裕亮,富家 梓,YOSHIKAY Diego,雉子谷 佳男,堤 祐司, 万能ペルオキシダーゼ、 CWPO-Cによる植物の成長制御とオーキシン代謝, 第70回日本木材学会大会, 2020.03.
7. Diego Yoshikay, Jun Shigeto, Yusuke Yokoyama, Yuji Tsutsumi, The contribution of CWPO-C to primary stage of plant growth and organogenesis, 5th Symposium of Biotechnology Applied to Lignocelluloses, 2018.08, Cationic cell-wall-bound peroxidase (CWPO-C) from poplar has been believed as a lignification-specific peroxidase, but direct evidence that demonstrates the role of CWPO-C remained unachieved. To promote better understanding about CWPO-C functions, transcriptional analysis of CWPO-C using laser microdissection, gene expression quantification and reporter gene techniques were performed. The results showed that CWPO-C expressed in the most of young tissues including xylem of upper stem, but scarcely expressed in interfascicular fiber and undifferentiated tissue such as apical meristem and cambium. Heterologous overexpression of CWPO-C in Arabidopsis inhibited plant growth and caused stem curvature. In addition, CWPO-C expressed in the outer site of the curved stem that was subjected to gravity stress. These results indicate that CWPO-C plays a role in cell elongation and differentiation; suggesting a new aspect to the role of CWPO-C. CWPO-C may contribute to catabolism of plant hormones such as auxin, involved in cell elongation, differentiation and geotropism..
8. (九大農・院) 重藤 潤、堤 祐司、近藤 隆一郎, ポプラ CWPO-C とシロイヌナズナ CWPO-C ホモログのリグニンモデル化合物に対する酸化活性について
, 第62回日本木材学会, 2012.03.
特許出願・取得
特許出願件数  1件
特許登録件数  5件
学会活動
所属学会名
リグニン学会
紙パルプ技術協会
日本植物生理学会
日本植物学会
日本木材学会
学協会役員等への就任
2018.10~2021.03, リグニン学会, 理事.
2017.04~2019.03, 日本木材学会, 理事.
2019.04~2021.03, 日本木材学会, 評議員.
2015.04~2017.03, 日本木材学会, 評議員.
2018.04~2020.03, 日本木材学会, 理事.
2014.04~2019.03, 九州紙パルプ研究会, 理事.
2016.04~2019.03,  紙パルプ研究会, 理事.
2017.04~2018.03, 日本木材学会 九州支部, 会長.
2015.04~2017.03, 日本木材学会 九州支部, 副会長.
2016.04~2018.03, 日本木材学会, 理事.
2013.04~2015.03, 日本木材学会, 評議員.
2012.04~2014.03, 九州紙パルプ研究会, 会長.
2008.04~2010.03, 日本木材学会 九州支部, 常任理事(総務).
学会大会・会議・シンポジウム等における役割
2011.09.15~2011.09.16, 第56回リグニン討論会, 座長(Chairmanship).
2011.03.18~2011.03.20, 第61回日本木材学会, 座長(Chairmanship).
2010.10.20~2010.10.21, 第55回リグニン討論会, 座長(Chairmanship).
2005.10, 第50回リグニン討論会, 座長(Chairmanship).
2005.03, 第55会日本木材学会, 座長(Chairmanship).
2004.11, 第49回リグニン討論会, 座長(Chairmanship).
2004.08, 第54会日本木材学会, 座長(Chairmanship).
2003.10, 第48回リグニン討論会, 座長(Chairmanship).
2003.03, 第53会日本木材学会, 座長(Chairmanship).
2017.03.17~2017.03.19, 第67回日本木材学会大会, 大会実行委員長.
2016.06.17~2016.06.21, LignoBiotech IV symposium, Committee Member, Japan.
2014.07.17~2014.07.21, LignoBiotech III symposium, Committee Member, Japan.
2012.10.17~2012.10.18, 第57回リグニン討論会, 大会総務.
2012.10.14~2012.10.17, LignoBiotech II symposium, 総務.
2012.06.01~2012.06.01, 第36回九州紙パルプ研究会, 開催役員.
2011.03.18~2011.03.20, 第61回日本木材学会, 総務.
2005.09.10~2005.09.13, The 7th International Peroxidase Symposium, Local committee.
2004.10, 第11回 日本木材学会九州支部大会, 総務.
2003.03, 第53回 日本木材学会大会, 大会運営委員.
2003.06, 九州紙パルプ研究会, 大会運営委員.
学会誌・雑誌・著書の編集への参加状況
2011.04~2013.03, Journal of Wood Science, 国際, 編集委員.
2003.04~2005.03, Journal of Wood Science, 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2019年度    
2018年度
2017年度
2016年度 10  10 
2015年度
2014年度
2013年度
2012年度
2011年度
2010年度 12 
2009年度    
2008年度    
2007年度    
2006年度
2005年度      
2004年度
2003年度
受賞
日本木材学会賞, 日本木材学会, 2010.01.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2020年度~2022年度, 基盤研究(B), 代表, 万能ペルオキシダーゼCWPO-Cの植物ホルモン不活性化による生長・分化制御.
2015年度~2016年度, 挑戦的萌芽研究, 代表, ポプラペルオキシダーゼCWPO-Cは木化と分化・形態形成を制御する.
2014年度~2016年度, 基盤研究(B), 代表, 細胞壁へのリグニンモノマー供給を調節する輸送体・転写因子の同定⇒有用樹種開発へ.
2013年度~2014年度, 挑戦的萌芽研究, 代表, リグニン重合酵素のマルチノックアウトによる低リグニン・易分解性変異体植物の創出.
2011年度~2012年度, 挑戦的萌芽研究, 代表, 医療器具によるプリオン病二次感染を防除する新規酵素洗浄剤の開発.
2011年度~2013年度, 基盤研究(B), 代表, 微細組織でのリグニン蓄積と生合成遺伝子発現解析よる詳細な木化過程の解明.
2005年度~2007年度, 基盤研究(B), 分担, 木質バイオマスの生成・分解・機能に対する計算化学解析.
競争的資金(受託研究を含む)の採択状況
2015年度~2017年度, 農林水産業・食品産業科学技術研究推進事業 シーズ創出事業, 代表, バンブーリファイナリー技術開発による竹林有効利用の先進的九州モデル構築.
2006年度~2006年度, 九州大学21世紀COEプログラム「循環型住空間システムの構築」萌芽的学際研究助成, 代表, 木質系廃棄物からのバイオエタノール生産に向けた高分解能白色腐朽菌前処理の可能性評価.
2008年度~2012年度, (亜臨界)農林水産技術会議, 代表, 平成23年度鳥インフルエンザ、BSE、口蹄疫等の効率的なリスク低減技術の開発
牛肉骨粉を用いた亜臨界水処理等の低コスト不活化処理技術の開発.
2006年度~2006年度, JSTーズ発掘試験研究申請, 代表, アレルゲンとなるダニ・カビの高感度マイクロアレイ検出技術の開発.
2006年度~2006年度, 産学連携戦略・次世代産業創出事業 研究開発委託事業, 分担, 異常プリオン分解酵素による器具洗浄剤の開発.
2006年度~2006年度, 牛海綿状脳症(BSE)及び人獣共通感染症の制圧のための技術開発, 分担, バイオレメディエーションによるプリオン不活化.
共同研究、受託研究(競争的資金を除く)の受入状況
2008.12~2014.11, 代表, エネルギー生産資源としての木質バイオマスの開発.
2012.04~2013.03, 代表, 「牛肉骨粉を用いた亜臨界水処理等の低コスト不活化処理技術の開発」.
2011.04~2012.03, 代表, 「牛肉骨粉を用いた亜臨界水処理等の低コスト不活化処理技術の開発」.
寄附金の受入状況
2019年度, 株式会社 ダイセル, 奨学寄付金.
2017年度, 株式会社 ダイセル, 奨学寄付金.
2016年度, 株式会社 ダイセル, 奨学寄付金.
2006年度, 東洋鋼鈑株式会社, 奨学寄付金.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」