九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
本城 賢一(ほんじよう けんいち) データ更新日:2024.04.11

准教授 /  農学研究院 生命機能科学部門 食料化学工学


主な研究テーマ
生食用野菜栽培における損傷ならびに非損傷リステリア菌の可食部への汚染低減技術の開発
キーワード:リステリア、生食用野菜、汚染低減化
2013.05.
耐凍性に関する新規適合溶質の検索
キーワード:適合溶質、耐凍性、タウリン、トレハロース
2009.04.
クロレラの耐凍性獲得機構の解明
キーワード:クロレラ,耐凍性,ハードニング
1991.04~2017.03.
酵母への耐凍性付与に関する研究
キーワード:耐凍性,酵母
1996.04.
高等植物への耐凍性付与に関する研究
キーワード:耐凍性,シロイヌナズナ,植物、レタス
1994.04.
従事しているプロジェクト研究
「有害化学物質・微生物の動態解明によるリスク管理技術の開発」(抗菌剤の使用による薬剤耐性発現の実態調査手法の開発)
2018.07~2020.03, 代表者:木嶋伸行, 国立研究開発法人農業・食品産業技術総合研究機構, 国立研究開発法人農業・食品産業技術総合研究機構.
損傷菌の発生機序の解明と検出・制御技術の開発「生食用野菜栽培における損傷ならびに非損傷リステリア菌の可食部への汚染低減技術の開発」
2013.04~2017.03, 代表者:本城賢一, 九州大学, 独立行政法人農業・食品産業技術総合研究機構 食品総合研究所 食品安全研究領域 稲津 康弘
リステリアは、広く環境中に存在し、畜肉、乳製品のみならず、生食用野菜類を介した食中毒を引き起こす。栽培は長期に渡るため、リステリアは様々な生産環境ストレスを受け、検出が困難な損傷菌として存在している可能性が予想される。本課題では、トマト、レタス、ホウレンソウを対象に環境からのリステリアによる可食部汚染の可否を確認し、その低減技術を確立する。まず、血清型等が異なる病原リステリア株を単独、または複数種類同時に接種した土壌において上記野菜類を隔離環境で栽培し、リステリアの消長について調べる。そのため、非損傷菌数はリステリア選択培地を、回復可能な損傷菌数および非損傷菌数は非選択培地を用いて測定する。常在菌と区別するためにリステリアには予め緑色蛍光タンパク質遺伝子を導入しておく。
 栽培段階での野菜可食部におけるリステリア汚染の可否ならびに損傷菌を含めた生残菌数等を数値化しリスク評価することで、生産段階におけるリステリア制御の管理点について明確化し、低減技術開発へとつなげていく。本課題での成果は、「生鮮野菜による食中毒リスク低減 –栽培から出荷までの野菜の衛生管理指針– 」の強化・拡充に活用される。
.
研究業績
主要著書
1. Takeshi Machida, Akiko Ishibashi, Eri Kato, Jun-ichi Sato, Shinji Kawasaki, Youichi Niimura, Ken-ichi Honjoh and Takahisa Miyamoto, Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris functions as an antioxidant system with 2-Cys peroxiredoxin; The 5th International Joint Symposium between Japan and Korea. The Recent Status and Perspective of Food System, Agricultural Environment and Biology, 2008.12.
2. 本城賢一, 植物の耐凍性向上への試み、生物機能研究の進歩1,, 生物機能研究会編集, 2002.03.
3. 本城賢一, 食糧の安定供給をめざして:植物への耐凍性付与、生物機能の新展開-人類の生存をかけて-, 日本学術会議 栄養・食糧科学研究連絡委員会編, 2000.11.
主要原著論文
1. Joh, T., Yoshimoto, M., Honjoh, K., Miyamoto, T., Hatano, S., Changes in translatable RNA population during hardening of Chlorella ellipsoidea C-27., J. Fac. Agr., Kyushu Univ., 37, 3-4, 257-263, 37(3,4), 257-263, 1993.02.
2. Toshio Joh, Ken Ichi Honjoh, Makoto Yoshimoto, Jun Funabashi, Takahisa Miyamoto, Shoji Hatano, Molecular cloning and expression of hardening-induced genes in chlorella vulgaris C-27: The most abundant clone encodes a late embryogenesis abundant protein, Plant Cell Physiol., 36, 1, 85-93, 36(1), 85-93, 1995.01, To investigate the effects of hardening on gene expression in Chlorella vulgaris Beijerink IAM C-27 (formerly Chlorella ellipsoidea Gerneck IAM C-27), a frost-hardy strain, 17 cDNA clones corresponding to hardening-induced Chlorella (hiC) genes were isolated by differential screening of a cDNA library from 6-h hardened cells. Northern blot analysis of transcripts of hiC genes showed that these genes are specifically induced by hardening and that their patterns of induction vary. Southern blots of genomic DNAs from two strains (Chlorella ellipsoidea Gerneck IAM C-102, chilling-sensitive; and C. vulgaris C-27, frost-hardy) of Chlorella indicated that ten hiC clones out of 17 hybridized only with DNA of strain C-27 and the other seven clones hybridized with DNA of both strains. However, of these seven clones, transcripts corresponding to six clones did not accumulate in strain C-102 at low temperatures. The sequence of a deduced protein encoded by the most abundant clone, hiC6, exhibited homology to sequences of Group III LEA (late embryogenesis abundant) proteins and had an amino-terminal amino acid sequence that was similar to the sequences of chloroplast transit peptides. © 1995 The Japanese Society of Plant Physiologists (JSPP)..
3. Ken Ichi Honjoh, Makoto Yoshimoto, Toshio Joh, Taishin Kajiwara, Takahisa Miyamoto, Shoji Hatano, Isolation and characterization of hardening-induced proteins in chlorella vulgaris c-27: Identification of late embryogenesis abundant proteins, Plant Cell Physiol., 36, 1421-1430, 1995.12, Hardening-induced soluble proteins of Chlorella vulgaris Beijerink IAM C-27 (formerly Chlorella ellipsoidea Gerneck IAM C-27) were isolated and purified by two-dimensional high-performance liquid chromatography (2D-HPLC) on an anion-exchange column, with subsequent reversed-phase chromatography. Some of the proteins were resolved by SDS-PAGE, characterized by amino-terminal sequencing and identified by searching for homologies in databases. Separation of the soluble proteins during the hardening of Chlorella by a combination of 2D-HPLC and SDS-PAGE revealed that at least 31 proteins were induced or increased in abundance. Of particular interest was the induction after 12 h of a 10-kDa protein with the amino-terminal amino acid sequence AGNKPITEQISDAVGAAGQKVG and the induction after 6 h of a 14-kDa protein with the amino-terminal sequence ALGEESLGDKAKNAFEDAKDAVKDAAGNVKEAV. The amino-terminal sequences of these proteins indicated that they were homologous to late embryogenesis abundant (LEA) proteins. Furthermore, the level of a 22-kDa protein also increased after 12 h. The amino-terminal sequence of this protein, AAPLVGGPAPDFTAAAVFD, indicated that it was homologous to thioredoxin peroxidase. Copyright © 1995. The Japanese Society of Plant Physiologists..
4. 波多野昌二, 本城賢一, クロレラの耐凍性獲得に伴う遺伝子発現と蛋白質の解析, 低温生物工学会誌, 42 (1), 11-19, 1996.05.
5. Ken Ichi Honjoh, Yuichi Oda, Ryoji Takata, Takahisa Miyamoto, Shoji Hatano, Introduction of the hiC6 gene, which encodes a homologue of a late embryogenesis abundant (LEA) protein, enhances freezing tolerance of yeast, J. Plant Physiol., 10.1016/S0176-1617(99)80046-7, 155, 4-5, 509-512, 1999.10, The hiC6 gene of Chlorella vulgaris, sharing sequence similarity with a late embryogenesis abundant (lea) gene, was introduced into Saccharomyces cerevisiae. It was inserted on a multicopy plasmid under the transcriptional control of the yeast GAL1 promoter. Expression of HIC6 protein was confirmed by immunochemical methods. Expression level of the protein was increased gradually with the induction-time by galactose. With maximum induction time, the freeze-tolerance of yeast transformed with hiC6 gene was approximately 3.3 times (from 20% to 66% survival rate) higher than that of the control yeast..
6. Honjoh, K., Matsumoto, H., Shimizu, H., Ooyama, K., Tanaka, K., Oda, Y., Takata, R., Joh, T., Suga, K., Miyamoto, T., Iio, M. and Hatano, S., Cryoprotective activities of group3 late embryogenesis abundant proteins from Chlorella vulgaris C-27, Biosci. Biotechnol. Biochem., 10.1271/bbb.64.1656, 64, 8, 1656-1663, 64(8): 1656-1663, 2000.08.
7. Ken Ichi Honjoh, Hideyuki Shimizu, Noriko Nagaishi, Hiroko Matsumoto, Koushirou Suga, Takahisa Miyamoto, Masayoshi Iio, Shoji Hatano, Improvement of freezing tolerance in transgenic tobacco leaves by expressing the hiC6 gene, Biosci. Biotechnol. Biochem., 10.1271/bbb.65.1796, 65, 8, 1796-1804, 65(8): 1796-1804, 2001.08, A cryoprotective protein, HIC6, was expressed transgenically in tobacco, a cold-sensitive plant, and the localization of the protein within the cell as well as freezing tolerance of the transgenic tobacco was investigated. For constitutive expression of HIC6 in tobacco, its corresponding gene was subcloned into pBI121. Through the transformation with pBI121/hiC6, fifteen transgenic tobacco lines were acquired, out of which twelve lines expressed the HIC6 protein. None of the transgenic tobacco lines, however, showed significant differences in freezing tolerance from the control plants (wild-type and transformed with pBI121) at -1, -3, and -4°C, with the exception that their freezing temperature was -2°C. In order to increase the accumulation level of HIC6, pBE2113 with a stronger promoter was used. Eight lines expressed the protein out of thirteen lines transformed with pBE2113/hiC6. The accumulation levels of the protein were clearly higher in the tobacco plants transformed with pBE2113/hiC6 than in those with pBI121/hiC6. The HIC6 protein seemed to be localized in mitochondria of the transgenic tobacco plants. Freezing-tolerance tests at -1-4°C showed that the degree of electrolyte leakage was significantly lower in the plants with pBE2113/hiC6 than in the control plants. A leaf browning observation also showed that high accumulation of HIC6 significantly suppressed injury caused by freezing to the transgenic tobacco at -3°C..
8. Suga, K., Honjoh, K., Furuya, N., Shimizu, H., Nishi, K., Shinohara, F., Hirabaru, Y., Maruyama, I., Miyamoto, T., Hatano, S., and Iio, M.,, Two low-temperature-inducible Chlorella genes for D12 and w-3 fatty acid desaturase (FAD): Isolation of D12 and w-3 fad cDNA clones, expression of D12 fad in Saccharomyces cerevisiae , and expression of w-3 fad in Nicotiana tabacum, Biosci. Biotechnol. Biochem., 66, 6, 1314-1327, 66(6): 1314-1327, 2002.06.
9. Ken Ichi Honjoh, Koushirou Suga, Fuminori Shinohara, Isao Maruyama, Takahisa Miyamoto, Shoji Hatano, Masayoshi Iio, Preparation of protoplasts from Chlorella vulgaris K-73122 and cell wall regeneration of protoplasts from C. vulgaris K-73122 and C-27, J. Fac. Agr., Kyushu Univ., 47, 2, 257-266, 47(2): 257-266, 2003.02, Protoplasts from Chlorella vulgaris K-73122 were obtained by enzymatic digestion with a mixture of Acromopeptidase, Cellulase ONOZUKA R-10, Chitosanase KI, Gluczyme, and Uskizyme. The formation of naked protoplasts was confirmed by fluorescence microscopy using fluorescent brightner 28, which stains cell walls. About 88% of C. vulgaris K-73122 cells were converted into osmotically-labile cells. Furthermore, a method for regeneration of intact cells from the protoplasts was developed. Utilization of 0.5 M sucrose as an osmoticum, Fe-EDTA as an iron source, and bacto-agar as a supporting was shown to help regeneration of the cell walls of two strains, C. vulgaris K-73122 and C-27..
10. Ken Ichi Honjoh, Ayano Mimura, Eiko Kuroiwa, Takahiro Hagisako, Koushirou Suga, Hideyuki Shimizu, Rama Shanker Dubey, Takahisa Miyamoto, Shoji Hatano, Masayoshi Iio, Purification and characterization of two isoforms of glucose 6-phosphate dehydrogenase (G6PDH) from Chlorella vulgaris C-27, Biosci. Biotechnol. Biochem., 10.1271/bbb.67.1888, 67, 9, 1888-1896, 67(9): 1888-1896, 2003.09, Two kinds of isoforms of glucose 6-phosphate dehydrogenase (G6PDH) were purified from cells of a freezing-tolerant strain, Chlorella vulgaris C-27, by sequential steps of chromatography on five kinds of columns, including a HiTrap Blue column which showed excellent separation of the isoforms from each other. The two isoforms (G6PDH1 and G6PDH2) were purified up to 109-fold and 197-fold with specific activity of 14.4 and 26.0 U/mg-protein, respectively. G6PDH1 showed an apparent Mr of 200,000 with a subunit Mr of about 58,000, whereas G6PDH2 showed an apparent Mr of 450,000 with a subunit Mr of about 52,000. The kinetic parameters were measured and several enzymatic features of the isoforms, such as effects of metal ions on the enzyme activity, were clarified, which showed that the two isoforms were different from each other in many respects. Among the effective ions, Cd2+ showed marked stimulating effects on both isoforms. G6PDH1 and G6PDH2 seem to be a cytosolic and a chloroplastic type, respectively, as judged by their sensitivity to DTT, and also from the results of sequence similarity searches using their N-terminal and internal amino acid sequences..
11. Kenichi Honjoh, Takeshi Machida, Takahiro Hagisako, Koushirou Suga, Madoka Yonekura, Hideyuki Shimizu, Naoto Ohashi, Takahisa Miyamoto, Shoji Hatano, Masayoshi Iio, Molecular cloning and characterization of a cDNA for low-temperature inducible cytosolic glucose 6-phosphate dehydrogenase gene from Chlorella vulgaris and expression of the gene in Saccharomyces cerevisiae, Plant Science, 10.1016/j.plantsci.2006.12.004, 172, 3, 649-658, 172, 649-658, 2007.03, A cDNA clone corresponding to the gene for glucose 6-phosphate dehydrogenase (E.C.1.1.1.49) was isolated from a cDNA library constructed from poly(A)+RNA from Chlorella vulgaris C-27, a frost hardy strain. The cDNA clone was designated as Cvcg6pdh. The length of Cvcg6pdh was 1845 bp and the clone coded for 521 amino acids. The deduced amino acid sequence of Cvcg6pdh showed sequence homology to cytosolic G6PDHs from other higher plants rather than chloroplastic ones. Northern blot analysis of a transcript of Cvcg6pdh gene showed that the gene was down-regulated once and then induced after 12-h hardening. Activity staining also showed that the expression pattern of one G6PDH isoform was similar to that of the transcript of the gene. Southern blot analysis of genomic DNA showed that Cvcg6pdh seems to hybridize with, at least, one copy of g6pdh genes. The coding region of the clone was amplified by PCR and the product was introduced into Saccharomyces cerevisiae by using a pTG887 expression vector. The activity of G6PDH in transformed yeast was enhanced up to 8.7 times that of the control strain. Furthermore, after freezing-thawing, the viability of the yeast transformed with pTG887/Cvcg6pdh was significantly higher than that of the control yeast cells carrying pTG887. © 2006 Elsevier Ireland Ltd. All rights reserved..
12. Ken-ichi Honjoh, Takeshi Machida, Koutarou Nishi, Kanae Matsuura, Kevin Webby Soli, Takatoshi Sakai, Hiroya Ishikawa, Kiyoshi Matsumoto, Takahisa Miyamoto, Masayoshi Iio, Improvement of freezing and oxidative stress tolerance in Saccharomyces cerevisiae by taurine, Food Sci. Technol. Res., 10.3136/fstr.13.145, 13, 2, 145-154, 13,2, 145-154, 2007.05, The effect of taurine on the survival of Saccharomyces cereuisiae after freezing and oxidative stress was investigated. Proline and NaCl were used in comparison. The accumulation of taurine in yeast cells seemed to lead to the enhancement of tolerance to both freezing and oxidative stress in yeast. Although taurine appeared to be less effective than proline in the development of freezing tolerance, when based on intracellular amounts taurine protected cells more effectively than proline. In order to clarify the effect of taurine on stress tolerance, the expression patterns of stress-responsive genes were observed using RT-PCR. In addition, the contents of glycerol and trehalose as well as the redox states of glutathione in the yeast cells were investigated. Our results suggest that taurine, as well as proline, may function as a cryo-protectant and/or an antioxidant in yeast..
13. 本城賢一,西孝太郎,町田豪,宮本敬久,飯尾雅嘉, タウリン蓄積による酵母の耐凍性向上の試み, 低温生物工学会誌, Vol 53, No.1, 47-51, 2007.09.
14. Machida, T., Kato, E., Ishibashi, A., Ohashi, N., Honjoh, K., Miyamoto, T., Molecular characterization of low-temperaure-inducible NTR-C in Chlorella vulgaris, Nucleic Acids Symposium Series, No. 51, 463-464, 2007.11.
15. Takeshi Machida, Eri Kato, Akiko Ishibashi, Jun-ichi Sato, Shinji Kawasaki, Youichi Niimura, Ken-ichi Honjoh, Takahisa Miyamoto, Expression Pattern of a Chloroplast NADPH-Dependent Thioredoxin Reductase in Chlorella vulgaris during Hardening and Its Interaction with 2-Cys Peroxiredoxin, Biosci. Biotechnol. Biochem., 10.1271/bbb.80761, 73, 3, 695-701, 73(3), 695-701, 2009.03, A chloroplastic NADPH-dependent thioredoxin reductase gene was identified from Chlorella vulgaris and designated CvNTRC. Mature CvNTRC protein (mCvNTRC) was expressed in Escherichia coli, and it showed both NADPH-dependent thioredoxin reductase (NTR) and thioredoxin (Trx)-like dithiol-disulfide oxidoreductase activities. The transcript of CvNTRC increased throughout 24-h hardening, whereas the encoded protein amount and total NTR activity decreased once and then increased during hardening. By in vitro pull-down assay, a 21.2-kDa protein bound to mCvNTRC was isolated and identified as a 2-Cys peroxiredoxin (2-Cys Prx) based on the N-terminal sequence. These data suggest that CvNTRC is maintained at a constant level during hardening and functions as an antioxidant with 2-Cys Prx in the acquisition of freezing tolerance of Chlorella..
16. Takeshi Machida, Ken-ichi Honjoh, Hideyuki Shimizu, Maiko Yamamoto, Masayoshi Iio, Takahisa Miyamoto, Expression of A Gene Encoding A Functional Glycosyl Hydrolase, Trehalase, from Nicotiana Tabacum in Saccharomyces Cerevisiae, JOURNAL OF THE FACULTY OF AGRICULTURE KYUSHU UNIVERSITY, 54, 2, 297-303, 54, 2, 297-304, 2009.10, Trehalases (TREs) function in trehalose hydrolysis and commonly found in most organisms. It is said that most fungi have two types of TREs, acid trehalase and neutral trehalase, but other organisms including plants have only one type. To investigate the function of TRE from plants, a full-length cDNA clone encoding TRE was isolated and designated NtTRE. A conserved region of common trehalase can be found in deduced amino acid sequence of NtTRE, thus the gene was recognized to encode NtTRE enzyme. The NITRE was expressed in Escherichia coli as a glutathione-S-transferase (GST)-fusion protein to investigate the function of the expressed protein as trehalase. SDS-PAGE profile of the protein extract of E. coli showed that the expressed GST-NtTRE protein appeared to be cleaved into two polypeptides, which were approximately 56 and 28 kDa in size, and to form an inclusion body. Based on the results of N-terminal amino acid sequencing of the 56-kDa protein, it contained almost all parts of NtTRE protein. Thus, the protein expressed in E. coli was used only for production of anti-NtTRE antibodies. Function of NtTRE was investigated using yeast expressing NtTRE. The NtTRE protein was expressed as a soluble protein. Trehalase activity of protein extract of the transformed yeast was significantly higher than that of control yeast carrying an empty vector. In addition, intracellular trehalose content in yeast cells was significantly reduced by expression of NtTRE. Those data provided a possibility to construct a modified tobacco plant that can accumulate trehalose in the cells by suppression of the expression and/or the activity of NtTRE..
17. Takeshi Machida, Naoto Ohashi, Ayano Mimura, Ken-ichi Honjoh, Masayoshi Ho, Takahisa Miyamoto, Chloroplastic Glucose 6-Phosphate Dehydrogenase from Chlorella vulgaris Alleviates Freezing and Menadione-Induced Oxidative Stresses in Saccharomyces cerevisiae, JOURNAL OF THE FACULTY OF AGRICULTURE KYUSHU UNIVERSITY, 55, 1, 29-38, 55, 1, 29-38, 2010.02, Enhanced glucose 6-phosphate dehydrogenase (E C 1 1 1 49, G6PDH) activity has been identified as a hardening-induced intracellular change of Chlorella vulgaris, which acquires freezing tolerance during hardening. In the present study, a full-length cDNA clone corresponding to a gene encoding a chloroplastic isoform of G6PDH, designated CvchG6PDH, was isolated from C vulgarus C-27. By comparing the deduced amino acid sequence of CvchG6PDH with the N-terminal aminoacid sequence of mature G6PDH(2) protein isolated previously, a DNA region encoding mature CvchG6PDH was determined and designated mCvchG6PDH. The deduced amino acid sequence of CvchG6PDH showed higher homology to those of plant plastidic G6PDH genes than those of cytosolic ones. A recombinant mCvchG6PDH protein expressed in Escherichia coli showed similar enzymatic properties to previously isolated Chlorella G6PDH(2), suggesting that the gene encoded plastidic G6PDH(2) protein. Expression of CvchG6PDH was induced transcriptionally throughout 24-h hardening, while the translation was induced up to 9-h hardening and then decreased, and the change did not reflect the enhanced G6PDH activity during hardening. Furthermore, the mCvchG6PDH alleviated both freezing and menadione-induced oxidative stresses in yeast. We showed the contribution of CvchG6PDH in menadione stress tolerance as one of its functions in the acquisition of freezing tolerance of Chlorella..
18. Ken-ichi Honjoh, Kanae Matsuura, Takeshi Machida, Koutarou Nishi, Miki Nakao, Tomoki Yano, Takahisa Miyamoto, Masayoshi Iio, Enhancement of menadione stress tolerance in yeast by accumulation of hypotaurine and taurine: co-expression of cDNA clones, from Cyprinus carpio, for cysteine dioxygenase and cysteine sulfinate decarboxylase in Saccharomyces cerevisiae, Amino Acids, 10.1007/s00726-009-0328-6, 38, 4, 1173-1183, 38(4): 1173-1183, 2010.04, Taurine is known to function as a protectant against various stresses in animal cells. In order to utilize taurine as a compatible solute for stress tolerance of yeast, isolation of cDNA clones for genes encoding enzymes involved in biosynthesis of taurine was attempted. Two types of cDNA clones corresponding to genes encoding cysteine dioxygenase (CDO1 and CDO2) and a cDNA clone for cysteine sulfinate decarboxylase (CSD) were isolated from Cyprinus carpio. Deduced amino acid sequences of the two CDOs and that of CSD showed high similarity to those of CDOs and those of CSDs from other organisms, respectively. The coding regions of CDO1, CDO2, and CSD were subcloned into an expression vector, pESC-TRP, for Saccharomyces cerevisiae. Furthermore, to enhance the efficiency of synthesis of taurine in S. cerevisiae, a CDO-CSD fusion was designed and expressed. Expression of CDO and CSD proteins, or the CDO-CSD fusion protein was confirmed by Western blot analysis. HPLC analysis showed that the expression of the proteins led to enhancement of the accumulation level of hypotaurine, a precursor of taurine, rather than taurine. The yeast cells expressing corresponding genes showed tolerance to oxidative stress induced by menadione, but not to freezing-thawing stress..
19. Takeshi Machida, Ken-ichi Honjoh, Ayuko Aso, Maiko Yamamoto, Masayoshi Ho, Takahisa Miyamoto, Trehalose 6-Phosphate Synthase and Trehalose 6-Phosphate Phosphatase from Nicotiana tabacum Function in Trehalose Biosynthesis and Environmental Stress Tolerance of Yeast, JOURNAL OF THE FACULTY OF AGRICULTURE KYUSHU UNIVERSITY, 55, 2, 261-268, 55, 2, 261-268, 2010.10, To investigate functions of trehalose 6 phosphate synthase (TPS) and trehalose 6 phosphate phosphatase (TPP) from a tobacco plant, Nicotiana tabacum, the corresponding cDNA clones were isolated. Those genes were designated NtTPS and NtTPP, respectively NtTPS included a N-terminal extension according to comparison of deduced amino acid sequence of NtTPS with those of TPSs from Escherichia coli and yeast. The NtTPS was genetically modified to lack a region for the N-terminal extension and the modified gene was designated Delta NNtTPS. The genes were expressed in yeast tps1 mutant as two separate proteins and as a NtTPS (or Delta NNtTPS) NtTPP fusion protein. Western blot analysis showed that the NtTPS, NtTPP, and NtTPS NtTPP were expressed abundantly in yeast, while the Delta NNtTPS and Delta NNtTPS-NtTPP were not detected. Interestingly, high levels of trehalose were accumulated in yeast expressing Delta NNtTPS and Delta NNtTPS-NtTPP in spite of their low level expressions. Furthermore, stress tolerances of yeast against osmotic, freezing thawing, and heat stresses were significantly improved by the expression of the tobacco gene, and the increased levels in tolerance were proportional to their trehalose levels. Our results showed that NtTPS and NtTPP functioned in trehalose synthesis by the removal of N-terminal extension of NtTPS and several environmental stress tolerances..
20. Takeshi Machida, Akiko Ishibashi, Ai Kirino, Jun-ichi Sato, Shinji Kawasaki, Youichi Niimura, Ken-ichi Honjoh, Takahisa Miyamoto, Chloroplast NADPH-Dependent Thioredoxin Reductase from Chlorella vulgaris Alleviates Environmental Stresses in Yeast Together with 2-Cys Peroxiredoxin, PLOS ONE, 10.1371/journal.pone.0045988, 7, 9, e45988, 2012.09, [URL], Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances..
21. 本城賢一, 低温流通食品の品質および安全性確保に関する基礎的研究, 日本食品科学工学会誌, 61, 3, 101-107, 2014.03.
22. Ken-ichi Honjoh, Tomoko Mishima, Nozomi Kido, Misako Shimamoto, Takahisa Miyamoto, Investigation of Routes of Salmonella Contamination Via Soils and the Use of Mulch for Contamination Control during Lettuce Cultivation, Food Sci. Technol. Res., 10.3136/fstr.20.961, 20, 5, 961-969, 2014.09, [URL], Foodborne illnesses associated with the consumption of fresh produce such as raw vegetables have become a major health concern worldwide in recent years. In the present study, we investigated the possible routes of Salmonella contamination in leafy lettuce via soil during cultivation. After 10-week cultivation of lettuce plants in soils inoculated with S. Enteritidis expressing green fluorescent protein (SE-EGFP), the bacterium was detected in soil inoculated with >10(4) cfu/g and from most lettuce leaves cultivated in soils inoculated with >4.4 x 10(7) cfu/g. As Salmonella was not detected in intact lettuce leaves or lettuce leaves with root injury cultivated in highly contaminated soils and after surface disinfection, the lettuce plants were not considered to internalize the bacterium. Overhead irrigation led to the contamination of one in 10 lettuce plants; however, all sets of three leaves of the plant were contaminated (>110 MPN/g). In an effort to prevent Salmonella contamination from soils, we investigated the effects of mulch on contamination levels during cultivation. Mulch effectively reduced Salmonella contamination levels of lettuce plants cultivated in highly contaminated soils..
23. Ken-ichi Honjoh, Yuri Iwazako, Yin Lin, Nobuyuki Kijima, Takahisa Miyamoto, Possibilities for Contamination of Tomato Fruit by Listeria monocytogenes during Cultivation, Food Sci. Technol. Res., 10.3136/fstr.22.349, 22, 3, 349-357, 2016.05, [URL], Outbreaks of food-borne illness caused by Listeria monocytogenes in or on fresh produce are sometimes reported. Tomatoes have been considered as one of the most implicated vehicles for produce-associated outbreaks. In the present paper, using tomato plants and three isolates of L. monocytogenes showing different serotypes (1/2a, 1/2b, 4b), viability and injury of L. monocytogenes in soil and in or on tomato plants during cultivation was investigated. Soil was artificially contaminated with L. monocytogenes at levels of 2, 4, 6 or 8 log CFU/g, followed by cultivation of tomato plants in the contaminated soils. The population of L. monocytogenes in the soil decreased to less than the detection limit (
24. 本城賢一, 町田 豪, 菅 向志郎, 宮本敬久, 酵母の凍結ストレス耐性改善へのアプローチ (セミナー 低温/乾燥に適応した生物の生き残り戦略としての休眠), Cryobiology and cryotechnology, 61, 1, 13-17, 2015.03, Freezing is one of extreme environments for organisms. On the other hand, freezing is useful strategy for storage of foods. The authors have studied on development of freezing tolerance of plants for storage and stable supply of foods. In order to understand the mechanisms of the freezing tolerance, low-temperature inducible genes were isolated from Chlorella, and genes responsible for synthesis of taurine and trehalose were isolated from common carp and tobacco plant, respectively. The cloned (LEA, FAD2, NTRC, PRX, CDO, CSD, TPS, TPP) genes were modified and respectively subcloned into expression vectors for expression in Saccharomyces cerevisiae. Freezing tolerance of the yeast cells expressing the genes was investigated to estimate functions of the expressed gene products..
25. 木嶋 伸行、湊 啓子、本城 賢一、前田 征之, 野菜栽培環境における損傷菌の発生と対策, 日本食品科学工学会誌, https://doi.org/10.3136/nskkk.65.205, 65, 4, 205-211, 2018.05, [URL].
26. Ken-ichi Honjoh, Yin Lin, Kiyomi Jo, Yuri Iwaizako, Masayuki Maeda, Nobuyuki Kjima, Takahisa Miyamoto, Possible Contamination Routes of Listeria monocytogenes in Leaf Lettuce during Cultivation, Food Sci. Technol. Res., 10.3136/fstr.24.911, 24, 5, 911-920, 2018.09, Outbreaks of foodborne illness caused by Listeria monocytogenes in or on fresh produce have been reported. Several contamination routes have been proposed and the cultivation process is one of the suspected routes. Leaf lettuce is one of the most important fresh produce products. In the present paper, we investigated the possible routes of L. monocytogenes contamination in leaf lettuce during cultivation. Leaf lettuce was cultivated in soils inoculated with cocktails of three isolates of L. monocytogenes belonging to different serotypes (1/2a, 1/2b, and 4b). The viability and injury state of L. monocytogenes in soils, and bacteria survival in or on leaf lettuce were investigated during 10 weeks of cultivation. Soils were artificially contaminated with L. monocytogenes at levels of 4, 6 or 8 log CFU/g, followed by cultivation of leaf lettuce in the contaminated soils. Populations of L. monocytogenes in the soil decreased to less than the detection limit (
27. Ken-ichi HONJOH, Hitomi OKANO, Aya KAWABATA, Masaru KUROKAWA, Taiki KIMURA, Takeshi MACHIDA, Yoshimitsu MASUDA and Takahisa MIYAMOTO, Freezing tolerance of Lactuca sativa and induction of CBF and GolS genes during cold treatment, Journal of Faculty of Agriculture, Kyushu University, 63, 2, 249-257, 2018.09.
28. Koushirou Suga, Ken-ichi Honjoh, Naoki Furuya, Hideyuki Shimizu, Koutarou Nishi, Fuminori Shinohara, Yoshie Hirabaru, Isao Maruyama, Takahisa Miyamoto, Two low-temperature-inducible chlorella genes for delta 12 and omega-3 fatty acid desaturase (FAD): isolation of delta 12 and omega-3 fad cDNA clones, expression of delta12 fad in Saccharomyces cerevisiae, and expression of omega-3 fad in Nicotiana tab・・・, Biosci. Biotechnol. Biochem., 10.1271/bbb.66.1314, 66, 6, 1314-1327, 2002.01, Two low-temperature-inducible chlorella genes for delta 12 and omega-3 fatty acid desaturase (FAD): isolation of delta 12 and omega-3 fad cDNA clones, expression of delta12 fad in Saccharomyces cerevisiae, and expression of omega-3 fad in Nicotiana tabacum.
29. Mohamed El-Telbany, Chen-Yu Lin, Marwa Nabil Abdelaziz, Aye Thida Maung, Ayman El-Shibiny, Tahir Noor Mohammadi, Mahmoud Zayda, Chen Wang, Su Zar Chi Lwin, Junxin Zhao, Yoshimitsu Masuda, Ken-ichi Honjoh, Takahisa Miyamoto, Potential application of phage vB_EfKS5 to control Enterococcus faecalis and its biofilm in food, AMB Express, https://doi. org/10.1186/s13568-023-01628-6., 13, 130, 2023.11.
30. Ken–ichi HONJOH, Hitomi OKANO, Mika SASAKI, Masaru KUROKAWA, Taiki KIMURA, Kyosuke SHIBATA, Yoshimitsu MASUD A and Takahisa MIYAMOTO, Identification of Low Temperature Inducible Genes of Lactuca sativa by Using Suppression Subtractive Hybridization Method, J. Fac. Agr., Kyushu Univ., https://hdl.handle.net/2324/7169359, 69, 1, 11-23, 2024.02.
主要総説, 論評, 解説, 書評, 報告書等
1. 本城賢一, 井倉則之, 野間誠司, 糖修飾LEAタンパク質の利用を基盤とする食肉の新しい凍害防御技術の確立, 2012.11.
2. 本城賢一, 生鮮野菜の凍結貯蔵を意図した分子生物学的基礎研究, 2012.10.
3. 本城賢一, 九大農学部の安全の取り組み, 日本安全学教育研究会誌, 2011.08.
4. 本城賢一, 植物の耐凍性獲得に関わる新規抗酸化系酵素群の解析, 2009.05.
5. 本城賢一, トレハロース蓄積による酵母の耐凍性向上の試み, 2009.02.
主要学会発表等
1. ○實政裕哉、北山玲衣、中川義健、益田時光、本城賢一、宮本敬久, 空芯菜由来抗菌タンパク質の探索, 令和5年度 日本食品科学工学会 西日本支部大会, 2023.10.
2. ○Mohamed El-Telbany, Yoshimitsu Masuda, Ken-ichi Honjoh and Takahisa Miyamoto, Potential application of phage alone or in combination with nisin against Enterococcus faecalis in food, 日本食品科学工学会 第70回大会, 2023.08.
3. ○中尾朱李、實政裕哉、益田時光、本城賢一、木嶋伸行、石井孝昭、宮本敬久, 抗菌剤使用によるレタス栽培土壌中の耐性菌ならびに菌叢の変化に関する研究, 日本食品科学工学会 第70回大会, 2023.08.
4. 本城賢一, 栽培段階における低温ストレスに対するレタスの分子応答, 第32回食品産業創造展「機能性食品特別セミナー」, 2022.11.
5. 寺本紡乃,益田時光,山田直隆,本城賢一,宮本敬久, レタスの低温処理によるフラボノイド合成酵素遺伝子群の発現誘導について, 2022年度 (公社)日本食品科学工学会西日本支部および(公社)日本栄養·食糧学会九州·沖縄支部合同大会, 2022.11.
6. 中尾朱李,香坂拓哉,益田時光,本城賢一,木嶋伸行,石井孝昭,宮本敬久, 農薬散布履歴の異なる栽培土壌からの薬剤耐性菌の分離と関連する耐性遺伝子の検索, 2022年度 (公社)日本食品科学工学会西日本支部および(公社)日本栄養·食糧学会九州·沖縄支部合同大会, 2022.11.
7. 新名祐作,益田時光,本城賢一,宮本敬久, レタス低温誘導性親水性タンパク質の抗菌活性に関する研究, 2022年度 (公社)日本食品科学工学会西日本支部および(公社)日本栄養·食糧学会九州·沖縄支部合同大会, 2022.11.
8. 中川義健,實政裕哉,益田時光,本城賢一,宮本敬久, 野菜種子およびスプラウト由来新規抗菌性タンパク質の探索, 2022年度 (公社)日本食品科学工学会西日本支部および(公社)日本栄養·食糧学会九州·沖縄支部合同大会, 2022.11.
9. 實政裕哉,中川義健,益田時光,本城賢一,宮本敬久, 空心菜スプラウト由来抗菌タンパク質の分画, 2022年度 (公社)日本食品科学工学会西日本支部および(公社)日本栄養·食糧学会九州·沖縄支部合同大会, 2022.11.
10. 新名祐作,益田時光,本城賢一,宮本敬久, レタス低温誘導性親水性タンパク質の抗菌活性に関する研究, 日本食品科学工学会 第68回大会, 2021.08.
11. 中川義健,益田時光,本城賢一,宮本敬久, 野菜種子およびスプラウト由来新規抗菌タンパク質の探索に関する研究, 日本食品科学工学会 第68回大会, 2021.08.
12. 柴田恭輔,木村太喜,益田時光,本城賢一,宮本敬久, レタス(Lactuca sativa L.)由来の低温誘導性遺伝子の解析および LsVPE ノックアウトレタスの作出, 日本食品科学工学会 第68回大会, 2021.08.
13. 寺本紡乃,木村太喜,益田時光,本城賢一,宮本敬久, レタスの低温処理によるフラボノイド関連遺伝子群の発現誘導について, 日本食品科学工学会 第68回大会, 2021.08.
14. 本城賢一, リスク回避を目的とした野菜生産段階におけるリステリアの汚染機構の解析, 令和2年度中村学園大学大学院 博士後期課程セミナー, 2020.12.
15. 仲原裕貴、益田時光、本城賢一、宮本敬久, 食材の低温貯蔵が志賀毒素産生大腸菌の耐熱性に及ぼす影響, 日本食品科学工学会西日本支部大会, 2020.11.
16. 木村太喜, 黒川将, 益田 時光, 本城 賢一, 宮本 敬久, ガラクチノール合成酵素遺伝子高発現によるレタスの凍結耐性向上に関する研究, 日本農芸化学会2019年度西日本・中四国支部合同沖縄大会, 2019.11.
17. 香坂拓哉, 益田時光, 木嶋伸行, 石井孝昭, 本城賢一, 宮本敬久, オキシテトラサイクリン曝露による土壌中の薬剤耐性菌発現に関する研究, 公益社団法人 日本食品科学工学会 第66回大会, 2019.08.
18. 本城賢一, 野菜栽培段階におけるリステリアの汚染機構について, 第29回食品産業創造展「機能性食品特別セミナー」, 2019.05.
19. 木村太喜, 黒川将, 益田時光, 本城賢一, 宮本敬久, 大腸菌を用いたレタス由来ガラクチノール合成酵素遺伝子の機能解析, 日本農芸化学会2019年度大会, 2019.03.
20. Kimura, T., Kurokawa, M., Honjoh, K., Masuda, Y., Miyamoto T., Functional analysis of galactinol synthase gene from Lactica sativa in Escherichia coli, JSBBA West 1st Student Forum, 2018.11.
21. 木村太喜, 黒川将, 益田時光, 本城賢一, 宮本敬久, 大腸菌を用いたレタス由来ガラクチノール合成酵素遺伝子の機能解析, 第55回化学関連支部合同九州大会, 2018.06.
22. 李 重延, 須田千尋, 益田時光, 本城賢一, 宮本敬久, ハツカダイコン栽培段階における Listeria monocytogenesの汚染機構解明と収穫後の菌の消長について, 第55回化学関連支部合同九州大会, 2018.06.
23. 本城 賢一, 須田 千尋, 城 聖実, 李 重延, 木嶋 伸行, 前田 征之, 益田 時光, 宮本 敬久, ハツカダイコン栽培段階におけるリステリアの可食部汚染機構の解明, 公益社団法人 日本食品科学工学会 第64回大会, 2017.08.
24. 黒川 将, 岡野 仁美, 川畑 彩, 益田 時光, 本城 賢一, 宮本 敬久, レタス (Lactuca sativa L.)由来の低温誘導性galactinol 合成酵素遺伝子のクローニング, 第34回日本植物細胞分子生物学会(上田)大会, 2016.09.
25. 本城 賢一, 林 英, 祝迫 侑里, 城 聖実, 木嶋 伸行, 前田 征之, 宮本 敬久, リーフレタス栽培段階におけるリステリアの損傷菌化と可食部汚染機構の解明, 公益社団法人 日本食品科学工学会 第63回大会, 2016.08.
26. 本城 賢一, 林 英, 祝迫 侑里, 城 聖実, 木嶋 伸行, 宮本 敬久, 栽培土壌におけるリステリアの損傷ならびにリーフレタス可食部汚染機構の解明, 第36回日本食品微生物学会学術総会, 2015.11.
27. 祝迫 侑里, 林 英, 本城 賢一, 宮本 敬久, リステリア汚染土壌で栽培したトマトの可食部汚染の可能性について, 平成26年度 日本食品科学工学会西日本支部大会, 2014.12.
28. Ken-ichi Honjoh, Tomoko Mishima, Nozomi Kido, Yuri Iwaizako, Ying Lin, Takahisa Miyamoto, Studies on contamination routes of Salmonella Enteritidis and Listeria monocytogenes in vegetables, 43rd Annual Meeting United States - Japan Cooperative Program in Natural Resources Food and Agricultural Panel, 2014.10.
29. Ken-ichi Honjoh, 酵母の凍結ストレス耐性改善へのアプローチ, 第59回低温生物工学会セミナー及び年会, 2014.06.
30. 林 英, 祝迫 侑里, 島本 美紗子, 本城 賢一, 宮本 敬久, トマト栽培土壌中におけるリステリアの生残と損傷菌検出に関する研究, 平成25年度 日本食品科学工学会西日本支部および日本栄養・食糧学会九州・沖縄支部合同大会, 2013.10.
31. 本城 賢一, 低温流通食品の品質および安全性確保に関する基礎的研究, 平成25年度 日本食品科学工学会西日本支部および日本栄養・食糧学会九州・沖縄支部合同大会, 2013.10.
32. Ken-ichi Honjoh, Hitomi Okano, Aya Kawabata, Ayako Shiraishi, Takahisa Miyamoto, Molecular response of Lactuca sativa L. to low temperature, 13TH ASEAN FOOD CONFERENCE 2013, 2013.09.
33. 本城 賢一, 低温流通食品の品質と安全性確保に関する基礎的研究, 日本食品科学工学会第60回記念大会, 2013.08.
34. 白石 絢子, 桐野 愛, 町田 豪, 本城 賢一, 宮本 敬久, クロレラNTRCおよびPrx遺伝子導入による高等植物の凍結貯蔵性向上に関する基礎研究, 日本食品科学工学会第60回記念大会, 2013.08.
35. 岡野 仁美, 白石 絢子, 川畑 彩, 町田 豪, 本城 賢一, 宮本 敬久, 凍結貯蔵性付与を目的としたレタスの低温応答遺伝子解析, 日本食品科学工学会第60回記念大会, 2013.08.
36. 白石 絢子, 桐野 愛, 町田 豪, 本城 賢一, 宮本 敬久, クロレラ由来葉緑体局在NADPH依存型チオレドキシン還元酵素ならびに2-Cysペルオキシレドキシン遺伝子導入シロイヌナズナのストレス耐性, 第50回化学関連支部合同九州大会, 2013.07.
37. 岡野仁美, 川畑 彩, 町田 豪, 本城賢一, 宮本敬久, レタスにおける CBF, ICE1, GolS遺伝子の低温誘導性に関する研究, 平成24年度日本農芸化学会西日本支部および日本栄養・食糧学会九州・沖縄支部合同大会, 2012.09.
38. 岡野 仁美, 川畑 彩, 町田 豪, 本城 賢一, 宮本 敬久, CBF遺伝子の解析に基づくレタス(Lactuca sativa L.)の低温応答性に関する研究, 第49回化学関連支部合同九州大会, 2012.06.
39. 川畑 彩, 町田 豪, 岡野 仁美, 本城 賢一, 宮本 敬久, レタス(Lactuca sativa)からのCBF様遺伝子のクローニング, 第29回 日本植物細胞分子生物学会(福岡)大会, 2011.09.
40. 桐野 愛, 町田 豪, 石橋 明子, 本城 賢一, 宮本 敬久, クロレラNTRC/2-Cys Prx抗酸化系遺伝子導入による酵母のストレス耐性向上に関する研究, 第29回 日本植物細胞分子生物学会(福岡)大会, 2011.09.
41. 本城賢一, 九大農学部の安全の取り組み, 第6回 日本安全学教育研究会, 2011.08.
42. 正箱尚久, 町田豪, 本城賢一, 宮本敬久, クロレラ形質転換法の確立に基づく低温誘導性NTRC遺伝子の破壊に関する研究, 日本農芸化学会西日本支部大会, 2010.09.
43. 桐野 愛, 町田 豪, 石橋 明子, 本城 賢一, 宮本 敬久, クロレラNTRC/2-Cys Prx抗酸化系の過酸化物分解活性および本抗酸化系遺伝子導入による酵母の耐凍性に関する研究, 第47回化学関連支部合同九州大会, 2010.07.
44. 川畑 彩, 町田 豪, 本城 賢一, 宮本 敬久, レタスの低温および凍結耐性を評価する遺伝子マーカーの検討, 第47回化学関連支部合同九州大会, 2010.07.
45. 町田豪, 増山夏子, 山田直隆, 本城賢一, 宮本敬久, クロレラ耐凍性誘導物質ルヌラリンにより発現誘導される遺伝子の同定, 日本農芸化学会関西・中四国・西日本支部、日本栄養・食糧学会九州・沖縄支部および日本食品科学工学会西日本支部合同沖縄大会, 2009.10.
46. 石橋明子, 本城賢一, 町田豪, 宮本敬久, クロレラ葉緑体局在NADPH チオレドキシン還元酵素と2-Cys 型ペルオキシレドキシン間の相互作用解析, 日本農芸化学会関西・中四国・西日本支部、日本栄養・食糧学会九州・沖縄支部および日本食品科学工学会西日本支部合同沖縄大会, 2009.10.
47. 増山夏子, 渡辺雄太, 町田豪, 山田直隆, 本城賢一, 宮本敬久, 桑野栄一, クロレラの耐凍性に及ぼすルヌラリンの影響, 日本農芸化学会関西・中四国・西日本支部、日本栄養・食糧学会九州・沖縄支部および日本食品科学工学会西日本支部合同沖縄大会, 2009.10.
48. 本城賢一, クロレラの耐凍性獲得における新規抗酸化系酵素群の機能解析, 第46回化学関連支部合同九州大会, 2009.07.
49. 石橋明子, 町田豪, 加藤枝里, 佐藤純一, 川崎信治, 新村洋一, 本城賢一, 宮本敬久, クロレラ葉緑体局在NADPH依存型チオレドキシン還元酵素が関わる抗酸化系酵素群の酵母における発現とストレス耐性, 日本農芸化学会2009年度大会, 2009.03.
50. 町田豪, 麻生亜由子, 山本舞子, 本城賢一, 宮本敬久, タバコ由来トレハロース合成系酵素群遺伝子の酵母での発現, 日本農芸化学会2009年度大会, 2009.03.
51. 渡辺雄太, 山田直隆, 町田豪, 本城賢一, 桑野栄一, Chlorella vulgaris C-27株のカロテノイドに対する低温順化の影響, 日本農芸化学会2009年度大会, 2009.03.
52. Takeshi Machida, Akiko Ishibashi, Eri Kato, Jun-ichi Sato, Shinji Kawasaki, Youichi Niimura, Ken-ichi Honjoh and Takahisa Miyamoto, Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris functions as an antioxidant system with 2-Cys peroxiredoxin, The 5th International Joint Symposium between Japan and Korea, 2008.11.
53. 本城賢一, トレハロース蓄積による酵母の耐凍性向上の試み, 第12回 トレハロースシンポジウム, 2008.10.
54. 石橋明子, 町田豪, 加藤枝里, 佐藤純一, 川崎信治, 新村洋一, 本城賢一, 宮本敬久, クロレラ葉緑体局在NADPH依存型チオレドキシン還元酵素は2-Cys Prxと共同して過酸化物分解に機能する, 日本農芸化学会西日本支部大会, 2008.09.
55. Takeshi Machida, Akiko Ishibashi, Eri Kato, Jun-ichi Sato, Shinji Kawasaki, Youichi Niimura, Ken-ichi Honjoh and Takahisa Miyamoto, Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris functions as an antioxidant with 2-Cys peroxiredoxin, XVI Congress of the Federation of European Societies of Plant Biology (FESPB 2008), 2008.08.
56. Ken-ichi Honjoh, Kanae Matsuura, Koutarou Nishi, Takeshi Machida, Masayoshi Iio and Takahisa Miyamoto, Stress tolerance of yeast expressing genes for taurine synthetic enzymes, XVI Congress of the Federation of European Societies of Plant Biology (FESPB 2008), 2008.08.
57. 町田 豪, 石橋 明子, 加藤 枝里, 佐藤 純一, 川崎 信治, 新村 洋一, 本城 賢一, 宮本 敬久, クロレラの葉緑体局在NADPH依存型チオレドキシン還元酵素が関与する抗酸化システム, 第45回化学関連支部合同九州大会, 2008.07.
58. 町田豪, 加藤枝里, 石橋明子, 大橋直人, 佐藤純一, 川崎信治, 新村洋一, 本城賢一, 宮本敬久, クロレラ低温誘導性NTR-Cは2-Cys Prxの電子供与体として機能し過酸化物分解を促進する, 日本農芸化学会, 2008.03.
59. Takeshi Machida, Eri Kato, Akiko Ishibashi, Naoto Ohashi, Ken-ichi Honjoh, and Takahisa Miyamoto, Molecular characterization of low-temperature-inducible NTR-C in Chlorella vulgaris, 5th International Symposium on Nucleic Acids Chemistry, 2007.11.
60. Takahisa Miyamoto, Kumiko Fujihara, Ken-ichi, Honjoh, Hideaki Kamikado, Takashi Tanaka, Intraspecific lineage group identification of Listeria monocytogenes based on DNA sequences of some genes and rapid detection of L. monocytogenes genetically similar to clinical isolates, Natural Resources, Food and Agriculture Panel, 36th Annual meeting, 2007.10.
61. 本城賢一, 町田豪, 松浦香苗, 西孝太郎, 宮本敬久, 飯尾雅嘉, タウリン合成酵素遺伝子導入による酵母へのストレス耐性付与, 日本食品科学工学会, 2007.09.
62. 大橋直人, 町田豪, 本城賢一, 宮本敬久, クロレラ葉緑体局在型 G6PDHアイソザイムの低温下における発現挙動と機能解析, 日本農芸化学会中四国西日本支部合同大会, 2007.09.
63. Takeshi Machida, Eri Kato, Akiko Ishibashi, Ken-ichi Honjoh and Takahisa Miyamoto, Molecular characterization of low-temperature-inducible NTR-C in Chlorella vulgaris, Japan-Germany International Cooperative Project on Education and Research, 2007.09.
64. 町田 豪, 加藤 枝里, 大橋 直人, 本城 賢一, 宮本 敬久, クロレラ由来低温誘導性NADPH依存性チオレドキシン還元酵素の低温での発現挙動と機能解析, 第44回化学関連支部合同九州大会, 2007.07.
65. 町田豪, 大橋直人, 本城賢一, 宮本敬久, 飯尾雅嘉, クロレラ由来グルコース6-リン酸脱水素酵素アイソザイムのcDNAクローニングと低温下における挙動, 日本農芸化学会, 2007.03.
66. 本城賢一, 加藤枝里, 町田豪, 宮本敬久, 飯尾雅嘉, クロレラ由来低温誘導性NADPH依存型チオレドキシン還元酵素のcDNAクローニングとその機能解析, 日本農芸化学会, 2007.03.
67. Ken-ichi Honjoh, Takeshi Machida, Eri Kato, Hisako Murase, Masayoshi Iio, and Takahisa Miyamoto, Isolation of cDNAs for hardening specific genes from Chlorella vulgaris by using suppression subtractive hybridization, Iwate Plant Science Symposium 2006 (The Frontiers of Molecular Plant Biology -Abiotic stress responses and host-pathogen interactions-), 2006.10.
68. 加藤枝里, 村瀬久子, 本城賢一, 宮本敬久, 飯尾雅嘉, クロレラ低温誘導性NADPH-チオレドキシン還元酵素遺伝子のクローニング, 日本農芸化学会西日本支部大会, 2006.09.
69. 麻生亜由子, 山本舞子, 本城賢一, 宮本敬久, 飯尾雅嘉, タバコのトレハロース合成系酵素遺伝子のクローニングおよび酵母での発現, 日本農芸化学会西日本支部大会, 2006.09.
70. Kevin Webby Soli, Takashi Iseki, Ken-ichi Honjoh, Masayoshi Iio, Takahisa Miyamoto, Identification of amino acid permease genes responsible for taurine uptake in yeast, 第43回 化学関連支部合同九州大会, 2006.07.
71. 町田豪, 大橋直人, 本城賢一, 飯尾雅嘉, 宮本敬久, クロレラg6pdh遺伝子の酵母での発現とその耐凍性獲得への関与, 第43回 化学関連支部合同九州大会, 2006.07.
72. 大橋直人, 町田豪, 本城賢一, 飯尾雅嘉, 宮本敬久, クロレラ葉緑体局在型g6pdh遺伝子のcDNAクローニングとその発現挙動, 第43回 化学関連支部合同九州大会, 2006.07.
73. 本城賢一, タウリン蓄積による酵母の耐凍性向上の試み, 第52回低温生物工学会大会(年会およびセミナー), 2006.05.
74. 宮本敬久, 小林弘司, 小野由加里, 久保田 順, 藤原久美子, 本城賢一, 上門英明, 樋脇 弘, 馬場 愛, Sung Sik Jang, Sangryeol Ryu, 特定遺伝子塩基配列分析によるListeria monocytogenes の遺伝学的分類, 第26回日本食品微生物学会学術総会, 2005.11.
75. Miyamoto. T, Kobayashi, H., Honjoh, K., Automated fluorescence microscopic method for counting viable bacteria in milk., UJNR 34KAI TAIKAI, 2005.11.
76. 久保田順, 宮本敬久, 小林弘司, 本城賢一, 飯尾雅嘉, 食中毒細菌5種の一斉増菌同時検出, 日本防菌防黴学会第32回年次大会, 2005.05.
77. 山本舞子, 麻生亜由子, 本城賢一, 宮本敬久, 飯尾雅嘉, タバコのトレハロース分解系および合成系酵素遺伝子群のクローニング, 日本農芸化学会, 2004.10.
78. 村瀬 久子, 加藤 枝里, 本城 賢一, 宮本 敬久, 飯尾 雅嘉, cDNAサブトラクション法によるクロレラ低温誘導性遺伝子の検索, 日本農芸化学会, 2004.10.
79. 井関 敬, Kevin Webby Soli, 松浦香苗, 本城賢一, 宮本敬久, 飯尾雅嘉, 酵母アミノ酸トランスポーター遺伝子破壊株によるタウリン取り込みに関する研究, 日本農芸化学会, 2004.10.
80. 三村綾乃, 本城賢一, 中尾実樹, 矢野友紀, 宮本敬久, 波多野昌二, 飯尾雅嘉, ハードニング処理したクロレラ由来グルコース6-リン酸脱水素酵素(G6PDH)の精製, 日本農芸化学会, 2003.09.
81. 松浦香苗, 西孝太郎, 本城賢一, 中尾実樹, 矢野友紀, 坂井隆敏, 石川洋哉, 松本 清, 宮本敬久, 飯尾雅嘉, コイ由来タウリン合成系酵素遺伝子のクローニングおよび酵母での発現-耐凍性付与の試み, 日本農芸化学会, 2003.09.
82. K. Honjoh, K. Nishi, K. Matsuura, and M.Iio, Use of taurine as a cryoprotectant in yeast and cloning of cDNA for cysteine dioxygenase and cysteine sulfinate decarboxylase, enzymes in taurine synthesis, from enzymes in taurine synthesis, from Cyprinus carpio, 2003.08.
83. 西孝太郎, 本城賢一, 坂井隆敏, 石川洋哉, 松本 清, 宮本敬久, 飯尾雅嘉, タウリンは酵母に対する凍結および酸化ストレスを軽減する, 日本農芸化学会, 2002.09.
学会活動
所属学会名
公益社団法人 日本食品衛生学会
日本安全学教育研究会
一般社団法人 日本植物バイオテクノロジー学会
一般社団法人 日本食品保蔵科学会
公益社団法人 日本農芸化学会
公益社団法人 日本食品科学工学会
一般社団法人 日本植物生理学会
日本食品微生物学会
学協会役員等への就任
2024.03~2026.02, 日本食品科学工学会, 国際交流委員会副委員長.
2022.03~2026.02, 日本食品科学工学会 , 西日本支部代議員.
2020.03~2024.02, 日本食品科学工学会 西日本支部, 幹事.
2021.03~2025.02, 日本農芸化学会, 広報委員.
2020.04~2026.03, 日本食品科学工学会, 総務委員会委員.
2019.06~2024.06, 日本食品保蔵学会, 代議員.
2016.11~2026.02, 日本食品科学工学会, 国際交流委員会委員.
2016.03~2018.02, 日本食品科学工学会西日本支部, 監事.
2012.04~2016.02, 日本食品科学工学会西日本支部, 幹事.
2008.03~2024.03, 日本食品科学工学会西日本支部, 評議員.
2007.04~2024.03, 日本農芸化学会西日本支部, 参与.
学会大会・会議・シンポジウム等における役割
2021.08.26~2021.08.26, 日本食品科学工学会 第68回大会(オンライン), シンポリウム世話人.
2021.08.26~2021.08.28, 日本食品科学工学会 第68回大会(オンライン), 庶務.
2020.08.27~2020.08.29, 日本食品科学工学会 第67回大会(コロナウイルス感染拡大のため中止), 庶務.
2020.11.23~2020.11.23, 令和2年度日本食品科学工学会西日本支部大会, 実行委員.
2018.06.30~2018.06.30, 第55回化学関連支部合同九州大会, その他.
2017.08.28~2017.08.30, 日本食品科学工学会 第64回大会, その他.
2016.11.26~2016.11.26, 平成28年 日本食品科学工学会西日本支部大会, その他.
2015.10.30~2015.10.31, 平成27年 日本栄養・食糧学会九州・沖縄支部および日本食品科学工学会西日本支部合同大会, その他.
2014.12.06~2014.12.06, 平成26年度日本食品科学工学会西日本支部大会, その他.
2014.12.06~2014.12.06, 平成26年 日本食品科学工学会西日本支部大会, その他.
2014.08.30~2014.08.30, 市民フォーラム「食と健康」, その他.
2014.08.28~2014.08.30, 日本食品科学工学会第61回大会, その他.
2014.08.28~2014.08.30, 日本食品科学工学会 第61回大会, その他.
2013.10.19~2013.10.19, 平成25年度日本食品科学工学会西日本支部および日本栄養・食糧学会九州・沖縄支部合同大会, その他.
2013.10.19~2013.10.22, 公開市民フォーラム「食の安全と健康を考える」, その他.
2013.10.19~2013.10.19, 平成25年 日本食品科学工学会西日本支部および日本栄養・食糧学会九州・沖縄支部合同大会, その他.
2012.12.08~2012.12.08, 平成24年度日本食品科学工学会西日本支部大会, その他.
2012.12.08~2012.12.08, 平成24年度日本食品科学工学会西日本支部大会, その他.
2012.12.07~2012.12.07, 日本食品科学工学会西日本支部 平成24年度産学連携市民公開フォーラム「21世紀の食品開発 地場産業の活性化を目指して」, その他.
2012.12.07~2012.12.07, 日本食品科学工学会西日本支部 平成24年度産学連携市民公開フォーラム「21世紀の食品開発 地場産業の活性化を目指して」, その他.
2012.10.25~2012.10.26, 第33回日本食品微生物学会学術総会, その他.
2012.09.28~2012.09.29, 平成24年度日本農芸化学会西日本支部および日本栄養・食糧学会九州・沖縄支部合同大会, その他.
2012.03.22~2012.03.25, 日本農芸化学会2012年度大会, その他.
2011.09.06~2011.09.08, 第29回 日本植物細胞分子生物学会(福岡)大会, その他.
2009.10.30~2009.10.31, 日本農芸化学会関西・中四国・西日本支部、日本栄養・食糧学会九州・沖縄支部および日本食品科学工学会西日本支部合同沖縄大会, その他.
2009.03.26~2009.03.26, 第35回化学と生物シンポジウム, その他.
2008.09.19~2008.09.20, 日本農芸化学会西日本支部大会, その他.
2007.09.01~2007.09.03, 日本食品科学工学会第54回大会, その他.
2007.09.01~2007.09.02, 日本農芸化学会中四国西日本支部合同大会, その他.
2007.09.01~2007.09.03, 日本食品科学工学会, その他.
2007.03.26~2007.03.28, 日本農芸化学会, その他.
2006.09.01~2006.09.01, 日本農芸化学会西日本支部大会, その他.
2004.10.01~2004.10.02, 日本農芸化学会北海道・西日本支部合同大会, その他.
2002.09.01~2002.09.02, 日本農芸化学会西日本支部大会, その他.
1999.03.01~1999.03.01, 日本農芸化学会1999年度大会, その他.
学会誌・雑誌・著書の編集への参加状況
2019.06~2024.06, 日本食品保蔵科学会誌, 国内, 編集委員.
2018.04~2026.02, Food Science and Technology Research, 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2024年度      
2023年度 25      28 
2022年度    
2021年度      
2020年度      
2019年度 10        10 
2018年度 14        14 
2017年度      
2016年度      
2015年度      
2014年度      
2013年度      
2012年度      
2011年度      
2010年度      
2009年度      
2008年度      
2006年度      
2004年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
MAX Atria, Singapore Expo, Singapore, 2013.09~2013.09.
オスナブリュック大学, Germany, 2007.01~2007.01.
アリゾナ大学, UnitedStatesofAmerica, 2000.02~2001.02.
外国人研究者等の受入れ状況
2022.05~2022.10, 1ヶ月以上, University of Sadat City, Egypt, 外国政府・外国研究機関・国際機関.
2019.07~2019.08, 1ヶ月以上, カントー大学 , Vietnam, 外国政府・外国研究機関・国際機関.
2016.04~2016.09, 1ヶ月以上, Vietnam National University of Agriculture , Vietnam.
2013.07~2013.09, 1ヶ月以上, 瀋陽師範大学 , China, 政府関係機関.
2012.02~2012.08, 1ヶ月以上, カセサート大学, Thailand, 外国政府・外国研究機関・国際機関.
2011.04~2012.03, 1ヶ月以上, PapuaNewGuinea.
受賞
平成25年度日本食品科学工学会奨励賞, 公益財団法人 日本食品科学工学会, 2013.08.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2024年度~2026年度, 基盤研究(C), 代表, 低温誘導性VPE遺伝子の機能解析とそれに基づく凍結耐性レタスの作出.
2023年度~2025年度, 基盤研究(B), 分担, 食の安全確保におけるファージ利用の科学的基盤構築 .
2019年度~2021年度, 基盤研究(B), 分担, 「ファージが守る食の安全」に寄与する学術基盤の構築.
2015年度~2017年度, 基盤研究(C), 代表, 低温誘導性遺伝子改変に基づくレタスの凍結ならびに低温貯蔵性の改善に関する研究.
2013年度~2015年度, 基盤研究(B), 分担, 生食野菜類の食中毒リスク低減に資する基礎研究.
2013年度~2015年度, 基盤研究(C), 分担, 生食野菜類の食中毒リスク低減に資する基礎研究.
2008年度~2010年度, 基盤研究(C), 代表, クロレラ由来低温誘導性抗酸化系酵素群の機能解析に基づく耐凍性植物の作出.
2007年度~2008年度, 基盤研究(B), 分担, 高病原性リステリア菌の迅速検出と制御に関する基礎研究.
2005年度~2006年度, 基盤研究(C), 代表, タウリンを新規適合溶質として利用した耐凍性植物の作出.
2004年度~2005年度, 基盤研究(C), 分担, サルモネラ菌迅速高感度検出のための基礎研究.
2003年度~2004年度, 基盤研究(C), 代表, トレハロース蓄積による植物への耐凍性付与に関する研究.
2001年度~2002年度, 基盤研究(C), 代表, クロレラ耐凍性関連遺伝子導入による耐凍性植物の作出に関する研究.
1998年度~1999年度, 基盤研究(C), 分担, 腸管出血性大腸菌O157検出のための食材凍結条件の検証とその凍結損傷機構の解明.
1997年度~1998年度, 基盤研究(C), 分担, B.cereusの胞子形成初期過程に関する基礎研究.
1996年度~1997年度, 基盤研究(C), 代表, クロレラの耐凍性発現遺伝子の導入による耐凍性パン酵母の作出.
1995年度~1996年度, 基盤研究(C), 分担, 大腸菌及び大腸菌群生菌の高感度迅速検出法の開発.
競争的資金(受託研究を含む)の採択状況
2023年度~2023年度, 公益財団法人江頭ホスピタリティ事業振興財団 令和5年度 研究開発助成, 代表, バクテリオファージを利用した多剤耐性Enterococcus faecalisの制御に関する研究.
2023年度~2023年度, 伊藤記念財団令和5年度研究助成, 代表, 食肉の低温貯蔵履歴と不十分な加熱がカンピロバクターの生残性に及ぼす影響.
2021年度~2021年度, 公益財団法人江頭ホスピタリティ事業振興財団 令和3年度 研究開発助成, 代表, K-セグメントを有するレタス低温誘導性タンパク質の抗菌性ならびに凍害防御機能解析に
関する研究
.
2021年度~2021年度, 2021年度 一般財団法人旗影会 研究助成, 代表, 野菜種子ならびにスプラウト由来の新規抗菌ペプチドの分離同定に関する研究.
2019年度~2019年度, 令和元年度 公益財団法人伊藤記念財団助成, 代表, 食肉の低温貯蔵履歴が志賀毒素生産性大腸菌の凍結損傷回復ならびに低温加熱耐性に及ぼす影響.
2011年度~2011年度, 財団法人 すかいらーくフードサイエンス研究所 平成23年度学術研究助成, 代表, 生鮮野菜の凍結貯蔵を意図した分子生物学的基礎研究.
2011年度~2011年度, 平成23年度財団法人伊藤記念財団助成, 代表, 糖修飾LEAタンパク質の利用を基盤とする食肉の新しい凍害防御技術の確立.
共同研究、受託研究(競争的資金を除く)の受入状況
2023.04~2024.03, 分担, 環境への抗菌剤・薬剤耐性菌の拡散量低減を目指したワンヘルス 推進プロジェクト
小課題4 農薬としての抗菌剤のほ場投入による土壌及び野菜由来微生物の薬剤 耐性化機構の解明
実行課題 410:土壌環境における農薬残布の耐性菌出現への影響解明.
2022.04~2023.03, 分担, 環境への抗菌剤・薬剤耐性菌の拡散量低減を目指したワンヘルス 推進プロジェクト
小課題4 農薬としての抗菌剤のほ場投入による土壌及び野菜由来微生物の薬剤 耐性化機構の解明
実行課題 410:土壌環境における農薬残布の耐性菌出現への影響解明.
2022.04~2023.03, 分担, 「有害化学物質・微生物の動態解明によるリスク管理技術の開発」(抗菌剤の使用による薬剤耐性発現の実態調査手法の開発).
2021.04~2022.03, 分担, 野菜の生産環境における微生物の消長を考慮した水や堆肥の管理対策の確立.
2021.04~2022.03, 分担, 「有害化学物質・微生物の動態解明によるリスク管理技術の開発」(抗菌剤の使用による薬剤耐性発現の実態調査手法の開発).
2020.04~2021.03, 分担, 野菜の生産環境における微生物の消長を考慮した水や堆肥の管理対策の確立.
2020.04~2021.03, 分担, 「有害化学物質・微生物の動態解明によるリスク管理技術の開発」(抗菌剤の使用による薬剤耐性発現の実態調査手法の開発).
2019.04~2020.03, 分担, 「有害化学物質・微生物の動態解明によるリスク管理技術の開発」(抗菌剤の使用による薬剤耐性発現の実態調査手法の開発).
2018.07~2019.03, 分担, 「有害化学物質・微生物の動態解明によるリスク管理技術の開発」(抗菌剤の使用による薬剤耐性発現の実態調査手法の開発).
2017.04~2018.03, 代表, 生食用野菜栽培段階におけるリステリアの損傷菌化機構と可食部汚染機構の解明.
2016.04~2017.03, 代表, 生食用野菜栽培段階におけるリステリアの損傷菌化機構と可食部汚染機構の解明.
2015.04~2016.03, 代表, 生食用野菜栽培段階におけるリステリアの損傷菌化機構と可食部汚染機構の解明.
2014.04~2015.03, 代表, 生食用野菜栽培における損傷ならびに非損傷リステリア菌の可食部への汚染低減技術の開発.
2013.04~2014.03, 代表, 生食用野菜栽培における損傷ならびに非損傷リステリア菌の可食部への汚染低減技術の開発.
寄附金の受入状況
2007年度, 財団法人 サッポロ生物科学振興財団, 植物の耐凍性獲得に関わる新規抗酸化系酵素群の解析.
学内資金・基金等への採択状況
2003年度~2003年度, 平成16年度 農学研究院教育研究特別経費, 分担, ストレス応答の統合生物学:各種ストレスに対する資源生物の防御機構.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。